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Abstract 
A new Modelica library for the modeling and 
simulation of 3-dimensional mechanical systems has 
been developed. It will be freely available in the 
Modelica standard library. Furthermore, the Dymola 
simulation environment has been considerably 
enhanced to support the needed features. The 
MultiBody library is first presented from a user’s 
point of view. Furthermore, all essential details of 
the implementation are described. The library 
includes features that are usually not available in 
other multi-body software, such as analytic handling 
of a large class of kinematical loops, or the arbitrary 
connection feature of objects. For example, series 
connection of 3D line force components is possible. 

1 Introduction 
The MultiBody library is a free Modelica package 
providing 3-dimensional mechanical components to 
conveniently model mechanical systems, such as 
robots, mechanisms, or vehicles. It will be 
accessible as Modelica.Mechanics.MultiBody and is 
a replacement of the Modelica library 
ModelicaAdditions.MultiBody which has been used 
for a long time. The main design goal of the library 
and of the supporting features in Dymola [7] was 
that standard applications can be carried out in a 
convenient way without knowledge of the Modelica 
language. The MultiBody library has the following 
important features: 
• Components can be connected together in a 

nearly arbitrary fashion. If kinematical loop 
structures occur, they are automatically handled 
in an efficient way by a new technique 
explained in section 5. Also force components 
can be connected directly together, a feature that 
is usually not available in other multi-body 
software. 

• The non-linear equations occurring in 
kinematical loops are solved analytically, i.e., in 
a robust and efficient way, for a large class of 
mechanisms, such as a 4 bar and slider-crank 
mechanism, or a MacPherson suspension by 

constructing such loops with elements from the 
MultiBody.Joints.Assemblies sub package.  

• Most joints and all bodies have potential states. 
A Modelica translator, such as Dymola, will use 
the generalized coordinates of joints as states if 
possible. If this is not possible, e.g., because 
bodies are moving freely in space, states are 
selected from body coordinates. An advanced 
user may select states manually from the 
“Advanced” menu of the corresponding 
components.  

• Whenever a multi-body system model is 
constructed, all defined components are 
automatically visualized in an animation using 
appropriate default sizes and colors. This allows 
an easy visual check of the constructed model, 
without extra work of the modeler. Both, the 
complete animation as well as individual 
component animation can be switched off. In 
this case the equations defining animation are 
removed from the generated code.  

• Annotations and assert statements have been 
introduced that provide in many cases warning 
or error messages that are related to the library 
components and not to specific equations as it is 
usual in Modelica libraries. 

2 A First Example 
In a first example it shall be demonstrated how to 
build up, simulate and animate a simple pendulum, 
consisting of a body and a revolute joint with linear 
damping in the joint. In Figure 1 the composition 
diagram of this model is shown. It uses components 
from the MultiBody library, see figure on next page.  
Every model utilizing the MultiBody library must 

 
Figure 1. Composition diagram of pendulum 
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have an instance of the 
MultiBody.World model on top 
level. The reason is that in the 
world object the gravity field is 
defined (no gravity, uniform 
gravity or point gravity), as well as 
the default sizes of animation 
shapes and this information is 
reported to all used components. 
Joint “rev” is dragged from 
Joints.ActuatedRevolute, “body” 
from Parts.Body and the “damper” 
as 1-dimensional force element 
from “Modelica.Mechanics.Rotat-
ional.Damper”. All components are 
connected together according to the 

physical connection structure. After translation, 
automatically the animation from Figure 2 is shown: 

 
Figure 2. Automatic animation of pendulum 

The coordinate system represents the world frame, 
the green arrow pointing in negative y-axis 
characterizes the direction of the gravity 
acceleration, the red cylinder in the world origin is 
directed along the axis of rotation of the revolute 
joint, and the light blue cylinder and sphere 
characterize the body (the center of the sphere is 
located in the center of mass of the body). 

Before translation, the parameters of the dragged 
components need to be defined. Some parameters 
are vectors that have to be defined with respect to a 
local coordinate system of the corresponding 
component. A convenient way is often a definition 
of the multi-body model in a configuration where all 
local frames are parallel to the world frame. This is 
usually the case when all joint variables, such as the 
angle of a revolute joint, are zero. Since in such a 
reference configuration only one coordinate system 
is essential, the definition is easier as if n frames of 
n components would have to be taken into account. 
The reference configuration for the simple 
pendulum shall be defined in the following way: 
The y-axis of the world frame is directed upwards, 

i.e., the opposite direction of the gravity 
acceleration. The revolute joint is placed in the 
origin of the world frame. The rotation axis of the 
revolute joint is directed along the z-axis of the 
world frame. The body is placed on the x-axis of the 
world frame (i.e., the rotation angle of the revolute 
joint is zero, when the body is on the x-axis). In the 
following figure, the Dymola menu to define the 
revolute joint according to this definition is shown: 

 
Figure 3. Dymola menu to define a revolute joint 

The axis of rotation is defined as ”n = {0,0,1}” 
meaning that it is directed into the direction of the z-
axis of the World coordinate system in the reference 
configuration. Accordingly, the body component is 
defined in Figure 4.  

 
Figure 4. Dymola menu to define a body 

The vector “r_CM” from the origin of the “left” 
coordinate system of the body called “frame_a” to 
the center of mass of the body is defined as ”r_CM 
= {0.5, 0, 0}”, meaning that it is directed 0.5 m 
along the x-axis of the world frame in the reference 
configuration. Note, for subsystems in a hierarchical 
model, e.g., a MacPherson suspension, it is also 
often convenient to use a local reference 
configuration for the vector definitions. 
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3 Describing Orientation 
In mechanical systems many variables have to be 
described with respect to coordinate systems. The 
notation used in the MultiBody library for this 
purpose is discussed at hand of Figure 5. 

1r12

R12

2h = resolve2(R12, 1h)
1

2

e1z e1y

e1x

e2x

e2ye2z

h

1h = resolve1(R12, 2h)  
Figure 5. Notation for coordinate systems 

For notational convenience the word “frame” is used 
in the sequel as a synonym for “coordinate system”. 
Frame 1 in Figure 5 is described by 3 unit vectors 

zyx eee 111 ,,
rrr  that are orthogonal to each other and 

Frame 2 is described in a similar fashion by unit 
vectors zyx eee 222 ,,

rrr . Frame 2 is defined relatively to 

frame 1 by the position vector 121r  that is directed 
from the origin of frame 1 to the origin of frame 2 
and is resolved in frame 1, i.e.,  

},,{},,{ 111
121121121

1
12112

zyxzyx eeerrrr
rrrrr

⋅=⋅= er  

Note, that 121r  is a one-dimensional (Modelica) 
array that holds the 3 coordinates of vector 12r

r   with 
respect to frame 1. In the sequel, (Modelica) arrays 
with one or two dimensions are always 
characterized by bold face characters if the complete 
array is referenced. 

The relative orientation of frame 2 with respect 
to frame 1 is defined by the “orientation object” R12 
(also called “rotation object”). There are different 
ways to mathematically describe orientation. To 
ease usage, the MultiBody library is designed such 
that knowledge about the actual description form of 
orientation is not necessary. This is achieved by 
providing a pre-defined type 

MultiBody.Frames.Orientation 

and utility functions in MultiBody.Frames 
operating on instances of this type. The two most 
important functions are shown in Figure 5: An 
arbitrary vector h

r
 might be represented by its 

coordinates with respect to frame 1 (1h) or with its 
coordinates with respect to frame 2 (2h), 
respectively. If either of the two representations is 
given, the other one can be computed in the 
following way: 

 

  import MultiBody.Frames; 
  Frames.Orientation R12; 
  Real h1[3] ”h resolved in frame 1” 
  Real h2[3] ”h resolved in frame 2” 
equation 
  h2 = Frames.resolve2(R12, h1);//or 
  h1 = Frames.resolve1(R12, h2); 

There are about 30 of these utility functions in sub 
library MultiBody.Frames. We will explain some 
more of them when needed. Note, that with every 
orientation object a direction is associated. E.g., the 
inverse orientation R21 of R12 is computed by  
”R21 = Frames.inverseRotation(R12)”. 

