

Proceedings

of the 3rd International Modelica Conference,
Linköping, November 3-4, 2003,

Peter Fritzson (editor)

Paper presented at the 3rd International Modelica Conference, November 3-4, 2003,
Linköpings Universitet, Linköping, Sweden, organized by The Modelica Association
and Institutionen för datavetenskap, Linköpings universitet

All papers of this conference can be downloaded from
http://www.Modelica.org/Conference2003/papers.shtml

Program Committee
� Peter Fritzson, PELAB, Department of Computer and Information Science,

Linköping University, Sweden (Chairman of the committee).
� Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
� Hilding Elmqvist, Dynasim AB, Sweden.
� Martin Otter, Institute of Robotics and Mechatronics at DLR Research Center,

Oberpfaffenhofen, Germany.
� Michael Tiller, Ford Motor Company, Dearborn, USA.
� Hubertus Tummescheit, UTRC, Hartford, USA, and PELAB, Department of

Computer and Information Science, Linköping University, Sweden.

Local Organization: Vadim Engelson (Chairman of local organization), Bodil
Mattsson-Kihlström, Peter Fritzson.

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson
DLR; Dynasim:
The New Modelica MultiBody Library
pp. 311-330

The New Modelica MultiBody Library

Martin Otter1, Hilding Elmqvist2, and Sven Erik Mattsson3
1DLR, Oberpfaffenhofen, Germany, Martin.Otter@dlr.de

2Dynasim AB, Lund, Sweden, Elmqvist@dynasim.se
3Dynasim AB, Lund, Sweden, SvenErik@dynasim.se

http://www.robotic.dlr.de/Martin.Otter and http://www.dynasim.se

Abstract
A new Modelica library for the modeling and
simulation of 3-dimensional mechanical systems has
been developed. It will be freely available in the
Modelica standard library. Furthermore, the Dymola
simulation environment has been considerably
enhanced to support the needed features. The
MultiBody library is first presented from a user’s
point of view. Furthermore, all essential details of
the implementation are described. The library
includes features that are usually not available in
other multi-body software, such as analytic handling
of a large class of kinematical loops, or the arbitrary
connection feature of objects. For example, series
connection of 3D line force components is possible.

1 Introduction
The MultiBody library is a free Modelica package
providing 3-dimensional mechanical components to
conveniently model mechanical systems, such as
robots, mechanisms, or vehicles. It will be
accessible as Modelica.Mechanics.MultiBody and is
a replacement of the Modelica library
ModelicaAdditions.MultiBody which has been used
for a long time. The main design goal of the library
and of the supporting features in Dymola [7] was
that standard applications can be carried out in a
convenient way without knowledge of the Modelica
language. The MultiBody library has the following
important features:
• Components can be connected together in a

nearly arbitrary fashion. If kinematical loop
structures occur, they are automatically handled
in an efficient way by a new technique
explained in section 5. Also force components
can be connected directly together, a feature that
is usually not available in other multi-body
software.

• The non-linear equations occurring in
kinematical loops are solved analytically, i.e., in
a robust and efficient way, for a large class of
mechanisms, such as a 4 bar and slider-crank
mechanism, or a MacPherson suspension by

constructing such loops with elements from the
MultiBody.Joints.Assemblies sub package.

• Most joints and all bodies have potential states.
A Modelica translator, such as Dymola, will use
the generalized coordinates of joints as states if
possible. If this is not possible, e.g., because
bodies are moving freely in space, states are
selected from body coordinates. An advanced
user may select states manually from the
“Advanced” menu of the corresponding
components.

• Whenever a multi-body system model is
constructed, all defined components are
automatically visualized in an animation using
appropriate default sizes and colors. This allows
an easy visual check of the constructed model,
without extra work of the modeler. Both, the
complete animation as well as individual
component animation can be switched off. In
this case the equations defining animation are
removed from the generated code.

• Annotations and assert statements have been
introduced that provide in many cases warning
or error messages that are related to the library
components and not to specific equations as it is
usual in Modelica libraries.

2 A First Example
In a first example it shall be demonstrated how to
build up, simulate and animate a simple pendulum,
consisting of a body and a revolute joint with linear
damping in the joint. In Figure 1 the composition
diagram of this model is shown. It uses components
from the MultiBody library, see figure on next page.
Every model utilizing the MultiBody library must

Figure 1. Composition diagram of pendulum

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

have an instance of the
MultiBody.World model on top
level. The reason is that in the
world object the gravity field is
defined (no gravity, uniform
gravity or point gravity), as well as
the default sizes of animation
shapes and this information is
reported to all used components.
Joint “rev” is dragged from
Joints.ActuatedRevolute, “body”
from Parts.Body and the “damper”
as 1-dimensional force element
from “Modelica.Mechanics.Rotat-
ional.Damper”. All components are
connected together according to the

physical connection structure. After translation,
automatically the animation from Figure 2 is shown:

Figure 2. Automatic animation of pendulum

The coordinate system represents the world frame,
the green arrow pointing in negative y-axis
characterizes the direction of the gravity
acceleration, the red cylinder in the world origin is
directed along the axis of rotation of the revolute
joint, and the light blue cylinder and sphere
characterize the body (the center of the sphere is
located in the center of mass of the body).

Before translation, the parameters of the dragged
components need to be defined. Some parameters
are vectors that have to be defined with respect to a
local coordinate system of the corresponding
component. A convenient way is often a definition
of the multi-body model in a configuration where all
local frames are parallel to the world frame. This is
usually the case when all joint variables, such as the
angle of a revolute joint, are zero. Since in such a
reference configuration only one coordinate system
is essential, the definition is easier as if n frames of
n components would have to be taken into account.
The reference configuration for the simple
pendulum shall be defined in the following way:
The y-axis of the world frame is directed upwards,

i.e., the opposite direction of the gravity
acceleration. The revolute joint is placed in the
origin of the world frame. The rotation axis of the
revolute joint is directed along the z-axis of the
world frame. The body is placed on the x-axis of the
world frame (i.e., the rotation angle of the revolute
joint is zero, when the body is on the x-axis). In the
following figure, the Dymola menu to define the
revolute joint according to this definition is shown:

Figure 3. Dymola menu to define a revolute joint

The axis of rotation is defined as ”n = {0,0,1}”
meaning that it is directed into the direction of the z-
axis of the World coordinate system in the reference
configuration. Accordingly, the body component is
defined in Figure 4.

Figure 4. Dymola menu to define a body

The vector “r_CM” from the origin of the “left”
coordinate system of the body called “frame_a” to
the center of mass of the body is defined as ”r_CM
= {0.5, 0, 0}”, meaning that it is directed 0.5 m
along the x-axis of the world frame in the reference
configuration. Note, for subsystems in a hierarchical
model, e.g., a MacPherson suspension, it is also
often convenient to use a local reference
configuration for the vector definitions.

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

3 Describing Orientation
In mechanical systems many variables have to be
described with respect to coordinate systems. The
notation used in the MultiBody library for this
purpose is discussed at hand of Figure 5.

1r12

R12

2h = resolve2(R12, 1h)
1

2

e1z e1y

e1x

e2x

e2ye2z

h

1h = resolve1(R12, 2h)
Figure 5. Notation for coordinate systems

For notational convenience the word “frame” is used
in the sequel as a synonym for “coordinate system”.
Frame 1 in Figure 5 is described by 3 unit vectors

zyx eee 111 ,,
rrr that are orthogonal to each other and

Frame 2 is described in a similar fashion by unit
vectors zyx eee 222 ,,

rrr . Frame 2 is defined relatively to

frame 1 by the position vector 121r that is directed
from the origin of frame 1 to the origin of frame 2
and is resolved in frame 1, i.e.,

},,{},,{ 111
121121121

1
12112

zyxzyx eeerrrr
rrrrr

⋅=⋅= er

Note, that 121r is a one-dimensional (Modelica)
array that holds the 3 coordinates of vector 12r

r with
respect to frame 1. In the sequel, (Modelica) arrays
with one or two dimensions are always
characterized by bold face characters if the complete
array is referenced.

The relative orientation of frame 2 with respect
to frame 1 is defined by the “orientation object” R12
(also called “rotation object”). There are different
ways to mathematically describe orientation. To
ease usage, the MultiBody library is designed such
that knowledge about the actual description form of
orientation is not necessary. This is achieved by
providing a pre-defined type

MultiBody.Frames.Orientation

and utility functions in MultiBody.Frames
operating on instances of this type. The two most
important functions are shown in Figure 5: An
arbitrary vector h

r
 might be represented by its

coordinates with respect to frame 1 (1h) or with its
coordinates with respect to frame 2 (2h),
respectively. If either of the two representations is
given, the other one can be computed in the
following way:

 import MultiBody.Frames;
 Frames.Orientation R12;
 Real h1[3] ”h resolved in frame 1”
 Real h2[3] ”h resolved in frame 2”
equation
 h2 = Frames.resolve2(R12, h1);//or
 h1 = Frames.resolve1(R12, h2);

There are about 30 of these utility functions in sub
library MultiBody.Frames. We will explain some
more of them when needed. Note, that with every
orientation object a direction is associated. E.g., the
inverse orientation R21 of R12 is computed by
”R21 = Frames.inverseRotation(R12)”.