During the development of the MultiBody 
library, 3 different representation forms of the 
orientation object have been implemented: 
1. Transformation matrix T ( 2h = T12 · 1h ). 
2. Two rows of the transformation matrix. 
3. Quaternions (see, e.g., [16]). 
Benchmark tests revealed that the transformation 
matrix leads usually to the most efficient code and 
therefore this representation form was selected. 
Since in some situations quaternions are useful, the 
implemented functions operating on quaternions are 
provided in the MultiBody library under 
MultiBody.Frames.Quaternions. Also some quite 
involved functions are present, e.g., to compute 
quaternions from a transformation matrix in a 
numerically robust way (Quaternions.from_T). 

Dymola has the built-in rule that functions with 
one statement are always “inlined” before they are 
used. Most of the utility functions in 
MultiBody.Frames are therefore defined just with 
one statement to enforce inlining, in order (a) to not 
have any function call overhead, (b) to allow 
symbolic rearrangement of terms and (c) that 
symbolic differentiation is possible. Other tools 
using the MultiBody library should also have 
support for inlining in order to get efficient code. 

4 MultiBody Frame Connector 
We are now in the position to present the design of 
the “Frame” connector that is used to connect multi-
body components together. All variables used in this 
connector are displayed in Figure 6: A coordinate 
system “frame a” is rigidly fixed at an attachment 
point of a mechanical part. This Frame is described 
with respect to the world frame by the 
• position vector 0r0a that is directed from the 

origin of the world frame to the origin of frame 
a and is resolved in the world frame and by the 

• orientation object R0a describing the relative ori-
entation between the world frame and frame a. 
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Figure 6. MultiBody “Frame” connector 

It is assumed that a free body diagram is 
constructed, i.e. that a cut is performed between 
mechanical parts that shall be connected together at 
frame a. In the cut plane a resultant cut force af and 
a resultant cut torque aτ act on frame a. Both vectors 
are resolved in this frame.  

connector Frame 
  import SI = Modelica.SIunits; 
  SI.Position        r_0[3]"= 0r0a"; 
  Frames.Orientation R     "= R0a"; 
  flow SI.Force      f[3]  "= af"; 
  flow SI.Torque     t[3]  "= aτ"; 
end Frame; 
 
connector Frame_a = Frame; 
connector Frame_b = Frame; 

The four previously defined variables are used in the 
connector. The additional connectors Frame_a and 
Frame_b have the identical definition as connector 
Frame. The only difference is that Frame_a and 
Frame_b have different icons in order to be able to 
distinguish Frame connectors more easily in a 
composition diagram.  

The cut force and cut torque are flow variables in 
order that the force and torque balance at a point 
where several components are connected together is 
fulfilled. Note, that two connected frames (a and b)  
coincide, since a.r_0 = b.r_0 and a.R = b.R due to 
the connection rules of Modelica. 

The orientation between two frames can be 
described by 3 independent variables, see, e.g., 
[16][18]. Unfortunately, every such description 
form has a singularity and therefore cannot be used 
in a connector. For this reason, an orientation object 
has to be described by a set of redundant variables 
that are related to each other with constraint 
equations. In the MultiBody library the orientation 
object is described by a transformation matrix that 
has 9 entries, i.e., a highly redundant description 
form. This property leads to significant difficulties 
and is one of the reasons why it needed so long time 
to come up with a “truly” object-oriented multi-
body library (E.g. the first Dymola multi-body 
library was developed in 1994 [17]).  

In several components, such as a body or a sensor, 
velocities or accelerations of connector variables are 
needed. These derivatives can be easily obtained in 
the following way: 

  import SI = MultiBody.SIunits; 
  import MultiBody.Interfaces; 
  import MultiBody.Frames; 
  Interfaces.Frame_a     frame_a; 
  SI.Velocity            v_0[3]; 
  SI.Acceleration        a_0[3]; 
  SI.AngularVelocity     w_a[3]; 
  SI.AngularAcceleration z_a[3]; 
equation 
  v_0 = der(frame_a.r_0); 
  a_0 = der(v); 
  w_a = Frames.angularVelocity2( 
          frame_a.R,der(frame_a.R)); 
  z_a = der(w_a); 

As can be seen, the velocity v_0 and the 
acceleration a_0 of the origin of frame_a (resolved 
in the world frame) are simply computed by 
applying the derivative operator der(..). The angular 
velocity of frame_a is computed with a function that 
requires as input the orientation object R and its 
derivative dR/dt and returns the angular velocity aωa 
resolved in frame_a according to Poisson’s 
equation. With RT = [ex, ey, ez], aωa is computed as: 

},,{ x
T
yx

T
zy

T
z

aa eeeeeeω &&& ⋅⋅−⋅=  

Applying the derivative operator der(...) on w_a 
results in the angular acceleration, resolved in 
frame_a, since according to Euler’s differentiation 
rule ( hdthddthd ikki

rrrr
×+= ω// ): 

dtd
dtddtd

aa

aaaaa

/
//0

ω
ωωωω

r
rrrr

=
×+=  

where dthdi /
r

 is the derivative of vector h
r

 with 
respect to coordinate system i and aωr  is the 
absolute angular velocity of frame_a.  

In books about multi-body systems it is usually 
recommended to compute the angular velocity by 
recursive calculations and it is claimed that this is 
much more efficient as using the direct application 
of Poisson’s equation as it is performed with 
function “angularVelocity2” above. For a “truly” 
object-oriented library it is difficult or not possible 
to apply a recursive calculation directly since in an 
object only relations between connector variables 
can be formulated. It turns out that the generated 
code of the MultiBody library is nearly as efficient 
as from the ModelicaAdditions.MultiBody library 
where the angular velocity is computed recursively. 
This is due to the particular implementation of 
Poisson’s equation and Dymola’s symbolic 
capabilities. 
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5 Overdetermined DAEs 
By collecting together all explicit equations in a 
Modelica model and its submodels and all equations 
due to “connect” statements, a Modelica model is 
mapped to a DAE (= Differential Algebraic 
Equation system) of the following form: 

0 = f(dx/dt, x, y, t) 

where x contains all variables appearing 
differentiated and y contains all pure algebraic 
variables. To get efficient code, this DAE has to be 
symbolically processed and transformed to state 
space form (at least numerically) with a subset of x 
as states. This is performed by BLT partitioning [8] 
to get a sequential model evaluation and to identify 
algebraic loops, the Pantelides algorithm [19] to 
determine equations to be differentiated and the 
dummy derivative method [13] to select 
independent states (this method can be interpreted 
as a variant of the currently popular “projection 
methods” of higher index DAEs). All these 
algorithms require that dim(f) = dim(x) + dim(y), 
i.e., the number of equations has to be identical to 
the number of unknown variables. 

Whenever the variables in a connector are not 
independent from each other, connection structures 
that have loops may result in a DAE where there are 
more equations as unknowns, i.e., dim(f) > dim(x) + 
dim(y). Usually, this overdetermined set of  
equations is still consistent, so that a unique 
mathematical solution exists. Since the Frame 
connector has an overdetermined set of variables 
due to the orientation object, also models of the 
MultiBody library may result in an overdetermined 
DAE. 

It seems unlikely that the symbolic algorithms 
from above can be generalized to directly handle 
such DAEs, because it is not possible to distinguish 
consistently overdetermined DAEs from erroneous 
DAEs (that are a result of modeling errors), by pure 
structural information. For this reason, the only 
practical way seems to be to mark the 
overdetermined equation subset in the model and 
transform this set of equations before the standard 
algorithms from above are applied. One such way of 
marking and transforming an overdetermined set of 
equations has been designed for the next version 2.1 
of the Modelica language and has been implemented 
in Dymola version 5.1. This approach is sketched in 
the rest of the section. 

It is assumed that overdetermined DAEs are due 
to overdetermined sets of (non flow) variables v in 
connectors. Such connectors will be called 
“overdetermined connectors” in the sequel. When 

connecting two or more overdetermined connectors 
together, equality equations for corresponding 
overdetermined variable sets are generated, such as 
“v1 = v2”. Whenever, say, v1 is computed in one 
component and then passed to the next component 
via a “connect” statement, everything is fine, 
because v2 is uniquely computed from v1 by “v2 := 
v1”. Difficulties arise, if both v1 = v1(x) and v2 = 
v2(x) are computed from potential state variables x, 
since a connection equation v1 = v2 imposes an 
overdetermined (but consistent) set of constraints on 
the variables x. 