During the development of the MultiBody
library, 3 different representation forms of the
orientation object have been implemented:
1. Transformation matrix T (2h = T12 · 1h).
2. Two rows of the transformation matrix.
3. Quaternions (see, e.g., [16]).
Benchmark tests revealed that the transformation
matrix leads usually to the most efficient code and
therefore this representation form was selected.
Since in some situations quaternions are useful, the
implemented functions operating on quaternions are
provided in the MultiBody library under
MultiBody.Frames.Quaternions. Also some quite
involved functions are present, e.g., to compute
quaternions from a transformation matrix in a
numerically robust way (Quaternions.from_T).

Dymola has the built-in rule that functions with
one statement are always “inlined” before they are
used. Most of the utility functions in
MultiBody.Frames are therefore defined just with
one statement to enforce inlining, in order (a) to not
have any function call overhead, (b) to allow
symbolic rearrangement of terms and (c) that
symbolic differentiation is possible. Other tools
using the MultiBody library should also have
support for inlining in order to get efficient code.

4 MultiBody Frame Connector
We are now in the position to present the design of
the “Frame” connector that is used to connect multi-
body components together. All variables used in this
connector are displayed in Figure 6: A coordinate
system “frame a” is rigidly fixed at an attachment
point of a mechanical part. This Frame is described
with respect to the world frame by the
• position vector 0r0a that is directed from the

origin of the world frame to the origin of frame
a and is resolved in the world frame and by the

• orientation object R0a describing the relative ori-
entation between the world frame and frame a.

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

0r0a

R0aa

0

af

aτ

world framecut plane

frame a

Figure 6. MultiBody “Frame” connector

It is assumed that a free body diagram is
constructed, i.e. that a cut is performed between
mechanical parts that shall be connected together at
frame a. In the cut plane a resultant cut force af and
a resultant cut torque aτ act on frame a. Both vectors
are resolved in this frame.

connector Frame
 import SI = Modelica.SIunits;
 SI.Position r_0[3]"= 0r0a";
 Frames.Orientation R "= R0a";
 flow SI.Force f[3] "= af";
 flow SI.Torque t[3] "= aτ";
end Frame;

connector Frame_a = Frame;
connector Frame_b = Frame;

The four previously defined variables are used in the
connector. The additional connectors Frame_a and
Frame_b have the identical definition as connector
Frame. The only difference is that Frame_a and
Frame_b have different icons in order to be able to
distinguish Frame connectors more easily in a
composition diagram.

The cut force and cut torque are flow variables in
order that the force and torque balance at a point
where several components are connected together is
fulfilled. Note, that two connected frames (a and b)
coincide, since a.r_0 = b.r_0 and a.R = b.R due to
the connection rules of Modelica.

The orientation between two frames can be
described by 3 independent variables, see, e.g.,
[16][18]. Unfortunately, every such description
form has a singularity and therefore cannot be used
in a connector. For this reason, an orientation object
has to be described by a set of redundant variables
that are related to each other with constraint
equations. In the MultiBody library the orientation
object is described by a transformation matrix that
has 9 entries, i.e., a highly redundant description
form. This property leads to significant difficulties
and is one of the reasons why it needed so long time
to come up with a “truly” object-oriented multi-
body library (E.g. the first Dymola multi-body
library was developed in 1994 [17]).

In several components, such as a body or a sensor,
velocities or accelerations of connector variables are
needed. These derivatives can be easily obtained in
the following way:

 import SI = MultiBody.SIunits;
 import MultiBody.Interfaces;
 import MultiBody.Frames;
 Interfaces.Frame_a frame_a;
 SI.Velocity v_0[3];
 SI.Acceleration a_0[3];
 SI.AngularVelocity w_a[3];
 SI.AngularAcceleration z_a[3];
equation
 v_0 = der(frame_a.r_0);
 a_0 = der(v);
 w_a = Frames.angularVelocity2(
 frame_a.R,der(frame_a.R));
 z_a = der(w_a);

As can be seen, the velocity v_0 and the
acceleration a_0 of the origin of frame_a (resolved
in the world frame) are simply computed by
applying the derivative operator der(..). The angular
velocity of frame_a is computed with a function that
requires as input the orientation object R and its
derivative dR/dt and returns the angular velocity aωa
resolved in frame_a according to Poisson’s
equation. With RT = [ex, ey, ez], aωa is computed as:

},,{ x
T
yx

T
zy

T
z

aa eeeeeeω &&& ⋅⋅−⋅=

Applying the derivative operator der(...) on w_a
results in the angular acceleration, resolved in
frame_a, since according to Euler’s differentiation
rule (hdthddthd ikki

rrrr
×+= ω//):

dtd
dtddtd

aa

aaaaa

/
//0

ω
ωωωω

r
rrrr

=
×+=

where dthdi /
r

 is the derivative of vector h
r

 with
respect to coordinate system i and aωr is the
absolute angular velocity of frame_a.

In books about multi-body systems it is usually
recommended to compute the angular velocity by
recursive calculations and it is claimed that this is
much more efficient as using the direct application
of Poisson’s equation as it is performed with
function “angularVelocity2” above. For a “truly”
object-oriented library it is difficult or not possible
to apply a recursive calculation directly since in an
object only relations between connector variables
can be formulated. It turns out that the generated
code of the MultiBody library is nearly as efficient
as from the ModelicaAdditions.MultiBody library
where the angular velocity is computed recursively.
This is due to the particular implementation of
Poisson’s equation and Dymola’s symbolic
capabilities.

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

5 Overdetermined DAEs
By collecting together all explicit equations in a
Modelica model and its submodels and all equations
due to “connect” statements, a Modelica model is
mapped to a DAE (= Differential Algebraic
Equation system) of the following form:

0 = f(dx/dt, x, y, t)

where x contains all variables appearing
differentiated and y contains all pure algebraic
variables. To get efficient code, this DAE has to be
symbolically processed and transformed to state
space form (at least numerically) with a subset of x
as states. This is performed by BLT partitioning [8]
to get a sequential model evaluation and to identify
algebraic loops, the Pantelides algorithm [19] to
determine equations to be differentiated and the
dummy derivative method [13] to select
independent states (this method can be interpreted
as a variant of the currently popular “projection
methods” of higher index DAEs). All these
algorithms require that dim(f) = dim(x) + dim(y),
i.e., the number of equations has to be identical to
the number of unknown variables.

Whenever the variables in a connector are not
independent from each other, connection structures
that have loops may result in a DAE where there are
more equations as unknowns, i.e., dim(f) > dim(x) +
dim(y). Usually, this overdetermined set of
equations is still consistent, so that a unique
mathematical solution exists. Since the Frame
connector has an overdetermined set of variables
due to the orientation object, also models of the
MultiBody library may result in an overdetermined
DAE.

It seems unlikely that the symbolic algorithms
from above can be generalized to directly handle
such DAEs, because it is not possible to distinguish
consistently overdetermined DAEs from erroneous
DAEs (that are a result of modeling errors), by pure
structural information. For this reason, the only
practical way seems to be to mark the
overdetermined equation subset in the model and
transform this set of equations before the standard
algorithms from above are applied. One such way of
marking and transforming an overdetermined set of
equations has been designed for the next version 2.1
of the Modelica language and has been implemented
in Dymola version 5.1. This approach is sketched in
the rest of the section.

It is assumed that overdetermined DAEs are due
to overdetermined sets of (non flow) variables v in
connectors. Such connectors will be called
“overdetermined connectors” in the sequel. When

connecting two or more overdetermined connectors
together, equality equations for corresponding
overdetermined variable sets are generated, such as
“v1 = v2”. Whenever, say, v1 is computed in one
component and then passed to the next component
via a “connect” statement, everything is fine,
because v2 is uniquely computed from v1 by “v2 :=
v1”. Difficulties arise, if both v1 = v1(x) and v2 =
v2(x) are computed from potential state variables x,
since a connection equation v1 = v2 imposes an
overdetermined (but consistent) set of constraints on
the variables x.

The basic requirement is that the developer of an
overdetermined connector provides a function called
“equalityConstraint(v1,v2)” that returns a non-
redundant set of residues that should be zero if the
equality constraint v1 = v2 is fulfilled. In a pre-
processing step of the model equations, a translator
has then to decide for every connection set whether
an equation of the form “v1 = v2” or an equation of
the form “0 = equalityConstraint(v1,v2)” has to be
added to the DAE. Let us demonstrate this by
considering the Frame connector.

Modelica is enhanced such that a type or record
declaration may optionally contain a definition of
function “equalityConstraint(...)”:

type Orientation
 extends Real[3,3];

 function equalityConstraint
 input Orientation R1;
 input Orientation R2;
 output Real residue[3];
 protected
 Orientation R_rel;
 algorithm
 R_rel = R2*transpose(R1);
 residue := {R_rel[2,3],
 R_rel[3,1],
 R_rel[1,2]};
 end equalityConstraint;
end Orientation;

An orientation object is defined by a transformation
matrix of dimension [3,3]. Two orientation objects,
i.e., transformation matrices, R1 and R2 are identical
(R1 = R2) if the relative transformation matrix
between R1 and R2, i.e., Rrel = R2 · R1

T is the unit
matrix. A transformation matrix describing a small
rotation can be approximated by (see, e.g., [18])

−
−

−
≈

1
1

1

12

13

23

ϕϕ
ϕϕ
ϕϕ

relR

where ϕ1,ϕ2,ϕ3 are a set of 3 independent variables
describing the deviation from the unit matrix. As a
result, if the outer diagonal elements [2,3], [3,1] and

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

[1,2] of Rrel vanish, then R1 = R2. Therefore, these 3
outer diagonal elements are returned as residues by
function equalityConstraint(...). To summarize, a
connection between two Frame connectors will
either result in 9 equations R1 = R2 to define the
equality between two orientation objects or in 3
equations by calling function equalityConstraint(...).
If appropriately selected, the result is a regular DAE
where the number of equations is identical to the
number of unknowns. A call to function
equalityConstraint(...) will usually result in a non-
linear system of equations that has only the desired
solution R1 = R2, if the initial guess values of the
iteration variables are close enough to this solution.

The remaining open question is how a tool can
decide which connection equations to use? An
informal description is given below. Details of the
algorithm are sketched in the appendix.

A new package called “Connections” is
introduced in Modelica, containing a set of built-in
operators to mark overdetermined equations. Let us
sketch these operators using the orientation object R
as an example:
• root(A.R) defines that the orientation object R

in connector A is computed in a consistent way.
The world object has such a definition because
R is defined as identity matrix.

• branch(A.R, B.R) defines that there is an
algebraic relationship between the orientation
object A.R in connector A and the orientation
object B.R in connector B. Joint objects have
such a definition, if there is an algebraic
constraint between frame_a.R and frame_b.R.

These two operators are already sufficient, since a
tool can determine whether the graph constructed
with root(...), connect(...) and branch(...) statements
contains loops. These loops have to be cut and for
every cut the equalityConstraint(...) function has to
be used to state the equality of orientation objects.

If there is a free flying body, coordinates of the
body should be used as states from which the
orientation object in the body connector can be
computed. This in turn means that a free flying body
is also a root in the graph. Formally, this situation is
defined by operators:
• potentialRoot(A.R) defines that the orientation

object R in connector A might be computed in a
consistent way, if this is necessary. Body
objects have such a definition.

• isRoot(A.R) returns true if the orientation object
A.R has been selected as a root. This means that
different equations have to be provided.

The sketched method to handle overdetermined
DAEs with symbolic transformation techniques is
not specific to multi-body systems. For example,

efficient implementations of electric power systems
use the Park transformation to define currents and
voltages in the connector relatively to the harmonic,
high-frequency signal of a power source that is
described by the angle of the rotor of the source.
This allows much faster simulations, since the basic
high frequency signal of the power source is not part
of the differential equations. On the other hand, the
source angle has to be included into the connector
leading to an overdetermined description that can be
handled with the method presented in this section.

6 Elementary Components
Using the “Frame” connector and the utility
functions in MultiBody.Frames, it is straightforward
to implement the elementary components that are
usually available in multi-body programs.

The MultiBody library has about 40 components.
The most important ones are shown in Table 1.
Contrary to approaches described in text books
about this topic, equations are only defined on
“position” level. A tool has enough information to
figure out via the Pantelides algorithm [19] which
equations have to be differentiated in order to
transform the DAE to state space form with the
dynamic dummy derivative method [13][14]. This
feature simplifies the implementation and the
understanding of the MultiBody library
considerably.

In the left column of Table 1, the icon of the
respective model is shown whereas in the right
column the essential equations are given that are
mapped directly to Modelica equations in the
library. Abbreviations which are used for variable
and function names in the right column (to save
space) are stated at the top row of Table 1. The new
built-in operators “root”, “isRoot”, “branch”,
“potentialRoot” from Table 1 are actually within a
package “Connections” (the correct name would
therefore be, e.g., Connections.root). All other used
functions are from subpackage MultiBody.Frames.
Let us discuss the components in a bit more detail,
see Table 1.

6.1 MultiBody.World
In the World model essentially the position vector of
its frame connectors is set to zero and the
orientation object of the frame is set to a null
rotation (e.g., the transformation matrix is the
identity matrix). When dragging MultiBody.World
into a model, the following declaration is generated
(this behavior is defined via an annotation):

inner MultiBody.World world;

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

This is necessary since nearly all components have a
corresponding “outer” declaration to access the
definitions in the world object, such as defaults for
animation and the gravity function. In components
that have a mass, the function world.gravityAcceler-
ation(r) is called to inquire the gravity acceleration
at position r. Depending on user input, different
gravity fields can be used. Currently, no gravity
field, parallel and point gravity field is supported.
This allows, e.g., to easily simulate a satellite in the
gravity field of the earth. An example is given in
Figure 7.

Figure 7. Two point masses in a point gravity field

If the World object is missing in a model, a warning
message is printed and an instance of the World
object with default settings is automatically utilized.
This feature is again defined via an annotation (this
is useful for any type of inner declaration).

6.2 MultiBody.Parts.FixedTranslation
This component defines a fixed translation of a
frame. It is, e.g., used to define frames for several
attachment points on a body. The equations state
that the position vector of frame_b is defined from
the position vector of frame_a and the relative
position vector arab from frame_a to frame_b (arab is
defined as parameter “r”). Since frames are
translated, the orientation objects in the two frames
are set equal. This in turn requires a
“Connections.branch(...)”, see section 5. Finally, a
force and torque balance of this massless part is
present in the Modelica model.

6.3 MultiBody.Joints.Revolute
This component defines a rotation along an axis
vector n = an = bn via angle ϕ. When ϕ = 0, frame_a
and frame_b coincide. As with most other joints, the
generalized coordinates (here: ϕ and ϕω &=) have
the attribute stateSelect = StateSelect.prefer in order
that they are selected as states if possible. Since the
origins of both frames are located at the same point
on the axis of rotation, the position vectors in the
two frames are identical. The relative orientation
object Rrel is computed with n and ϕ. It is used to
define the relationship between the orientation
objects from frame_a and frame_b. It is also stated

Abbreviations:
ra, Ra, fa, τa := frame_a.r_0, .R, .f, .t
rb, Rb, fb, τb := frame_b.r_0, .R, .f, .t

absRotation :=
relRotation :=

angVel2 :=
Q.angVel2 :=

Q.constraint :=
grav :=

Frames.absoluteRotation
Frames.relativeRotation
Frames.angularVelocity2
Frames.Quaternions.angularVelocity2
Frames.Quaternions.orientationConstraint
world.gravityAcceleration

World

root(frame_b.R)

nullRotation()

b

b

=
=

r 0
R

Parts.FixedTranslation

branch(frame_a.R, frame_b.R)

bababa

ba

ab

abaaab

frττ0
ff0

RR
rRrr

×++=
+=

=
+=),(1resolve

Joints.Revolute

branch(frame_a.R, frame_b.R)

),1(resolve
),1(resolve

0

),n(absRotatio
),tion(planarRota

brela

brela

bT

relab

rel

ab

τRτ0
fRf0

τn

RRR
nR

rr

+=
+=
⋅=

=
=
=
=

ϕω

ϕ

&

Joints.Spherical

0τ
0τ

fRf0
RRR

rr
no

=
=

+=
=
=

b

a

brela

barel

ab

),1(resolve
),relRotion(

)branch(... //

Parts.Body

aCMaaaa

CMaa

CMaa

a

CMaa

a

aaa

a

a

m

frIωωωIτ
rωω

rωaf
gvRa

rRrg
rv
if end

p
RRω

else
pR

ppω
p

thenif

×+×+=
××+

×+⋅=
−=

+=
=

=
=

=
=
=

&

&
&

&

&

&

))(
(

),2(resolve
)),1(resolvegrav(

()tionQ.nullRota
),(angVel2

)from_(.Frames
),(Q.angVel2
)(ntQ.constrai0
 me_a.R)isRoot(fra
R).aoot(frame_potentialR

Table 1. Elementary components of MultiBody library

that the projection of the cut-torque on n must
vanish. Finally, the force and torque balance of this
massless part is present. Besides model “Revolute”
there is also a joint “ActuatedRevolute” that has an
additional 1-dim. flange connector. Via this flange,
a drive train can be attached driving the revolute

world

x

y

r={0,0,0}

a b

a b

n={0,0,1}

m=1

a b

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

joint, e.g., with components from the Modelica.-
Mechanics. Rotational library (see Figure 1).

There is an additional utility function
“rooted(…)” to inquire whether there is a path in the
spanning trees of the virtual connection graphs from
a selected root to the frame under consideration.
This is used here and at some other places to give
two equation variants depending on the actual
connection structure in order to avoid small linear
algebraic equations. For example, if
rooted(frame_a.R) = true then the force and torque
at frame_a are computed from the frame_b
quantities. Otherwise, the force and torque at
frame_b are computed from the frame_a quantities.