The basic requirement is that the developer of an 
overdetermined connector provides a function called 
“equalityConstraint(v1,v2)” that returns a non-
redundant set of residues that should be zero if the 
equality constraint v1 = v2 is fulfilled. In a pre-
processing step of the model equations, a translator 
has then to decide for every connection set whether 
an equation of the form “v1 = v2” or an equation of 
the form “0 = equalityConstraint(v1,v2)” has to be 
added to the DAE. Let us demonstrate this by 
considering the Frame connector. 

Modelica is enhanced such that a type or record 
declaration may optionally contain a definition of 
function “equalityConstraint(...)”: 

type Orientation  
  extends Real[3,3]; 
 
  function equalityConstraint  
    input  Orientation R1; 
    input  Orientation R2; 
    output Real residue[3]; 
  protected 
    Orientation R_rel; 
  algorithm 
    R_rel = R2*transpose(R1); 
    residue := {R_rel[2,3], 
                R_rel[3,1], 
                R_rel[1,2]}; 
  end equalityConstraint; 
end Orientation; 

An orientation object is defined by a transformation 
matrix of dimension [3,3]. Two orientation objects, 
i.e., transformation matrices, R1 and R2 are identical 
(R1 = R2) if the relative transformation matrix 
between R1 and R2, i.e., Rrel = R2 · R1

T is the unit 
matrix. A transformation matrix describing a small 
rotation can be approximated by (see, e.g., [18])  





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where ϕ1,ϕ2,ϕ3 are a set of 3 independent variables 
describing the deviation from the unit matrix. As a 
result, if the outer diagonal elements [2,3], [3,1] and 
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[1,2] of Rrel vanish, then R1 = R2. Therefore, these 3 
outer diagonal elements are returned as residues by 
function equalityConstraint(...). To summarize, a 
connection between two Frame connectors will 
either result in 9 equations R1 = R2 to define the 
equality between two orientation objects or in 3 
equations by calling function equalityConstraint(...). 
If appropriately selected, the result is a regular DAE 
where the number of equations is identical to the 
number of unknowns. A call to function 
equalityConstraint(...) will usually result in a non-
linear system of equations that has only the desired 
solution R1 = R2, if the initial guess values of the 
iteration variables are close enough to this solution.  

The remaining open question is how a tool can 
decide which connection equations to use? An 
informal description is given below. Details of the 
algorithm are sketched in the appendix. 

A new package called “Connections” is 
introduced in Modelica, containing a set of built-in 
operators to mark overdetermined equations. Let us 
sketch these operators using the orientation object R 
as an example: 
• root(A.R) defines that the orientation object R 

in connector A is computed in a consistent way. 
The world object has such a definition because 
R is defined as identity matrix. 

• branch(A.R, B.R) defines that there is an 
algebraic relationship between the orientation 
object A.R in connector A and the orientation 
object B.R in connector B. Joint objects have 
such a definition, if there is an algebraic 
constraint between frame_a.R and frame_b.R. 

These two operators are already sufficient, since a 
tool can determine whether the graph constructed 
with root(...), connect(...) and branch(...) statements 
contains loops. These loops have to be cut and for 
every cut the equalityConstraint(...) function has to 
be used to state the equality of orientation objects.  

If there is a free flying body, coordinates of the 
body should be used as states from which the 
orientation object in the body connector can be 
computed. This in turn means that a free flying body 
is also a root in the graph. Formally, this situation is 
defined by operators: 
• potentialRoot(A.R) defines that the orientation 

object R in connector A might be computed in a 
consistent way, if this is necessary. Body 
objects have such a definition.  

• isRoot(A.R) returns true if the orientation object 
A.R has been selected as a root. This means that 
different equations have to be provided. 

The sketched method to handle overdetermined 
DAEs with symbolic transformation techniques is 
not specific to multi-body systems. For example, 

efficient implementations of electric power systems 
use the Park transformation to define currents and 
voltages in the connector relatively to the harmonic, 
high-frequency signal of a power source that is 
described by the angle of the rotor of the source. 
This allows much faster simulations, since the basic 
high frequency signal of the power source is not part 
of the differential equations. On the other hand, the 
source angle has to be included into the connector 
leading to an overdetermined description that can be 
handled with the method presented in this section. 

6 Elementary Components 
Using the “Frame” connector and the utility 
functions in MultiBody.Frames, it is straightforward 
to implement the elementary components that are 
usually available in multi-body programs.  

The MultiBody library has about 40 components. 
The most important ones are shown in Table 1. 
Contrary to approaches described in text books 
about this topic, equations are only defined on 
“position” level. A tool has enough information to 
figure out via the Pantelides algorithm [19] which 
equations have to be differentiated in order to 
transform the DAE to state space form with the 
dynamic dummy derivative method [13][14]. This 
feature simplifies the implementation and the 
understanding of the MultiBody library 
considerably. 

In the left column of Table 1, the icon of the 
respective model is shown whereas in the right 
column the essential equations are given that are 
mapped directly to Modelica equations in the 
library. Abbreviations which are used for variable 
and function names in the right column (to save 
space) are stated at the top row of Table 1. The new 
built-in operators “root”, “isRoot”, “branch”, 
“potentialRoot” from Table 1 are actually within a 
package “Connections” (the correct name would 
therefore be, e.g., Connections.root). All other used 
functions are from subpackage MultiBody.Frames. 
Let us discuss the components in a bit more detail, 
see Table 1. 

6.1 MultiBody.World 
In the World model essentially the position vector of 
its frame connectors is set to zero and the 
orientation object of the frame is set to a null 
rotation (e.g., the transformation matrix is the 
identity matrix). When dragging MultiBody.World 
into a model, the following declaration is generated 
(this behavior is defined via an annotation): 

inner MultiBody.World world; 
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This is necessary since nearly all components have a 
corresponding “outer” declaration to access the 
definitions in the world object, such as defaults for 
animation and the gravity function. In components 
that have a mass, the function world.gravityAcceler-
ation(r) is called to inquire the gravity acceleration 
at position r. Depending on user input, different 
gravity fields can be used. Currently, no gravity 
field, parallel and point gravity field is supported. 
This allows, e.g., to easily simulate a satellite in the 
gravity field of the earth. An example is given in 
Figure 7. 

 
Figure 7. Two point masses in a point gravity field 

If the World object is missing in a model, a warning 
message is printed and an instance of the World 
object with default settings is automatically utilized. 
This feature is again defined via an annotation (this 
is useful for any type of inner declaration). 

6.2 MultiBody.Parts.FixedTranslation 
This component defines a fixed translation of a 
frame. It is, e.g., used to define frames for several 
attachment points on a body. The equations state 
that the position vector of frame_b is defined from 
the position vector of frame_a and the relative 
position vector arab from frame_a to frame_b (arab is 
defined as parameter “r”). Since frames are 
translated, the orientation objects in the two frames 
are set equal. This in turn requires a 
“Connections.branch(...)”, see section 5. Finally, a 
force and torque balance of this massless part is 
present in the Modelica model. 

6.3 MultiBody.Joints.Revolute 
This component defines a rotation along an axis 
vector n = an = bn via angle ϕ. When ϕ = 0, frame_a 
and frame_b coincide. As with most other joints, the 
generalized coordinates (here: ϕ  and ϕω &= ) have 
the attribute stateSelect = StateSelect.prefer in order 
that they are selected as states if possible. Since the 
origins of both frames are located at the same point 
on the axis of rotation, the position vectors in the 
two frames are identical. The relative orientation 
object Rrel is computed with n and ϕ. It is used to 
define the relationship between the orientation 
objects from frame_a and frame_b. It is also stated 

Abbreviations: 
ra, Ra, fa, τa := frame_a.r_0, .R, .f, .t 
rb, Rb, fb, τb := frame_b.r_0, .R, .f, .t 

absRotation :=
relRotation :=

angVel2 := 
Q.angVel2 :=

Q.constraint :=
grav := 

Frames.absoluteRotation 
Frames.relativeRotation 
Frames.angularVelocity2 
Frames.Quaternions.angularVelocity2 
Frames.Quaternions.orientationConstraint 
world.gravityAcceleration 
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Table 1. Elementary components of MultiBody library 

that the projection of the cut-torque on n must 
vanish. Finally, the force and torque balance of this 
massless part is present. Besides model “Revolute” 
there is also a joint “ActuatedRevolute” that has an 
additional 1-dim. flange connector. Via this flange, 
a drive train can be attached driving the revolute 
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joint, e.g., with components from the Modelica.-
Mechanics. Rotational library (see Figure 1). 