6.4 MultiBody.Joints.Spherical
This component defines a spherical joint, i.e., the
origins of frame_a and frame_b coincide and the
two frames can freely rotate relative to each other.
No torques are transmitted via this joint. Since
frame_a.R and frame_b.R are not related together in
an algebraic equation, no “branch(...)” statement is
present. No states are defined for this joint.

6.5 MultiBody.Parts.Body
This component defines the mass and inertia
properties of a body. It has one frame_a that is
usually used as reference coordinate system of a part
which is associated with a specific geometric
position on the part. Other points on the part are
often defined via FrameTranslation components
connected to frame_a of the body component. The
mass m, the position vector rCM = araCM from the
origin of frame_a to the center of mass (resolved in
frame_a) and the inertia tensor I = aICM with respect
to the center of mass are given as parameters and
define the body properties, see also Table 1.

The body component is defined as
“potentialRoot”, i.e., it may be selected as root of a
spanning tree of the virtual connection graph.
Whether it is selected or not can be inquired via
function “isRoot(...)”. If the body frame is not
selected as root, the orientation object in the frame
is defined somewhere else. In this case the second
branch of the if clause in Table 1 is used and the
angular velocity of the body frame is determined by
frame_a.R and its derivative which for example
means that it is computed (indirectly) by the
generalized position and velocity variables of joints.

If “isRoot(...) = true”, it is required that
frame_a.R is calculated within the body object. This
is only possible if variables of the body are used as
states from which frame_a.R can be determined. By
default, quaternions p are used as potential states.
Consequently frame_a.R is computed from p and

the angular velocity is computed from p and its
derivative p& . The 4 coordinates of the quaternion
vector p have to fulfill the constraint equation
“pT·p=1”. This non-linear equation is added in the
first if-clause. Since there is a non-linear equation
relating potential states, a tool has to use the
dynamic dummy derivative method to dynamically
select 3 states out of 4 potential states during
simulation. Whenever the selection comes close to
its singularity, Dymola changes the states at a
completed step of the integrator. The 4th potential
state has to be computed by solving the non-linear
quaternion constraint equation. Dymola performs
this in an efficient and robust way, because it can
detect that the special non-linear equation of
quaternions is present and solves this equation
analytically. E.g., if p[1:3] are selected as states,
then
p[4] = sqrt(1 – p[1:3]*p[1:3])*signAtLastStep(p[4]).

Via a parameter in the “Advanced” menu of the
body object, it is possible to alternatively also use
the 3 Cardan angles as states. They are defined with
respect to a coordinate system “Fix” fixed in
frame_a. Whenever the Cardan angles come close to
their singularity, frame “Fix” is changed such that
the new Cardan angles are far away from their
singularity. The advantage of this approach is that
no dynamic dummy derivative method is needed.
The disadvantage is that every change of states
results in a state event which is less efficient as the
state change performed with the dynamic dummy
derivative method. Furthermore, several variables
are discontinuous (especially the Cardan angles)
which can lead to problems if equations are further
differentiated, e.g., for inverse models.

The non-standard feature to have potential states
both in joints and in bodies is especially useful for
inexperienced users, since they do not have to
introduce a “virtual” joint with 6 degrees of
freedom. For example, it is easy to just build up a
system as in Figure 8, where a body is connected via
a spring to the environment.

world

x

y

a
b

spring

c=40

m
=1

body

Figure 8. Free body with spring

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

In the left part of the figure the Modelica schematic
and in the right part the default animation is shown.
No “non-physical” joint has to be introduced to
build up such a model, as it is usually the case in
other multi-body programs.

Let us now return to the body equations in Table
1. Once the orientation object and the angular
velocity of the body frame are determined, all other
kinematical quantities are derived by differentiation
and used in the Newton/Euler equations that are
formulated with respect to frame_a of the body (and
not with respect to the center of mass).

7 Loop Structures
Due to the new handling of overdetermined DAEs,
the modeler does not have to take special actions if
loop structures occur (contrary to the
ModelicaAdditions.MultiBody library). An example
is presented in Figure 9. It is available as
MultiBody.Examples.Loops.Fourbar1. In the upper

world

x

y

a b

n={1,0,0}

j1

a b
n={1,0,0}

j2

b1

r={0,0.5,0.1}a
b

b2

r={0,0.2,0}a
b

b3

r={-1,0.3,0.1}

ab

a
b

n=
{0

,1
,0

}

re
v

a b

n={0,0,1}

rev1

a b

n={1,0,0}

j3

a b

n={0,1,0}

j4

a b

n={0,0,1}

j5

b0

r={1.2,0,0}

a b

Figure 9. Four bar mechanism with 7 joints and 1 dof

part of the figure the Modelica schematic of a four
bar mechanism is shown constructed with the
MultiBody library. It consists of 6 revolute, 1
prismatic joint and forms a kinematical loop. This
mechanism has one degree of freedom.

In the lower part of the figure the default
animation is shown. Note, that the axes of the
revolute joints are represented by the red cylinders

and that the axis of the prismatic joint is represented
by the red box on the lower right side.

Whenever loop structures occur, non-linear
algebraic equations are present on “position level”.
It is then usually not possible by structural analysis
to select states during translation (which is possible
for non-loop structures). In the example above,
Dymola detects a non-linear algebraic loop of 57
equations and reduces this to a system of 7 coupled
algebraic equations. Note, that this is performed
without using any “cut-joints” as it is usually done
in multi-body programs, but by just appropriate
symbolic equation manipulation. Via the dynamic
dummy derivative method the generalized
coordinates on position and velocity level from one
of the 7 joints are dynamically selected as states
during simulation. Whenever, these two states are
no longer appropriate, states from one of the other
joints are selected.

The efficiency of loop structures can usually be
enhanced, if states are statically fixed at translation
time. For this mechanism, the generalized
coordinates of joint j1 can always be used as states.
This can be stated by setting parameter
“enforceStates = true” in the “Advanced” menu of
the desired joint. This flag sets the attribute
stateSelect of the generalized coordinates of the
coresponding joint to “StateSelect.always”. When
setting this flag to true for joint j1 in the four bar
mechanism, Dymola detects a non-linear algebraic
loop of 40 equations and reduces this to a system of
5 coupled non-linear algebraic equations.

7.1 Planar Loops
In Figure 10 the model of a V6 engine is shown that
has a simple combustion model. It is available as
MultiBody.Examples.Loops.EngineV6. The Mode-
lica schematic of one cylinder is given in the middle
part of the figure. Connecting 6 instances of this
cylinder appropriately together results in the engine
schematic displayed at the upper part of the figure.
In the lower part the animation of the engine is
shown. Every cylinder consists essentially of 1
prismatic and 2 revolute joints that form a planar
loop, since the axes of the two revolute joints are
parallel to each other and the axis of the prismatic
joint is orthogonal to the revolute joint axes. All 6
cylinders together form a coupled set of 6 loops that
have together 1 degree of freedom.

All planar loops, and especially the engine, result
in a DAE that does not have a unique solution. The
reason is that, e.g., the cut forces in direction of the
axes of the revolute joints cannot be uniquely
computed. Any value fulfills the DAE equations.

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

a b

n={1,0,0}
bearing

w orld

x

y

inertia

J=1

cylinder1 cylinder2 cylinder3 cylinder4 cylinder5 cylinder6

Pi
st

on

r={0,pist...a
b

R
od

r={0,ro...

b
a

a b
n={1,0,0}

B2

C
rank4

r=
{0

,-c
r..

.

b
a

Crank3

r={cran...
a b

Crank1

r={cran...
a b

C
ra

nk
2

r={0,cr...

b
a

a b
n={1,0,0}

B1Mid

r={cran...
a b

a
b

n={0,-1,0}
C

ylinder

Mounting

r={cran...
a b

Cylinder...

r={crank...
a

b

CrankA...

r={0,0,0}
a

b

CrankA...

r={0,0,0}
a

b

C
yl

in
de

...

r={0,cyl...a
b

ga
sF

...

Figure 10. V6 engine with 6 planar loops and 1 dof

This is a structural property that is determined by
the symbolic algorithms. Since they detect that the
DAE is structurally singular, a further processing is
not possible. Without additional information it is
also impossible that the symbolic algorithms could
be enhanced because if the axes of rotations of the
revolute joints are only slightly changed such that
they are no longer parallel to each other, the planar
loop can no longer move and has 0 degrees of
freedom. Algorithms based on pure structural
information cannot distinguish these two cases.

The usual remedy is to remove superfluous
constraints, e.g., along the axis of rotation of one
revolute joint. Since this is not easy for an
inexperienced modeler, the flag “planarCutJoint” is
provided in the “Advanced” menu of a revolute joint
that removes these constraints. This flag must be set
to true for one revolute joint in every planar loop.

In the engine example, this flag is set in the revolute
joint B2 in the cylinder model.

If a modeler is not aware of the problems with
planar loops and models them without special
consideration, Dymola displays an error message
and points out that a planar loop may be the reason
and suggests to use the “planarCutJoint” flag. This
error message is due to an annotation in the Frame
connector:

flow SI.Force f[3] annotation(
 unassignedMessage=”..”));

If no assignment can be found for some forces in a
connector, the “unassignedMessage” is displayed. In
most cases the reason for this is a planar loop or two
joints that constrain the same motion. Both cases are
discussed in the message.