There is an additional utility function 
“rooted(…)” to inquire whether there is a path in the 
spanning trees of the virtual connection graphs from 
a selected root to the frame under consideration. 
This is used here and at some other places to give 
two equation variants depending on the actual 
connection structure in order to avoid small linear 
algebraic equations. For example, if 
rooted(frame_a.R) = true then the force and torque 
at frame_a are computed from the frame_b 
quantities. Otherwise, the force and torque at 
frame_b are computed from the frame_a quantities. 

6.4 MultiBody.Joints.Spherical 
This component defines a spherical joint, i.e., the 
origins of frame_a and frame_b coincide and the 
two frames can freely rotate relative to each other. 
No torques are transmitted via this joint. Since 
frame_a.R and frame_b.R are not related together in 
an algebraic equation, no “branch(...)” statement is 
present. No states are defined for this joint. 

6.5 MultiBody.Parts.Body 
This component defines the mass and inertia 
properties of a body. It has one frame_a that is 
usually used as reference coordinate system of a part 
which is associated with a specific geometric 
position on the part. Other points on the part are 
often defined via FrameTranslation components 
connected to frame_a of the body component. The 
mass m, the position vector rCM = araCM from the 
origin of frame_a to the center of mass (resolved in 
frame_a) and the inertia tensor I = aICM with respect 
to the center of mass are given as parameters and 
define the body properties, see also Table 1. 

The body component is defined as 
“potentialRoot”, i.e., it may be selected as root of a 
spanning tree of the virtual connection graph. 
Whether it is selected or not can be inquired via 
function “isRoot(...)”. If the body frame is not 
selected as root, the orientation object in the frame 
is defined somewhere else. In this case the second 
branch of the if clause in Table 1 is used and the 
angular velocity of the body frame is determined by 
frame_a.R and its derivative which for example 
means that it is computed (indirectly) by the 
generalized position and velocity variables of joints. 

If “isRoot(...) = true”, it is required that 
frame_a.R is calculated within the body object. This 
is only possible if variables of the body are used as 
states from which frame_a.R can be determined. By 
default, quaternions p are used as potential states. 
Consequently frame_a.R is computed from p and 

the angular velocity is computed from p and its 
derivative p& . The 4 coordinates of the quaternion 
vector p have to fulfill the constraint equation 
“pT·p=1”. This non-linear equation is added in the 
first if-clause. Since there is a non-linear equation 
relating potential states, a tool has to use the 
dynamic dummy derivative method to dynamically 
select 3 states out of 4 potential states during 
simulation. Whenever the selection comes close to 
its singularity, Dymola changes the states at a 
completed step of the integrator. The 4th potential 
state has to be computed by solving the non-linear 
quaternion constraint equation. Dymola performs 
this in an efficient and robust way, because it can 
detect that the special non-linear equation of 
quaternions is present and solves this equation 
analytically. E.g., if p[1:3] are selected as states, 
then   
p[4] = sqrt(1 – p[1:3]*p[1:3])*signAtLastStep(p[4]). 

Via a parameter in the “Advanced” menu of the 
body object, it is possible to alternatively also use 
the 3 Cardan angles as states. They are defined with 
respect to a coordinate system “Fix” fixed in 
frame_a. Whenever the Cardan angles come close to 
their singularity, frame “Fix” is changed such that 
the new Cardan angles are far away from their 
singularity. The advantage of this approach is that 
no dynamic dummy derivative method is needed. 
The disadvantage is that every change of states 
results in a state event which is less efficient as the 
state change performed with the dynamic dummy 
derivative method. Furthermore, several variables 
are discontinuous (especially the Cardan angles) 
which can lead to problems if equations are further 
differentiated, e.g., for inverse models. 

The non-standard feature to have potential states 
both in joints and in bodies is especially useful for 
inexperienced users, since they do not have to 
introduce a “virtual” joint with 6 degrees of 
freedom. For example, it is easy to just build up a 
system as in Figure 8, where a body is connected via 
a spring to the environment. 
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Figure 8. Free body with spring 
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In the left part of the figure the Modelica schematic 
and in the right part the default animation is shown. 
No “non-physical” joint has to be introduced to 
build up such a model, as it is usually the case in 
other multi-body programs. 

Let us now return to the body equations in Table 
1. Once the orientation object and the angular 
velocity of the body frame are determined, all other 
kinematical quantities are derived by differentiation 
and used in the Newton/Euler equations that are 
formulated with respect to frame_a of the body (and 
not with respect to the center of mass). 

7 Loop Structures 
Due to the new handling of overdetermined DAEs, 
the modeler does not have to take special actions if 
loop structures occur (contrary to the 
ModelicaAdditions.MultiBody library). An example 
is presented in Figure 9. It is available as 
MultiBody.Examples.Loops.Fourbar1. In the upper  
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Figure 9. Four bar mechanism with 7 joints and 1 dof 

part of the figure the Modelica schematic of a four 
bar mechanism is shown constructed with the 
MultiBody library. It consists of 6 revolute, 1 
prismatic joint and forms a kinematical loop. This 
mechanism has one degree of freedom.  

In the lower part of the figure the default 
animation is shown. Note, that the axes of the 
revolute joints are represented by the red cylinders 

and that the axis of the prismatic joint is represented 
by the red box on the lower right side.  

Whenever loop structures occur, non-linear 
algebraic equations are present on “position level”. 
It is then usually not possible by structural analysis 
to select states during translation (which is possible 
for non-loop structures). In the example above, 
Dymola detects a non-linear algebraic loop of 57 
equations and reduces this to a system of 7 coupled 
algebraic equations. Note, that this is performed 
without using any “cut-joints” as it is usually done 
in multi-body programs, but by just appropriate 
symbolic equation manipulation. Via the dynamic 
dummy derivative method the generalized 
coordinates on position and velocity level from one 
of the 7 joints are dynamically selected as states 
during simulation. Whenever, these two states are 
no longer appropriate, states from one of the other 
joints are selected.  

The efficiency of loop structures can usually be 
enhanced, if states are statically fixed at translation 
time. For this mechanism, the generalized 
coordinates of joint j1 can always be used as states. 
This can be stated by setting parameter 
“enforceStates = true” in the “Advanced” menu of 
the desired joint. This flag sets the attribute 
stateSelect of the generalized coordinates of the 
coresponding joint to “StateSelect.always”. When 
setting this flag to true for joint j1 in the four bar 
mechanism, Dymola detects a non-linear algebraic 
loop of 40 equations and reduces this to a system of 
5 coupled non-linear algebraic equations. 

7.1 Planar Loops 
In Figure 10 the model of a V6 engine is shown that 
has a simple combustion model. It is available as 
MultiBody.Examples.Loops.EngineV6. The Mode-
lica schematic of one cylinder is given in the middle 
part of the figure. Connecting 6 instances of this 
cylinder appropriately together results in the engine 
schematic displayed at the upper part of the figure. 
In the lower part the animation of the engine is 
shown. Every cylinder consists essentially of 1 
prismatic and 2 revolute joints that form a planar 
loop, since the axes of the two revolute joints are 
parallel to each other and the axis of the prismatic 
joint is orthogonal to the revolute joint axes. All 6 
cylinders together form a coupled set of 6 loops that 
have together 1 degree of freedom.  