Note that the non-linear algebraic equations
occurring in planar loops can be solved analytically
in most cases and therefore it is highly
recommended to use the techniques discussed in the
next two sections for such systems.

7.2 Analytic Loop Handling: User’s View
It is well known that the non-linear algebraic
equations of most mechanical loops in technical
devices can be solved analytically. It is, however,
difficult to perform this fully automatically and
therefore none of the commercial, general purpose
multi-body programs, such as MSC ADAMS[1],
LMS DADS[5], SIMPACK[21], have this feature.
These programs solve loop structures with pure
numerical methods. Multi-body programs that are
designed for real-time simulation of the dynamics of
specific vehicles, such as ve-DYNA[23], usually
contain manual implementations of a particular
multi-body system (the vehicle) where the occurring
loops are either analytically solved, if this is
possible, or are treated by table look-up where the
tables are constructed in a pre-processing phase.
Without these features the required real-time
capability would be difficult to achieve.

In a series of papers and dissertations, especially
[10][24][11][15], Prof. Hiller and his group in
Duisburg have developed systematic methods to
handle mechanical loops analytically. The
“characteristic pair of joints” method [10][24]
basically cuts a loop at two joints and uses
geometric invariants to reduce the number of
algebraic equations, often down to one equation that
can be solved analytically. Also several multi-body
codes have been developed that are based on this
method, e.g., MOBILE [12]. Besides the very
desired feature to solve non-linear algebraic
equations analytically, i.e., efficiently and in a
robust way, there are several drawbacks: It is

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

difficult to apply this method automatically. Even if
this would be possible in a good way, there is
always the problem that it cannot be guaranteed that
the statically selected states lead to no singularity
during simulation. Therefore, the “characteristic pair
of joints” method is usually manually applied which
requires know-how and experience.

In the MultiBody library the “characteristic pair
of joints” method is supported in a restricted form
such that it can be applied also by non-specialists.
The idea is to provide joint aggregations in package
MultiBody.Joints.Assemblies as one object that
either have 6 degrees of freedom or 3 degrees of
freedom (for usage in planar loops).

As an example, a variant of the four bar
mechanism from Figure 9 is given in Figure 11. In
the upper part of the figure, the mechanism is
modeled with standard joints. In the lower part, the
two spherical joints and the prismatic joint are
collected together in an assembly object called
“jointSSP” that is defined in

MultiBody.Joints.Assemblies.JointSSP.
This joint aggregation has a frame at the left side of
the left spherical joint (frame_a) and a frame at the
right side of the prismatic joint (frame_b). JointSSP,
as all other objects from the Joints.Assemblies
package, has the property, that the generalized

world

x

y

a b

n={1,0,0}

j1

a b
n={1,0,0}

j2

b1

r={0,0.5,0.1}a
b

b2

r={0,0.2,0}a
b

b0

r={1.2,0,0}

a b

a b
spherical1

rod

r={-1,0.3,0.1}

ab
ab

spherical2

world

x

y

a b

n={1,0,0}
j1

b1

r={0,0.5,0.1}a
b

b3

r={1.2,0,0}
a b

a b
jointSSP

ibim

b2

r={0,0.2,0}a
b

Figure 11. Analytic handling of four bar mechanism

coordinates, and all other frames defined in the
assembly, can be calculated given the movement
of frame_a and of frame_b. This is performed by
analytically solving non-linear systems of equations
(details are given in the next subsection). From a
structural point of view, the equations in an
assembly object are written in the form

q = f1(ra, Ra, rb, Rb)
where ra, Ra, rb, Rb are the variables defining the
position and orientation of the frame_a and frame_b
connector (see also Table 1) and q are the
generalized positional coordinates inside the
assembly, e.g., the angle of a revolute joint. Given
angle ϕ of revolute joint j1 from the four bar
mechanism, frame_a and frame_b of the assembly
object can be computed by a forward recursion

(ra, Ra, rb, Rb) = f(ϕ)
Since this is a structural property, the symbolic
algorithms can automatically select ϕ and its
derivative as states and then all positional variables
can be computed in a forwards sequence. It is now
understandable that Dymola transforms the
equations of the four bar mechanism to a recursive
sequence of statements that has neither linear nor
non-linear algebraic loops (remember, the previous
“straightforward” solution had a nonlinear system of
equations of order 5).

The aggregated joint objects consist of a
combination of either a revolute or prismatic joint
and of a rod that has either two spherical joints at its
two ends or a spherical and a universal joint,
respectively. For all combinations, analytic
solutions can be determined. For planar loops,
combinations of 1, 2 or 3 revolute joints with
parallel axes and of 2 or 1 prismatic joint with axes
that are orthogonal to the revolute joints can be
treated analytically. The currently supported
combinations are listed in Table 2. The missing
combinations (such as JointSUP or Joint RPP) will
be added in one of the next releases.

3-dimensional Loops:
JointSSR Spherical – Spherical – Revolute
JointSSP Spherical – Spherical – Prismatic
JointUSR Universal – Spherical – Revolute
JointUSP Universal – Spherical – Prismatic
JointUPS Universal – Prismatic – Spherical
Planar Loops:
JointRRR Revolute – Revolute – Revolute
JointRRP Revolute – Revolute – Prismatic

Table 2. MultiBody.Joints.Assemblies aggregations

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

On first view this seems to be quite restrictive.
However, mechanical devices are usually built up
with rods connected by spherical joints on each end,
and additionally with revolute and prismatic joints.
Therefore, the combinations of Table 2 occur
frequently. The universal joint is usually not present
in actual devices but is used (a) if two JointXXX
components can be connected such that a revolute
and a universal joint together form a spherical joint,
see Figure 12 and (b) if the orientation of the
connecting rod between two spherical joints is
needed, e.g., since a body shall be attached. In this
case one of the spherical joints might be replaced by
a universal joint. This approximation is fine as long
as the mass and inertia of the rod is not significant.

Figure 12. MacPherson with analytic loop handling

Let us discuss item (a) in more detail: The
MacPherson suspension in Figure 12 is from the
Modelica VehicleDynamics library [2]. It has three
frame connectors. The lower left one (frame_C) is
fixed in the vehicle chassis. The upper left one
(frame_S) is driven by the steering mechanism, i.e.,
the movement of both frames are given. The frame
connector on the right (frame_U) drives the wheel.
The three frames are connected by a mechanism
consisting essentially of two rods with spherical
joints on both ends. These are built up by a
jointUPS and a jointSSR assembly, see Figure 12.
As can be seen, the universal joint from the
jointUPS assembly is connected to the revolute joint
of the jointSSR assembly. Therefore, we have 3
revolute joints connected together at one point and if
the axes of rotations are chosen appropriately, this
describes a spherical joint. In other words, the two
connected assemblies define the desired two rods
with spherical joints on each ends.

The movement of the chassis, frame_C, is
computed somewhere else. When the generalized
coordinates of revolute joint “innerJoint” (lower left
part in figure) are used as states, then frame_a and
frame_b of the jointUPS joint can be calculated.

After the non-linear loop with jointUPS is solved,
all frames on this assembly are known, especially,
the one connected to frame_b of the jointSSR
assembly. Since frame_b of jointSSR is connected
to frame_S which is computed from the steering
mechanism, again the two required frame
movements of the jointSSR assembly are calculated,
meaning in turn that also all other frames on the
jointSSR assembly can be computed, especially, the
one connected to frame_U that drives the wheel.
From this analysis it is clear that a tool is able to
solve these coupled loops analytically.

C
rank4

r=
{0

,-c
r..

.

b
a

Crank3

r={cran...
a b

Crank1

r={cran...
a b

C
ra

nk
2

r={0,cr...

b
a

Mid

r={cran...
a b

Mounting

r={cran...
a b

Cylinder...

r={crank...
a

b

CrankA...

r={0,0,0}
a

b

CrankA...

r={0,0,0}
a

b

C
yl

in
de

...

r={0,cyl...a
b

a
b

jo
in

tR
R

P

ib
ia

n_
a=

{1
,0

,0
}

im

R
od

r={0,ro...

b
a

Pi
st

on

r={0,pist... a
bgasF...

Figure 13. Cylinder of engine with analytic loop handling

Another example is the engine model from Figure
10. It is sufficient to rewrite the basic cylinder
model by replacing the joints with a JointRRP
object that has two revolute and one prismatic joint,
see Figure 13. Since 6 cylinders are connected
together, 6 coupled loops with 6 JointRRP objects
are present. This model is available as
MultiBody.Examples.Loops.EngineV6_analytic.

From Figure 10 it can be seen that the revolute
joint of the crank shaft (left part of upper subfigure
in Figure 10) might be selected as degree of
freedom. Then the 4 connector frames of all
cylinders can be computed. As a result the
computations of the cylinders are decoupled from
each other. Within one cylinder, see Figure 13, the
position of frame_a and frame_b of the jointRRP
assembly can be computed and therefore the
generalized coordinates of the two revolute and the
prismatic joint in the jointRRP object can be
determined. From this analysis it is not surprising
that Dymola is able to transform the DAE equations

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

into a sequential evaluation without any linear or
non-linear loop. Compare this nice result with the
model from Figure 10 that leads to a DAE with 6
algebraic loops and 5 non-linear equations per loop.
Additionally, a linear system of equations of order
43 is present. The simulation time is about 5 times
faster with the analytic loop handling.

7.3 Analytic Loop Handling: How it works
The basic technique for the analytic loop handling is
explained at hand of the JointSSR (Spherical –
Spherical – Revolute) assembly shown in Figure 14.
It consists of two spherical joints connected by a
rigid massless rod and a revolute joint connected by
an additional massless rod to the spherical joint in
the middle (optionally, a point mass can be present
on the rod connecting the two spherical joints). At
the upper part of Figure 14 the Modelica icon of the
JointSSR object and in the lower part an animation
view with some important position vectors is shown.
The following derivation is a special case of the
“characteristic pair of joints” method and is based
on [24].

It is assumed that the positions and orientations
of frame_a and of frame_b of the JointSSR object
are calculated as a function of states. This means
that the position vectors 0rs1, 0rrev from the origin of
the world frame to the origins of frame_a and of
frame_b of the JointSSR object are known. Using
the orientation objects of frame_a and of frame_b it
is easy to compute position vector ar1 that is directed
from the origin of the revolute joint (= frame_b) to
the origin of the first spherical joint (= frame_a) and
is resolved in frame_a of the revolute joint (this
frame is identical to frame_b of the JointSSR
object). Position vector br2 is a parameter of the
JointSSR object and is directed from the origin of
the revolute joint to the origin of the second
spherical joint and is resolved in frame_b of the

Figure 14. Analytic loop handling for JointSSR

revolute joint. The two spherical joints are
connected together by a rod with a fixed length L
which is a parameter of the JointSSR object. The
length L can be also calculated by computing the
vector from spherical joint 1 to spherical joint 2
with vectors ar1,

br2 and taking its length. The square
of this length results in:

() ()1212
2)()(rTrrTr abTabL ⋅−⋅⋅−= ϕϕ

Since ar1 and br2 are resolved in different frames, ar1
has first to be transformed from frame_a to frame_b
of the revolute joint using the relative
transformation matrix T between these two frames.
This matrix is solely a function of the unknown
rotation angle ϕ. In the equation above all variables
are known (or are calculated somewhere else) with
exception of ϕ. Therefore, we have one non-linear
algebraic equation for one unknown, ϕ, and the goal
is to solve this equation analytically. Multiplying
out all terms and taking into account that

)()(ϕϕ TT ⋅T is the unit matrix, since transformation
matrices are orthogonal, we arrive at

12
2

1122)(20 rTrrrrr abaTabTb L ⋅⋅⋅−−⋅+⋅= ϕ

The relative transformation matrix T can be
mathematically described as, see, e.g., [18]:

())sin(
0

0
0

)cos(
12

13

23
ϕϕ ⋅

−
−

−
−⋅⋅−+⋅=

nn
nn

nn
TT nnEnnT

where E is the identity matrix and n is a unit vector
in direction of the axis of rotation. n has the same
coordinates with respect to frame_a and to frame_b.
Inserting this formula in the constraint equation and
rearranging terms results in

()
)()(2

2
)()(2A

with

)sin()cos(0

12
2

2211

12

1212

rnrnrrrr
rnr

rnrnrr

aTbTbTbaTa

ab

aTbTaTb

LC
B

CBA

⋅⋅⋅⋅−−⋅+⋅=
×⋅⋅=

⋅⋅⋅−⋅⋅−=

+⋅+⋅= ϕϕ

Note, that the coefficients A, B, C are computed
from known quantities. This non-linear equation has
two solutions in the range: °° ≤≤− 180180 ϕ :

1
)
,atan2(

222

222
2/1

±=
−+⋅⋅+⋅−
−+⋅⋅−⋅−=

k
CBABkCA
CBAAkCBϕ

In the JointSSR object a guess value ϕguess is defined
as a parameter. From the two solutions the one is
selected during initialization that is closest to ϕguess.
This determines the value of the constant k at initial

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

time. During simulation, the value of k is kept
constant. The term under the square root may
become negative so that no (real) solution exists
anymore. This is the case when the length of ar1
becomes larger as the sum of the lengths of the two
rods of the JointSSR object, see Figure 14. This case
is checked with an assert statement and if it is no
longer valid, the simulation is stopped and an
appropriate error message is given in which this
situation is explained.

Note, for the JointSSP (Spherical – Spherical –
Prismatic) assembly, a similar derivation leads to a
simple quadratic equation that has two solutions.

Once angle ϕ is determined with the above
formulas, all other desired positional quantities of
the JointSSR object can be computed in a
straightforward way. By differentiating the
equations twice also the first and second derivative
of the angle can be determined. The differentiation
is automatically performed by the tool. Finally, the
(unchanged) equations of the revolute joint and of
the other components in the JointSSR object are
used to build up the DAE system. It turns out that
this approach results in a linear system of equations
where at least the second derivative of ϕ and the as
yet unknown force in the rod connecting the two
spherical joints is contained. The dimension of this
loop is reduced or the loop is even completely
eliminated in some cases by the following approach:

In the revolute joint there is an equation that
states that the projection of the cut-torque τ of
frame_b on the axis of rotation n of the revolute
joint is zero, see Table 1: 0=⋅ τnT . By a torque
balance around the origin of frame_b of the
JointSSR object, the cut-torque τ at frame_b can be
expressed as a function of the cut-forces and cut-
torques at the other frame connectors of the
JointSSR object and the unknown force in the rod
connecting the two spherical joints (assuming this
rod is cut for the torque balance). Inserting these
relationships in the equation 0=⋅ τnT , results in one
linear equation in the unknown rod force from
which the rod force can be computed analytically as
function of the cut-forces and -torques of frame_im
and frame_ib (see Figure 14).

8 Force Elements
Force elements exert forces and torques between
two frames. The icon of the most general one
available in the MultiBody library (model Multi-
Body.Forces.ForceAndTorque) is displayed in
Figure 15

Figure 15. General force element

The 6 elements in the input signal vector are
interpreted as the 3 coordinates of a force and the 3
coordinates of a torque acting at the component to
which frame_b of the ForceAndTorque component
is connected. The force and torque defined with the
6 elements of the input are assumed to be resolved
in the frame to which connector frame_resolve is
connected. If frame_resolve is not connected, it is
assumed that the force and torque are resolved in
frame_b. Additionally the force and torque act with
“opposite sign” on frame_a (or more precisely, the
force and torque on frame_a is computed by a
force/torque balance between the two frames). Via
sensor elements, any type of kinematical or
force/torque information can be inquired. This can
be used to compute the force and torque of a force
element. Note, since the MultiBody library is purely
equation based, also accelerations (e.g., from an
acceleration sensor), and cut-forces and cut-torques
(e.g., the normal force of a Coulomb friction
element) can be utilized to compute the force and
torque of a ForceAndTorque element.

8.1 Line Force Elements With Mass
More often, line force elements are needed, that
exert a force on the line between the origins of two
frames. The two basic line force elements of the
MultiBody library are displayed in Figure 16.

Figure 16. Line force elements that may have mass

The force acting between the origins of frame_a and
of frame_b (on the line between these two points) is
defined via the two 1-dimensional flange connectors
at the top part of the icons (the two green filled and
non filled squares). Here, models of the
Modelica.Mechanics.Translational library can be
connected. An example is given in Figure 17 where
a 1-dimensional translational spring is connected
between the 1D flange connectors.

a b

LineForceWithMass

a b

LineForceWithTwoMasses

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

a b
Spring_3D

spring

Figure 17. Line force with 1D spring

This approach has several advantages: (1) the
distance between frame_a and frame_b is reported
in the 1D flange connectors and can therefore be
directly utilized in the force law without having to
use a sensor object to inquire kinematical
information. (2) For more complicated force laws,
e.g., a hydraulic cylinder that is driven by a
hydraulic circuit, it is advisable to first test the
whole force law separately with 1-dim. elements
and additional libraries such as a hydraulic or an
electrical library. When this works, the force object
is just connected to the 3-dimensional line force
element of Figure 16.

In multi-body programs the assumption is
usually made that force elements are massless. In
reality this is not always justified since, e.g., a
spring or a hydraulic cylinder has mass that might
be significant in some applications. For example,
the counter balance systems of large robots have
usually a mass that is 5 – 10 % of the mass of the
moving parts. By just examining the reaction force
to the ground, it is clear that it is not possible to
neglect this mass.

For these practical requirements, the line force
elements provided in the MultiBody library have
optionally one or two point masses on the line from
the origin of frame_a to the origin of frame_b. The
usage of a point mass is usually sufficient and has
the advantage that not much data is required from
the user (additionaly data: mass of the point mass
and its location) and that it can be handled very
efficiently with only a small overhead in the
computation compared to a force element without a
point mass.