All planar loops, and especially the engine, result 
in a DAE that does not have a unique solution. The 
reason is that, e.g., the cut forces in direction of the 
axes of the revolute joints cannot be uniquely 
computed. Any value fulfills the DAE equations. 
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Figure 10. V6 engine with 6 planar loops and 1 dof 

This is a structural property that is determined by 
the symbolic algorithms. Since they detect that the 
DAE is structurally singular, a further processing is 
not possible. Without additional information it is 
also impossible that the symbolic algorithms could 
be enhanced because if the axes of rotations of the 
revolute joints are only slightly changed such that 
they are no longer parallel to each other, the planar 
loop can no longer move and has 0 degrees of 
freedom. Algorithms based on pure structural 
information cannot distinguish these two cases.  

The usual remedy is to remove superfluous 
constraints, e.g., along the axis of rotation of one 
revolute joint. Since this is not easy for an 
inexperienced modeler, the flag “planarCutJoint” is 
provided in the “Advanced” menu of a revolute joint 
that removes these constraints. This flag must be set 
to true for one revolute joint in every planar loop. 

In the engine example, this flag is set in the revolute 
joint B2 in the cylinder model. 

If a modeler is not aware of the problems with 
planar loops and models them without special 
consideration, Dymola displays an error message 
and points out that a planar loop may be the reason 
and suggests to use the “planarCutJoint” flag. This 
error message is due to an annotation in the Frame 
connector:  

flow SI.Force f[3] annotation( 
        unassignedMessage=”..”)); 

If no assignment can be found for some forces in a 
connector, the “unassignedMessage” is displayed. In 
most cases the reason for this is a planar loop or two 
joints that constrain the same motion. Both cases are 
discussed in the message. 

Note that the non-linear algebraic equations 
occurring in planar loops can be solved analytically 
in most cases and therefore it is highly 
recommended to use the techniques discussed in the 
next two sections for such systems. 

7.2 Analytic Loop Handling: User’s View 
It is well known that the non-linear algebraic 
equations of most mechanical loops in technical 
devices can be solved analytically. It is, however, 
difficult to perform this fully automatically and 
therefore none of the commercial, general purpose 
multi-body programs, such as MSC ADAMS[1], 
LMS DADS[5], SIMPACK[21], have this feature. 
These programs solve loop structures with pure 
numerical methods. Multi-body programs that are 
designed for real-time simulation of the dynamics of 
specific vehicles, such as ve-DYNA[23], usually 
contain manual implementations of a particular 
multi-body system (the vehicle) where the occurring 
loops are either analytically solved, if this is 
possible, or are treated by table look-up where the 
tables are constructed in a pre-processing phase. 
Without these features the required real-time 
capability would be difficult to achieve. 

In a series of papers and dissertations, especially 
[10][24][11][15], Prof. Hiller and his group in 
Duisburg have developed systematic methods to 
handle mechanical loops analytically. The 
“characteristic pair of joints” method [10][24] 
basically cuts a loop at two joints and uses 
geometric invariants to reduce the number of 
algebraic equations, often down to one equation that 
can be solved analytically. Also several multi-body 
codes have been developed that are based on this 
method, e.g., MOBILE [12]. Besides the very 
desired feature to solve non-linear algebraic 
equations analytically, i.e., efficiently and in a 
robust way, there are several drawbacks: It is 
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difficult to apply this method automatically. Even if 
this would be possible in a good way, there is 
always the problem that it cannot be guaranteed that 
the statically selected states lead to no singularity 
during simulation. Therefore, the “characteristic pair 
of joints” method is usually manually applied which 
requires know-how and experience. 

In the MultiBody library the “characteristic pair 
of joints” method is supported in a restricted form 
such that it can be applied also by non-specialists. 
The idea is to provide joint aggregations in package 
MultiBody.Joints.Assemblies as one object that 
either have 6 degrees of freedom or 3 degrees of 
freedom (for usage in planar loops).  

As an example, a variant of the four bar 
mechanism from Figure 9 is given in Figure 11. In 
the upper part of the figure, the mechanism is 
modeled with standard joints. In the lower part, the 
two spherical joints and the prismatic joint are 
collected together in an assembly object called 
“jointSSP” that is defined in 

MultiBody.Joints.Assemblies.JointSSP. 
This joint aggregation has a frame at the left side of 
the left spherical joint (frame_a) and a frame at the 
right side of the prismatic joint (frame_b). JointSSP, 
as all other objects from the Joints.Assemblies 
package, has the property, that the generalized 
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Figure 11. Analytic handling of four bar mechanism 

coordinates, and all other frames defined in the 
assembly, can be calculated given the movement 
of frame_a and of frame_b. This is performed by 
analytically solving non-linear systems of equations 
(details are given in the next subsection). From a 
structural point of view, the equations in an 
assembly object are written in the form 

q = f1(ra, Ra, rb, Rb) 
where ra, Ra, rb, Rb are the variables defining the 
position and orientation of the frame_a and frame_b 
connector (see also Table 1) and q are the 
generalized positional coordinates inside the 
assembly, e.g., the angle of a revolute joint. Given 
angle ϕ of revolute joint j1 from the four bar 
mechanism, frame_a and frame_b of the assembly 
object can be computed by a forward recursion 

(ra, Ra, rb, Rb) = f(ϕ) 
Since this is a structural property, the symbolic 
algorithms can automatically select ϕ and its 
derivative as states and then all positional variables 
can be computed in a forwards sequence. It is now 
understandable that Dymola transforms the 
equations of the four bar mechanism to a recursive 
sequence of statements that has neither linear nor 
non-linear algebraic loops (remember, the previous 
“straightforward” solution had a nonlinear system of 
equations of order 5). 

The aggregated joint objects consist of a 
combination of either a revolute or prismatic joint 
and of a rod that has either two spherical joints at its 
two ends or a spherical and a universal joint, 
respectively. For all combinations, analytic 
solutions can be determined. For planar loops, 
combinations of 1, 2 or 3 revolute joints with 
parallel axes and of 2 or 1 prismatic joint with axes 
that are orthogonal to the revolute joints can be 
treated analytically. The currently supported 
combinations are listed in Table 2. The missing 
combinations (such as JointSUP or Joint RPP) will 
be added in one of the next releases.  

3-dimensional Loops: 
JointSSR Spherical – Spherical – Revolute 
JointSSP Spherical – Spherical – Prismatic 
JointUSR Universal – Spherical – Revolute 
JointUSP Universal – Spherical – Prismatic 
JointUPS Universal – Prismatic – Spherical 
Planar Loops: 
JointRRR Revolute – Revolute – Revolute 
JointRRP Revolute – Revolute – Prismatic 

Table 2. MultiBody.Joints.Assemblies aggregations 
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On first view this seems to be quite restrictive. 
However, mechanical devices are usually built up 
with rods connected by spherical joints on each end, 
and additionally with revolute and prismatic joints. 
Therefore, the combinations of Table 2 occur 
frequently. The universal joint is usually not present 
in actual devices but is used (a) if two JointXXX 
components can be connected such that a revolute 
and a universal joint together form a spherical joint, 
see Figure 12 and (b) if the orientation of the 
connecting rod between two spherical joints is 
needed, e.g., since a body shall be attached. In this 
case one of the spherical joints might be replaced by 
a universal joint. This approximation is fine as long 
as the mass and inertia of the rod is not significant.  

 
Figure 12. MacPherson with analytic loop handling 

Let us discuss item (a) in more detail: The 
MacPherson suspension in Figure 12 is from the 
Modelica VehicleDynamics library [2]. It has three 
frame connectors. The lower left one (frame_C) is 
fixed in the vehicle chassis. The upper left one 
(frame_S) is driven by the steering mechanism, i.e., 
the movement of both frames are given. The frame 
connector on the right (frame_U) drives the wheel. 
The three frames are connected by a mechanism 
consisting essentially of two rods with spherical 
joints on both ends. These are built up by a 
jointUPS and a jointSSR assembly, see Figure 12. 
As can be seen, the universal joint from the 
jointUPS assembly is connected to the revolute joint 
of the jointSSR assembly. Therefore, we have 3 
revolute joints connected together at one point and if 
the axes of rotations are chosen appropriately, this 
describes a spherical joint. In other words, the two 
connected assemblies define the desired two rods 
with spherical joints on each ends.  

The movement of the chassis, frame_C, is 
computed somewhere else. When the generalized 
coordinates of revolute joint “innerJoint” (lower left 
part in figure) are used as states, then frame_a and 
frame_b of the jointUPS joint can be calculated. 

After the non-linear loop with jointUPS is solved, 
all frames on this assembly are known, especially, 
the one connected to frame_b of the jointSSR 
assembly. Since frame_b of jointSSR is connected 
to frame_S which is computed from the steering 
mechanism, again the two required frame 
movements of the jointSSR assembly are calculated, 
meaning in turn that also all other frames on the 
jointSSR assembly can be computed, especially, the 
one connected to frame_U that drives the wheel. 
From this analysis it is clear that a tool is able to 
solve these coupled loops analytically. 
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Figure 13. Cylinder of engine with analytic loop handling 

Another example is the engine model from Figure 
10. It is sufficient to rewrite the basic cylinder 
model by replacing the joints with a JointRRP 
object that has two revolute and one prismatic joint, 
see Figure 13. Since 6 cylinders are connected 
together, 6 coupled loops with 6 JointRRP objects 
are present. This model is available as 
MultiBody.Examples.Loops.EngineV6_analytic. 

From Figure 10 it can be seen that the revolute 
joint of the crank shaft (left part of upper subfigure 
in Figure 10) might be selected as degree of 
freedom. Then the 4 connector frames of all 
cylinders can be computed. As a result the 
computations of the cylinders are decoupled from 
each other. Within one cylinder, see Figure 13, the 
position of frame_a and frame_b of the jointRRP 
assembly can be computed and therefore the 
generalized coordinates of the two revolute and the 
prismatic joint in the jointRRP object can be 
determined. From this analysis it is not surprising 
that Dymola is able to transform the DAE equations 
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into a sequential evaluation without any linear or 
non-linear loop. Compare this nice result with the 
model from Figure 10 that leads to a DAE with 6 
algebraic loops and 5 non-linear equations per loop. 
Additionally, a linear system of equations of order 
43 is present. The simulation time is about 5 times 
faster with the analytic loop handling.  

7.3 Analytic Loop Handling: How it works 
The basic technique for the analytic loop handling is 
explained at hand of the JointSSR (Spherical – 
Spherical – Revolute) assembly shown in Figure 14. 
It consists of two spherical joints connected by a 
rigid massless rod and a revolute joint connected by 
an additional massless rod to the spherical joint in 
the middle (optionally, a point mass can be present 
on the rod connecting the two spherical joints). At 
the upper part of Figure 14 the Modelica icon of the 
JointSSR object and in the lower part an animation 
view with some important position vectors is shown. 
The following derivation is a special case of the 
“characteristic pair of joints” method and is based 
on [24].  

It is assumed that the positions and orientations 
of frame_a and of frame_b of the JointSSR object 
are calculated as a function of states. This means 
that the position vectors 0rs1, 0rrev from the origin of 
the world frame to the origins of frame_a and of 
frame_b of the JointSSR object are known. Using 
the orientation objects of frame_a and of frame_b it 
is easy to compute position vector ar1 that is directed 
from the origin of the revolute joint (= frame_b) to 
the origin of the first spherical joint (= frame_a) and 
is resolved in frame_a of the revolute joint (this 
frame is identical to frame_b of the JointSSR 
object). Position vector br2 is a parameter of the 
JointSSR object and is directed from the origin of 
the revolute joint to the origin of the second 
spherical joint and is resolved in frame_b of the  

 
Figure 14. Analytic loop handling for JointSSR 

revolute joint. The two spherical joints are 
connected together by a rod with a fixed length L 
which is a parameter of the JointSSR object. The 
length L can be also calculated by computing the 
vector from spherical joint 1 to spherical joint 2 
with vectors ar1, 

br2 and taking its length. The square 
of this length results in: 

( ) ( )1212
2 )()( rTrrTr abTabL ⋅−⋅⋅−= ϕϕ  

Since ar1 and br2 are resolved in different frames, ar1 
has first to be transformed from frame_a to frame_b 
of the revolute joint using the relative 
transformation matrix T between these two frames. 
This matrix is solely a function of the unknown 
rotation angle ϕ. In the equation above all variables 
are known (or are calculated somewhere else) with 
exception of ϕ. Therefore, we have one non-linear 
algebraic equation for one unknown, ϕ, and the goal 
is to solve this equation analytically. Multiplying 
out all terms and taking into account that 

)()( ϕϕ TT ⋅T  is the unit matrix, since transformation 
matrices are orthogonal, we arrive at 

12
2

1122 )(20 rTrrrrr abaTabTb L ⋅⋅⋅−−⋅+⋅= ϕ  

The relative transformation matrix T can be 
mathematically described as, see, e.g., [18]: 
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where E is the identity matrix and n is a unit vector 
in direction of the axis of rotation. n has the same 
coordinates with respect to frame_a and to frame_b. 
Inserting this formula in the constraint equation and 
rearranging terms results in  
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Note, that the coefficients A, B, C are computed 
from known quantities. This non-linear equation has 
two solutions in the range: °° ≤≤− 180180 ϕ : 

1
)
,atan2(
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In the JointSSR object a guess value ϕguess is defined 
as a parameter. From the two solutions the one is 
selected during initialization that is closest to ϕguess. 
This determines the value of the constant k at initial 
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time. During simulation, the value of k is kept 
constant. The term under the square root may 
become negative so that no (real) solution exists 
anymore. This is the case when the length of ar1 
becomes larger as the sum of the lengths of the two 
rods of the JointSSR object, see Figure 14. This case 
is checked with an assert statement and if it is no 
longer valid, the simulation is stopped and an 
appropriate error message is given in which this 
situation is explained.  

Note, for the JointSSP (Spherical – Spherical – 
Prismatic) assembly, a similar derivation leads to a 
simple quadratic equation that has two solutions. 

Once angle ϕ is determined with the above 
formulas, all other desired positional quantities of 
the JointSSR object can be computed in a 
straightforward way. By differentiating the 
equations twice also the first and second derivative 
of the angle can be determined. The differentiation 
is automatically performed by the tool. Finally, the 
(unchanged) equations of the revolute joint and of 
the other components in the JointSSR object are 
used to build up the DAE system. It turns out that 
this approach results in a linear system of equations 
where at least the second derivative of ϕ and the as 
yet unknown force in the rod connecting the two 
spherical joints is contained. The dimension of this 
loop is reduced or the loop is even completely 
eliminated in some cases by the following approach: 

In the revolute joint there is an equation that 
states that the projection of the cut-torque τ of 
frame_b on the axis of rotation n of the revolute 
joint is zero, see Table 1: 0=⋅ τnT . By a torque 
balance around the origin of frame_b of the 
JointSSR object, the cut-torque τ   at frame_b can be 
expressed as a function of the cut-forces and cut-
torques at the other frame connectors of the 
JointSSR object and the unknown force in the rod 
connecting the two spherical joints (assuming this 
rod is cut for the torque balance). Inserting these 
relationships in the equation 0=⋅ τnT , results in one 
linear equation in the unknown rod force from 
which the rod force can be computed analytically as 
function of the cut-forces and -torques of frame_im 
and frame_ib (see Figure 14). 

8 Force Elements 
Force elements exert forces and torques between 
two frames. The icon of the most general one 
available in the MultiBody library (model Multi-
Body.Forces.ForceAndTorque) is displayed in 
Figure 15 

 
Figure 15. General force element 

The 6 elements in the input signal vector are 
interpreted as the 3 coordinates of a force and the 3 
coordinates of a torque acting at the component to 
which frame_b of the ForceAndTorque component 
is connected. The force and torque defined with the 
6 elements of the input are assumed to be resolved 
in the frame to which connector frame_resolve is 
connected. If frame_resolve is not connected, it is 
assumed that the force and torque are resolved in 
frame_b. Additionally the force and torque act with 
“opposite sign” on frame_a (or more precisely, the 
force and torque on frame_a is computed by a 
force/torque balance between the two frames). Via 
sensor elements, any type of kinematical or 
force/torque information can be inquired. This can 
be used to compute the force and torque of a force 
element. Note, since the MultiBody library is purely 
equation based, also accelerations (e.g., from an 
acceleration sensor), and cut-forces and cut-torques 
(e.g., the normal force of a Coulomb friction 
element) can be utilized to compute the force and 
torque of a ForceAndTorque element. 