In element “LineForceWithMass” the point mass
is located at a fixed relative distance between the
two frame origins. Default is “in the middle”. This
is useful, e.g., for a spring. In element
“LineForceWithTwoMasses” two point masses are
present that are located at an absolute distance with
respect to frame_a and to frame_b, respectively. For
example, point mass 1 might be located 0.5 m away
from the origin of frame_a on the line to frame_b.
This is useful, e.g., for a hydraulic cylinder.

8.2 Direct Coupling of Force Elements
Nearly all multi-body programs have the restriction
that two force elements cannot be directly connected
together. When this is desired, the user has to
introduce a body with a small mass between the
force elements leading usually leading to an
unnecessary stiff model. Since the Modelica
MultiBody library is purely equation based, there
are no such restrictions and it is possible to connect
3-dimensional force elements directly together, such
as a series connection of the “ForceAndTorque”
element from Figure 15. This usually leads to non-
linear systems of equations.

It is also possible to connect line force elements
directly together as demonstrated in Figure 18. This
example is available from MultiBody.
Examples.Elementary.ThreeSprings. In the upper
part of this figure the Modelica schematic is shown
consisting of three springs that are connected
together at one point. The other ends of the springs
are connected to the environment and to a body
moving freely in space. In the lower part of the
figure the animation of this system is shown.

Without special action difficulties would occur,
since in every “line force element” there is an
equation stating that the cut-torques at both ends of
the line force element (= frame_a.t and frame_b.t)
are zero. If three line force elements are connected
together as in Figure 18, there is additionally the
zero sum equation of flow variables stating that the
sum of the cut-torques of the connected springs is
zero. This is one equation too much, since all
torques in this equation are already set to zero in the
spring elements. On the other hand, the orientation

Figure 18. Springs connected directly together

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

object in the frame connector is not defined because
a line force element does not compute it, which
means that the orientation object in the connection
point of the three springs is not defined. Therefore,
the resulting DAE of Figure 18 would be
structurally singular and has both overdetermined
and underdetermined sets of equations.

It is possible to automatically fix this problem.
One line force element that is directly connected at
one point to other line force elements has to define
that the orientation object in the frame connector
defines a null rotation and on the other hand has to
remove the equation that states that the cut-torque is
zero. This is defined in the following way with
Modelica:

model LineForceWithMass
 ...
equation
 potentialRoot(frame_a.R, 100);
 potentialRoot(frame_b.R, 100);
 ...
 if isRoot(frame_a.R) then
 frame_a.R=Frames.nullRotation();
 else
 frame_a.t=zeros(3);
 end if;

 if isRoot(frame_b.R) then
 frame_b.R=Frames.nullRotation();
 else
 frame_b.t=zeros(3);
 end if;
end LineForceWithMass;

A frame connector of a line force element is a
potential root of a virtual connection graph (see
section 5). The priority of this potential root is set to
100, as opposed to potential roots of bodies that
have a priority of 0. This means that, whenever
possible, a body is selected as a root. If this is not
possible, a frame connector of a line force element
is selected as root (meaning that only line force
elements are connected together). Since exactly one
frame of a connection point is selected as root, the
corresponding line force element can provide the
necessary equations as shown in the Modelica code
fragment above.

9 Animation
The MultiBody library provides sub library
“Visualizers” that contains models to visualize
geometric parts, see Figure 19. All visualizer objects
have a frame connector to connect the object to any
other frame connector in a model. The properties of
the visualizer object are described with respect to

box

FixedShape y

xz

FixedFrame
FixedArrow

0.1

SignalArrow

Figure 19. Visualizer objects

the frame to which the object is connected. All
visualizer objects have a Boolean parameter
“animation” with default “animation = true”. If
“animation = false” is set, the animation of this
object is switched off and all equations of this object
are removed from the generated code. Additionally,
in the World object there is a global flag
“enableAnimation”. If this flag is set to false, the
animation of all objects is removed (this is
especially important for real-time simulation).

Visualizer components “FixedArrow” and
“SignalArrow” display an arrow at a frame.
“FixedFrame” displays a coordinate system with
axes labels, see Figure 2. “FixedShape” displays
either one of the geometric shapes from Figure 20 or
it displays a 3D shape from a DXF or STL file. All
models in the MultiBody library, such as a joint, a
body, a force element or a sensor, have built-in

Figure 20. Geometric shapes visualized by “FixedShape”

animation properties that are based on the visualizer
objects. Appropriate default values are available
such that, without any additional action from the
user, always an animation of the defined elements is
displayed that can be further refined to get a nicer
drawing. The main advantage of this approach is
that a defined multi-body model can be quickly
checked visually. This feature is implemented in the
following way (which might be useful also for other
applications):

 ...
protected
 outer MultiBody.World world;
 parameter Integer ndim =
 if world.enableAnimation and
 animation then 1 else 0;
 Visualizers.Advanced.Shape
 shape[ndim](
 each shapeType=shapeType,
 each color=color,
 ...
)

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

Via an outer declaration the world object is
accessed. The Visualizers.Advanced.Shape model is
a shape without a frame connector that may have a
fixed or dynamic shape using all the elements from
Figure 20. An instance of this model is declared as
an array with dimension “ndim”. This dimension is
either zero or one, depending whether animation is
enabled or not. A variable of array shape, such as
“color” has the same value for all array indices and
therefore it is defined as “each color = ...”.
Modelica supports zero-sized component arrays and
therefore the above definition just states that no
object “shape” is present, when the dimension of the
array is zero, i.e., when animation is disabled.

10 Summary and Outlook
It is expected that the new and free Modelica
MultiBody library will be very helpful for the
modeling of simple and complex 3-dimensional
mechanical systems, especially for non-experts in
the multi-body field, since the library is easy to use
(in contrast to the previous ModelicaAdditions.-
MultiBody library) and it is very powerful.
Especially, several features are present to get real-
time simulation performance. The MultiBody
library is designed to work closely together with
other Modelica libraries, in particular with the
libraries:
• Modelica.Mechanics.Translational for

1-dim. translational line force elements.
• Modelica.Mechanics.Rotational for

1-dim. rotational elements to define drive trains
driving, e.g., revolute joints. This library
contains sophisticated elements such as bearing
friction, torque dependent friction in gears,
clutches, brakes.

• PowerTrain [20] which is an extension of the
Rotational library dedicated to vehicle power
trains and complicated planetary gears with
losses. The Rotational, MultiBody and
PowerTrain library are extended in the next
version such that all 3D effects of 1-dim. drive
trains attached to MultiBody models are taken
into account in an efficient and user convenient
way [22]. In particular support torques of drive
train elements are calculated.

• HyLib [3][4] for the modeling of hydraulic
systems. Hydraulic cylinders of HyLib can be
directly attached to the 1D flanges of MultiBody
line force elements.

• VehicleDynamics [2] for the modeling of the
dynamics of vehicles providing a large set of
components and also complete vehicles in

different levels of model details. The free
VehicleDynamics library is currently based on
the ModelicalAdditions.MultiBody library. It
will soon be converted to the new MultiBody
library.

• Import filters from AutoDesk Mechanical
desktop [5] and from SolidWorks [9] to
Modelica are available for the Modelica-
Additions.MultiBody library. It is planned to
convert them soon to the new MultiBody
library, see http://www.mathcore.com.

We plan to further continue the development of the
MultiBody library in different directions. Since the
field of possible improvements is large, e.g.,
modeling of elastic bodies, modeling of contact,
interfaces to finite element and CAD programs,
aero-elastic couplings of wings, etc., we are
interested in cooperations. Please, feel free to
contact the authors if you plan to use the MultiBody
library as a basis for enhancements, especially if you
provide your work also in the public domain.

Acknowledgements
Developments in the EU Project RealSim "Real-
time simulation for design of multi-physics
systems", in the years 2000-2002 under contract
IST-1999-11979, have influenced the design of this
library, e.g., the close integration of animation in all
objects.

The idea to provide a general line force element
with 1D-translational connectors has been taken
from the VehicleDynamics library [2]. In the
ModelicaAdditions.MultiBody library a user had to
inherit from a “LineForce” superclass and always
implement the force law with Modelica equations.
The usage of the 1D flange connectors is more user
friendly.

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

Appendix: Algorithm to Transform
Overdetermined DAEs
In this appendix the algorithm is sketched to
transform an overdetermined DAE to a standard
DAE where the number of equations and unknowns
are identical.

In Table 3, the set of Modelica built-in operators
introduced in section 5 are formally defined. These
operators are utilized to describe the relationships of
the overdetermined types or records in the connector
instances of a model: Every instance of an
overdetermined type or record in an overdetermined
connector is a node in a virtual connection graph
that is used to determine when the standard equation
“R1 = R2” or when the equation “0 =
equalityConstraint(R1, R2) ”has to be used for the
generation of connect(...) equations. The branches
of the virtual connection graph are implicitly
defined by “connect(...)” and explicitly by
“Connections.branch(...)” statements, see Table 1.