8.1 Line Force Elements With Mass 
More often, line force elements are needed, that 
exert a force on the line between the origins of two 
frames. The two basic line force elements of the 
MultiBody library are displayed in Figure 16. 

 
Figure 16. Line force elements that may have mass 

The force acting between the origins of frame_a and 
of frame_b (on the line between these two points) is 
defined via the two 1-dimensional flange connectors 
at the top part of the icons (the two green filled and 
non filled squares). Here, models of the 
Modelica.Mechanics.Translational library can be 
connected. An example is given in Figure 17 where 
a 1-dimensional translational spring is connected 
between the 1D flange connectors. 

 

a b

LineForceWithMass

a b

LineForceWithTwoMasses
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a b
Spring_3D

spring

 
Figure 17. Line force with 1D spring 

This approach has several advantages: (1) the 
distance between frame_a and frame_b is reported 
in the 1D flange connectors and can therefore be 
directly utilized in the force law without having to 
use a sensor object to inquire kinematical 
information. (2) For more complicated force laws, 
e.g., a hydraulic cylinder that is driven by a 
hydraulic circuit, it is advisable to first test the 
whole force law separately with 1-dim. elements 
and additional libraries such as a hydraulic or an 
electrical library. When this works, the force object 
is just connected to the 3-dimensional line force 
element of Figure 16. 

In multi-body programs the assumption is 
usually made that force elements are massless. In 
reality this is not always justified since, e.g., a 
spring or a hydraulic cylinder has mass that might 
be significant in some applications. For example, 
the counter balance systems of large robots have 
usually a mass that is 5 – 10 % of the mass of the 
moving parts. By just examining the reaction force 
to the ground, it is clear that it is not possible to 
neglect this mass. 

For these practical requirements, the line force 
elements provided in the MultiBody library have 
optionally one or two point masses on the line from 
the origin of frame_a to the origin of frame_b. The 
usage of a point mass is usually sufficient and has 
the advantage that not much data is required from 
the user (additionaly data: mass of the point mass 
and its location) and that it can be handled very 
efficiently with only a small overhead in the 
computation compared to a force element without a 
point mass. 

In element “LineForceWithMass” the point mass 
is located at a fixed relative distance between the 
two frame origins. Default is “in the middle”. This 
is useful, e.g., for a spring. In element 
“LineForceWithTwoMasses” two point masses are 
present that are located at an absolute distance with 
respect to frame_a and to frame_b, respectively. For 
example, point mass 1 might be located 0.5 m away 
from the origin of frame_a on the line to frame_b. 
This is useful, e.g., for a hydraulic cylinder. 

8.2 Direct Coupling of Force Elements 
Nearly all multi-body programs have the restriction 
that two force elements cannot be directly connected 
together. When this is desired, the user has to 
introduce a body with a small mass between the 
force elements leading usually leading to an 
unnecessary stiff model. Since the Modelica 
MultiBody library is purely equation based, there 
are no such restrictions and it is possible to connect 
3-dimensional force elements directly together, such 
as a series connection of the “ForceAndTorque” 
element from Figure 15. This usually leads to non-
linear systems of equations.  

It is also possible to connect line force elements 
directly together as demonstrated in Figure 18. This 
example is available from MultiBody. 
Examples.Elementary.ThreeSprings. In the upper 
part of this figure the Modelica schematic is shown 
consisting of three springs that are connected 
together at one point. The other ends of the springs 
are connected to the environment and to a body 
moving freely in space. In the lower part of the 
figure the animation of this system is shown. 

Without special action difficulties would occur, 
since in every “line force element” there is an 
equation stating that the cut-torques at both ends of 
the line force element (= frame_a.t and frame_b.t) 
are zero. If three line force elements are connected 
together as in Figure 18, there is additionally the 
zero sum equation of flow variables stating that the 
sum of the cut-torques of the connected springs is 
zero. This is one equation too much, since all 
torques in this equation are already set to zero in the 
spring elements. On the other hand, the orientation 

 
Figure 18. Springs connected directly together 
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object in the frame connector is not defined because 
a line force element does not compute it, which 
means that the orientation object in the connection 
point of the three springs is not defined. Therefore, 
the resulting DAE of Figure 18 would be 
structurally singular and has both overdetermined 
and underdetermined sets of equations. 

It is possible to automatically fix this problem. 
One line force element that is directly connected at 
one point to other line force elements has to define 
that the orientation object in the frame connector 
defines a null rotation and on the other hand has to 
remove the equation that states that the cut-torque is 
zero. This is defined in the following way with 
Modelica: 

model LineForceWithMass 
  ... 
equation 
  potentialRoot(frame_a.R, 100); 
  potentialRoot(frame_b.R, 100); 
    ... 
  if isRoot(frame_a.R) then 
    frame_a.R=Frames.nullRotation(); 
  else 
    frame_a.t=zeros(3); 
  end if; 
 
  if isRoot(frame_b.R) then 
    frame_b.R=Frames.nullRotation(); 
  else 
    frame_b.t=zeros(3); 
  end if; 
end LineForceWithMass; 

A frame connector of a line force element is a 
potential root of a virtual connection graph (see 
section 5). The priority of this potential root is set to 
100, as opposed to potential roots of bodies that 
have a priority of 0. This means that, whenever 
possible, a body is selected as a root. If this is not 
possible, a frame connector of a line force element 
is selected as root (meaning that only line force 
elements are connected together). Since exactly one 
frame of a connection point is selected as root, the 
corresponding line force element can provide the 
necessary equations as shown in the Modelica code 
fragment above. 

9 Animation 
The MultiBody library provides sub library 
“Visualizers” that contains models to visualize 
geometric parts, see Figure 19. All visualizer objects 
have a frame connector to connect the object to any 
other frame connector in a model. The properties of 
the visualizer object are described with respect to  

box

FixedShape y

xz

FixedFrame
FixedArrow

0.1

SignalArrow

 
Figure 19. Visualizer objects 

the frame to which the object is connected. All 
visualizer objects have a Boolean parameter 
“animation” with default “animation = true”. If 
“animation = false” is set, the animation of this 
object is switched off and all equations of this object 
are removed from the generated code. Additionally, 
in the World object there is a global flag 
“enableAnimation”. If this flag is set to false, the 
animation of all objects is removed (this is 
especially important for real-time simulation). 

Visualizer components “FixedArrow” and 
“SignalArrow” display an arrow at a frame. 
“FixedFrame” displays a coordinate system with 
axes labels, see Figure 2. “FixedShape” displays 
either one of the geometric shapes from Figure 20 or 
it displays a 3D shape  from a DXF or STL file. All 
models in the MultiBody library, such as a joint, a 
body, a force element or a sensor, have built-in 

 
Figure 20. Geometric shapes visualized by “FixedShape” 

animation properties that are based on the visualizer 
objects. Appropriate default values are available 
such that, without any additional action from the 
user, always an animation of the defined elements is 
displayed that can be further refined to get a nicer 
drawing. The main advantage of this approach is 
that a defined multi-body model can be quickly 
checked visually. This feature is implemented in the 
following way (which might be useful also for other 
applications): 

  ... 
protected  
  outer MultiBody.World world; 
  parameter Integer ndim =  
     if world.enableAnimation and  
        animation then 1 else 0; 
  Visualizers.Advanced.Shape  
    shape[ndim]( 
      each shapeType=shapeType,  
      each color=color, 
        ... 
    ) 
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Via an outer declaration the world object is 
accessed. The Visualizers.Advanced.Shape model is 
a shape without a frame connector that may have a 
fixed or dynamic shape using all the elements from 
Figure 20. An instance of this model is declared as 
an array with dimension “ndim”. This dimension is 
either zero or one, depending whether animation is 
enabled or not. A variable of array shape, such as 
“color” has the same value for all array indices and 
therefore it is defined as “each color = ...”. 
Modelica supports zero-sized component arrays and 
therefore the above definition just states that no 
object “shape” is present, when the dimension of the 
array is zero, i.e., when animation is disabled. 