For example, a revolute joint has two connectors
frame_a and frame_b. In this model, there is an
algebraic relationship between the orientation
objects of these two frames: frame_b.R =
f(frame_a.R, ϕ), where ϕ is the relative rotation
angle. A definition of the form

Connections.branch
 (frame_a.R, frame_b.R);

has to be present in this joint model in order to state
that the overdetermined variables frame_a.R and
frame_b. R are algebraically coupled.

Additionally, corresponding nodes of the virtual
connection graph have to be defined as roots or as
potential roots with functions “root(...)” and
“potentialRoot(...)”, respectively, see Table 3. For
example, connector frame_a in the World model has
to be defined as “Connections.root(frame_a.R)”
because all elements of frame_a.R are explicitly
given in the World model (frame_a.R =
nullRotation()). A “potential root” is, for example,
a body object, since if the body is freely flying in
space, body coordinates may be used as states from
which the orientation object can be computed. It is a
“potential root”, because body states should for
efficiency reasons only be selected as states, if no
other possibility exists.

Note, that branch(...), root(...), potentialRoot(...)
do not generate equations. They only define nodes
and branches in the virtual connection graph for
analysis purposes to be discussed now.

Before connect(…) equations are generated, the
virtual connection graph is transformed into a set of
spanning trees by removing breakable branches
(connections) from the graph. This is performed in

connect(A,B); Defines breakable branches from the overdetermined type or record instances
in connector instance A to the corresponding overdetermined type or record
instances in connector instance B for a virtual connection graph.

branch(A.R,B.R); Defines a non-breakable branch from the overdetermined type or record
instance R in connector instance A to the corresponding overdetermined type or
record instance R in connector instance B for a virtual connection graph. This
function can be used at all places where a connect(..) statement is allowed. [This
definition shall be used, if in a model with connectors A and B the
overdetermined records A.R and B.R are algebraically coupled in the mode].

root(A.R); The overdetermined type or record instance R in connector instance A is a
(definite) root node in a virtual connection graph. [This definition shall be used
if in a model with connector A the overdetermined record A.R is (consistently)
assigned, e.g., from a parameter expressions]

potentialRoot(A.R);
potentialRoot
(A.R, priority = prior);

The overdetermined type or record instance R in connector instance A is a
potential root node in a virtual connection graph with priority “prior” (prior ≥
0). If no second argument is provided, the priority is zero. “prior” shall be a
parameter expression of type Integer. In a virtual connection subgraph without a
Connections.root definition, one of the potential roots with the lowest priority
number is selected as root [This definition is, e.g., used in a body, see
Parts.Bodys in Table 2].

b = isRoot(A.R); Returns true, if the overdetermined type or record instance R in connector
instance A is selected as a root in the virtual connection graph.

Table 3. Operators “Connections.XXX” (e.g. Connections.branch) to define the set of overdetermined equations

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

the following way:

1. Every root node defined via the
“Connections.root(…)” statement is a definite
root of one spanning tree.

2. The virtual connection graph may consist of sets
of subgraphs that are not connected together.
Every subgraph in this set shall have at least one
root node or one potential root node. If a graph
of this set does not contain any root node, then
one potential root node in this subgraph with
the lowest priority number is selected to be the
root of the subgraph. The selection can be
inquired in a class with function
Connections.isRoot(…), see Table 1.

3. If there are n selected roots in a subgraph, then
breakable branches have to be removed such
that the result shall be a set of n spanning trees
with the selected root nodes as roots.

After this analysis, the connect(…) equations for
overdetermined variables are generated in the
following way:

1. For every breakable branch in one of the
spanning trees, i.e., connect(A,B) statements,
the usual “equality” connect equations are
generated, “A.R = B.R”.

2. For every breakable branch not in any of the
spanning trees, the equations “0 =
R.equalityConstraint(A.R,B.R)” are generated
instead of “A.R = B.R”.

An example for a virtual connection graph is given
in Figure 21. This example contains two
independent subgraphs that are analyzed separately.
The left subgraph has two (definite) roots. Four
breakable branches, i.e., connect(...) statements have
to be removed to arrive at two spanning trees. For
every removed connect(...) statement the
equalityConstraint(...) function is used to generate
the connection equation. In the right subgraph of
Figure 21 no definite root is present. Therefore, the
potential root with the lowest priority has to be
selected as root. If there are several roots with the
same lowest priority, one of them is selected
arbitrarily. Starting from the selected root, only one
branch has to be removed to also arrive at a
spanning tree in this subgraph.

Figure 21. Example for virtual connection graph

root

root
potential root

node

nonbreakable branch (Connections.branch)
breakable branch (connect)
removed breakable branch to get tree

root

selected (potential) root

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

Bibliography
[1] ADAMS: MSC ADAMS at http://www.mscsoft-

ware.com/products/quick_prod.cfm
[2] Andreasson: VehicleDynamics library. Procee-

dings of the 3rd Int. Modelica Conference,
Modelica'2003. http://www.Modelica.org

[3] Beater P. (2003): HyLib version 2.1.
http://www.HyLib.com

[4] Beater P., and Otter M. (2003): Multi-Domain
Simulation: Mechanics and Hydraulics of an
Excavator. Proceedings of the 3rd Int. Modelica
Conference, Modelica'2003.
http://www.Modelica.org

[5] Bunus B., Engelson V., and Fritzson P. (2000):
Mechanical Models Translation, Simulation and
Visualization in Modelica. Proc. of Modelica 2000
workshop, Lund, 2000. http://www.modelica.org/-
workshop2000/proceedings/Bunus.pdf

[6] DADS: LMS DADS at http://www.lmsintl.com/
[7] Dynasim (2003): Dymola Users Guide, Version

5.1, http://www.dynasim.se.
[8] Elmqvist, H. (1978): A Structured Model

Language for Large Continous Systems. PhD-
Thesis, Lund Institute of Technology, Lund,
Sweden.

[9] Engelson V. (2000): Tools for Design, Interactive
Simulation, and Visualization of Object-
Oriented Models in Scientific Computing.
Linköping Studies in Science and Technology.
Dissertation No 627. Department of Computer and
Information Science, Linköping University
(chapter 5).

[10] Hiller M., and Woernle C. (1987): A Systematic
Approach for Solving the Inverse Kinematic
Problem of Robot Manipulators. Proceedings 7th
World Congress Th. Mach. Mech., Sevilla.

[11] Kecskemethy A. (1993): Objektorientierte Model-
lierung der Dynamik von Mehrkörpersystemen
mit Hilfe von Übertragungselementen.
Dissertation, VDI Fortschritt-Berichte, Reihe 20,
Nr. 88.

[12] Kecskemethy A. (1993): Mobile - An Object-
Oriented Tool-Set for the Efficient Modeling of
Mechatronic Systems. Proc. of the Second Confer-
ence on Mechatronics and Robotics, pp. 447-462,
Duisburg/Moers, Sept. 27.-29. MOBILE homepage:
http://www.mechanik.tu-graz.ac.at/mobile

[13] Mattsson S.E., and Söderlind G. (1993): Index
reduction in differential-algebraic equations
using dummy derivatives. SIAM Journal of
Scientific and Statistical Computing, Vol. 14, pp.
677-692.

[14] Mattsson S.E., Olsson H., and Elmqvist H. (2000):
Dynamic Selection of States in Dymola. Modelica
Workshop 2000 Proceedings, pp. 61-67,

http://www.modelica.org/workshop2000/-
proceedings/Mattsson.pdf

[15] Möller M. (1992): Ein Verfahren zur
automatischen Analyse der Kinematik
mehrschleifiger räumlicher Mechanismen.
Dissertation, Institut A für Mechanik der
Universität Stuttgart.

[16] Nikravesh, P.E (1988): Computer-Aided Analysis
of Mechanical Systems. Prentice Hall.

[17] Otter M., Elmqvist H., and Cellier F. (1996):
Modeling of MultiBody Systems with the Object-
Oriented Modeling Language Dymola. Nonlinear
Dynamics, Vol. 9, pp. 91-112.

[18] Roberson R.E., and Schwertassek R (1988):
Dynamics of Multibody Systems. Springer Verlag.

[19] Pantelides C. (1988): The Consistent Initialization
of Differential-Algebraic Systems. SIAM Journal
of Scientific and Statistical Computing, pp. 213-
231.

[20] PowerTrain (2002): PowerTrain Library 1.0 –
Tutorial. DLR, www.dynasim.se/www/Power-
TrainTutorial.pdf

[21] SIMPACK: http://www.simpack.de/
[22] Schweiger C., and Otter M. (2003): Modelling 3D

Mechanical Effects of 1D Powertrains. Procee-
dings of the 3rd Int. Modelica Conference,
Modelica'2003. http://www.Modelica.org

[23] TESIS ve-DYNA: http://www.tesis.de/en
[24] Woernle C. (1988): Ein systematisches Verfahren

zur Aufstellung der geometrischen Schließbe-
dingungen in kinematischen Schleifen mit
Anwendung bei der Rückwärtstransformation
für Industrieroboter. Fortschritt-Berichte VDI,
Reihe 18, Nr. 59, Düsseldorf: VDI-Verlag , ISBN 3-
18-145918-6.

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