10 Summary and Outlook 
It is expected that the new and free Modelica 
MultiBody library will be very helpful for the 
modeling of simple and complex 3-dimensional 
mechanical systems, especially for non-experts in 
the multi-body field, since the library is easy to use 
(in contrast to the previous ModelicaAdditions.-
MultiBody library) and it is very powerful. 
Especially, several features are present to get real-
time simulation performance. The MultiBody 
library is designed to work closely together with 
other Modelica libraries, in particular with the 
libraries: 
• Modelica.Mechanics.Translational for   

1-dim. translational line force elements. 
• Modelica.Mechanics.Rotational for   

1-dim. rotational elements to define drive trains 
driving, e.g., revolute joints. This library 
contains sophisticated elements such as bearing 
friction, torque dependent friction in gears, 
clutches, brakes. 

• PowerTrain [20] which is an extension of the 
Rotational library dedicated to vehicle power 
trains and complicated planetary gears with 
losses. The Rotational, MultiBody and 
PowerTrain library are extended in the next 
version such that all 3D effects of 1-dim. drive 
trains attached to MultiBody models are taken 
into account in an efficient and user convenient 
way [22]. In particular support torques of drive 
train elements are calculated. 

• HyLib [3][4] for the modeling of hydraulic 
systems. Hydraulic cylinders of HyLib can be 
directly attached to the 1D flanges of MultiBody 
line force elements. 

• VehicleDynamics [2] for the modeling of the 
dynamics of vehicles providing a large set of 
components and also complete vehicles in 

different levels of model details. The free 
VehicleDynamics library is currently based on 
the ModelicalAdditions.MultiBody library. It 
will soon be converted to the new MultiBody 
library. 

• Import filters from AutoDesk Mechanical 
desktop [5] and from SolidWorks [9] to 
Modelica are available for the Modelica-
Additions.MultiBody library. It is planned to 
convert them soon to the new MultiBody 
library, see http://www.mathcore.com. 

We plan to further continue the development of the 
MultiBody library in different directions. Since the 
field of possible improvements is large, e.g., 
modeling of elastic bodies, modeling of contact, 
interfaces to finite element and CAD programs, 
aero-elastic couplings of wings, etc., we are 
interested in cooperations. Please, feel free to 
contact the authors if you plan to use the MultiBody 
library as a basis for enhancements, especially if you 
provide your work also in the public domain. 
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Appendix: Algorithm to Transform 
Overdetermined DAEs 
In this appendix the algorithm is sketched to 
transform an overdetermined DAE to a standard 
DAE where the number of equations and unknowns 
are identical. 

In Table 3, the set of Modelica built-in operators 
introduced in section 5 are formally defined. These 
operators are utilized to describe the relationships of 
the overdetermined types or records in the connector 
instances of a model: Every instance of an 
overdetermined type or record in an overdetermined 
connector is a node in a virtual connection graph 
that is used to determine when the standard equation 
“R1 = R2” or when the equation “0 = 
equalityConstraint(R1, R2) ”has to be used for the 
generation of connect(...) equations. The branches 
of the virtual connection graph are implicitly 
defined by “connect(...)” and explicitly by 
“Connections.branch(...)” statements, see Table 1.  

For example, a revolute joint has two connectors 
frame_a and frame_b. In this model, there is an 
algebraic relationship between the orientation 
objects of these two frames: frame_b.R = 
f(frame_a.R, ϕ), where ϕ is the relative rotation 
angle. A definition of the form  

Connections.branch 
             (frame_a.R, frame_b.R); 

has to be present in this joint model in order to state 
that the overdetermined variables frame_a.R and 
frame_b. R are algebraically coupled. 

Additionally, corresponding nodes of the virtual 
connection graph have to be defined as roots or as 
potential roots with functions “root(...)” and 
“potentialRoot(...)”, respectively, see Table 3. For 
example, connector frame_a in the World model has 
to be defined as “Connections.root(frame_a.R)” 
because all elements of frame_a.R are explicitly 
given in the World model (frame_a.R = 
nullRotation() ). A “potential root” is, for example, 
a body object, since if the body is freely flying in 
space, body coordinates may be used as states from 
which the orientation object can be computed. It is a 
“potential root”, because body states should for 
efficiency reasons only be selected as states, if no 
other possibility exists. 

Note, that branch(...), root(...), potentialRoot(...) 
do not generate equations. They only define nodes 
and branches in the virtual connection graph for 
analysis purposes to be discussed now. 

Before connect(…) equations are generated, the 
virtual connection graph is transformed into a set of 
spanning trees by removing breakable branches 
(connections) from the graph. This is performed in 

connect(A,B); Defines breakable branches from the overdetermined type or record instances 
in connector instance A to the corresponding overdetermined type or record 
instances in connector instance B for a virtual connection graph. 

branch(A.R,B.R); Defines a non-breakable branch from the overdetermined type or record 
instance R in connector instance A to the corresponding overdetermined type or 
record instance R in connector instance B for a virtual connection graph. This 
function can be used at all places where a connect(..) statement is allowed. [This 
definition shall be used, if in a model with connectors A and B the 
overdetermined records A.R and B.R are algebraically coupled in the mode]. 

root(A.R); The overdetermined type or record instance R in connector instance A is a 
(definite) root node in a virtual connection graph. [This definition shall be used 
if in a model with connector A the overdetermined record A.R is (consistently) 
assigned, e.g.,  from a parameter expressions] 

potentialRoot(A.R); 
potentialRoot 
(A.R, priority = prior); 

The overdetermined type or record instance R in connector instance A is a 
potential root node in a virtual connection graph with priority “prior” (prior ≥ 
0). If no second argument is provided, the priority is zero. “prior” shall be a 
parameter expression of type Integer. In a virtual connection subgraph without a 
Connections.root definition, one of the potential roots with the lowest priority 
number is selected as root [This definition is, e.g., used in a body, see 
Parts.Bodys in Table 2]. 

b = isRoot(A.R); Returns true, if the overdetermined type or record instance R in connector 
instance A is selected as a root in the virtual connection graph. 

Table 3. Operators “Connections.XXX” (e.g. Connections.branch) to define the set of overdetermined equations 
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the following way: 

1. Every root node defined via the 
“Connections.root(…)” statement is a definite 
root of one spanning tree. 

2. The virtual connection graph may consist of sets 
of subgraphs that are not connected together. 
Every subgraph in this set shall have at least one 
root node or one potential root node. If a graph 
of this set does not contain any root node, then 
one potential root node in this subgraph with 
the lowest priority number is selected to be the 
root of the subgraph. The selection can be 
inquired in a class with function 
Connections.isRoot(…), see Table 1. 

3. If there are n selected roots in a subgraph, then 
breakable branches have to be removed such 
that the result shall be a set of n spanning trees 
with the selected root nodes as roots. 

After this analysis, the connect(…) equations for 
overdetermined variables are generated in the 
following way: 

1. For every breakable branch in one of the 
spanning trees, i.e., connect(A,B) statements, 
the usual “equality” connect equations are 
generated, “A.R = B.R”. 

2. For every breakable branch not in any of the 
spanning trees, the equations “0 = 
R.equalityConstraint(A.R,B.R)” are generated 
instead of “A.R = B.R”. 

An example for a virtual connection graph is given 
in Figure 21. This example contains two 
independent subgraphs that are analyzed separately. 
The left subgraph has two (definite) roots. Four 
breakable branches, i.e., connect(...) statements have 
to be removed to arrive at two spanning trees. For 
every removed connect(...) statement the 
equalityConstraint(...) function is used to generate 
the connection equation. In the right subgraph of 
Figure 21 no definite root is present. Therefore, the 
potential root with the lowest priority has to be 
selected as root. If there are several roots with the 
same lowest priority, one of them is selected 
arbitrarily. Starting from the selected root, only one 
branch has to be removed to also arrive at a 
spanning tree in this subgraph. 
 

 
Figure 21. Example for virtual connection graph 
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