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According to the Berezinskii-Kosterlitz-Thouless-
Halperin-Nelson-Young (BKTHNY) theory,1 melting in two
dimensions (2D) is a two-stage process. The crystal first melts
by dislocation unbinding to an anisotropic hexatic fluid and
then undergoes a continuous transition into an isotropic fluid.
The dislocation unbinding occurs when the Young’s modulus
reaches the universal value of 16π,

4µ(µ + λ)
2µ + λ

b2

kBT
= 16π, (1)

where µ, λ are the Lamé coefficients of the 2D solid, b is
the lattice constant, and kBT is the thermal energy. The Lamé
coefficients to be substituted in Eq. (1) should be evaluated
taking into account (i) thermal softening and (ii) renormal-
ization due to dislocation-induced softening of the crystal.2,3

Simplistic theoretical estimates using the elastic constants of
an ideal crystalline lattice at T = 0 yield melting temperatures
overestimated by a factor between '1.5 and '2 for various 2D
systems.3–6

BKTHNY scenario has been confirmed experimentally,
in particular, for systems with dipole-like interactions.3,7,8

More recently, it has been reported that 2D melting scenario
depends critically on the potential softness.9 Only for suffi-
ciently soft long-range interactions does melting proceed via
the BKTHNY scenario. For steeper interactions, the hard-
disk melting scenario with first order hexatic-liquid transition
holds.10–12

The focus of this Note is on 2D soft particle systems.
It is demonstrated that a melting criterion can be intro-
duced, which states that the melting occurs when the ratio
of the transverse sound velocity of an ideal crystalline lat-
tice to the thermal velocity reaches a certain quasi-universal
value.

The Lamé coefficients of an ideal 2D lattice can be
expressed in terms of the longitudinal (CL) and transverse (CT)
sound velocities as µ = mρC2

T and λ = mρ(C2
L − 2C2

T), where
m and ρ are the particle mass and number density.5,13 Then
condition (1) can be rewritten as

2π
√

3v2
T = C2

T

(
1 − C2

T/C
2
L

)
, (2)

where vT =
√

kBT/m is the thermal velocity. For soft repulsive
potentials, independent of space dimensionality, the following
strong inequality, C2

L/C
2
T � 1, holds.14–16 This implies that

Eq. (2) can be further simplified to

CT/vT ' const (3)

at melting. The value of the constant that follows from Eq. (2)
is '3.30. However, this does not take into account thermal
and dislocation induced softening. A working hypothesis to
be verified is that a simple renormalization of the constant
in Eq. (3) can account for these effects. In this case, Eq. (3)
would be identified as a simple 2D universal melting rule for
soft particle systems.

Let us verify whether the ratio CT/vT does assume a
universal value at melting. We consider three exemplary
2D systems with soft long-ranged repulsive interactions:
one-component plasmas with logarithmic potential (OCP
log),17,19,20 2D electron system with Coulomb ∝1/r poten-
tial (OCP 1/r),21,22 and dipole-like system with ∝1/r3 inter-
action.7,8,18 The pair-wise interaction potential φ(r) can be
written in a general form as

φ(r)/kBT = Γf (r/a),

where Γ is the coupling parameter and a = 1/
√
πρ is the

2D Wigner-Seitz radius. The system is usually referred to as
strongly coupled when Γ � 1. The fluid-solid phase transi-
tion is characterized by a system-dependent critical coupling
parameter Γm (the subscript “m” refers to melting). All sys-
tems considered here form hexagonal lattices in the crystalline
phase (more complicated interactions and lattices should be
considered separately).

The discussed soft-particle systems have been extensively
studied in the literature and some relevant information is sum-
marized in Table I. In particular, the last column lists the
ratios CT/vT at melting. The values presented indicate that
as the potential steepness grows some weak increase of the
ratio CT/vT at melting is likely. At the same time, all the
values are scattered in a relatively narrow range, 4.3 ± 0.3.
This implies that Eq. (3) can be used as an approximate one-
phase criterion of melting of 2D crystals with soft long-ranged
interactions.

As an example of the application of the proposed criterion,
the melting curve of a 2D Yukawa crystal has been calculated.
The Yukawa potential is characterized by f (x) = exp(�κx)/x,
where κ is the screening parameter (ratio of the mean inter-
particle separation a to the screening length). This potential is
used as a reasonable first approximation to describe actual
interactions in colloidal suspensions and complex (dusty)
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TABLE I. Selected properties of 2D one-component plasma with logarithmic
(OCP log) and Coulomb (OCP 1/r) interactions and of the 2D system with the
dipole-like interaction. Here CT is the transverse sound velocity of an ideal
triangular lattice, vT is the thermal velocity, and Γm is the coupling parameter
at melting.

System f (x) CT/vT
a Γm

b CT/vT |Γm

OCP log �ln x
√
Γ/8 '130 ÷ 140 '4.0 ÷ 4.2

OCP 1/r 1/x 0.372
√
Γ '120 ÷ 140 '4.1 ÷ 4.4

Dipole 1/x3 0.547
√
Γ '60 ÷ 70 '4.2 ÷ 4.6

aSee, e.g., Ref. 17 for OCP log, Ref. 5 for OCP 1/r, and Ref. 18 for the dipole system.
bSee Refs. 19 and 20 for OCP log; Refs. 21 and 22 for OCP 1/r, and Refs. 7 and 18 for
the dipole system.

FIG. 1. Melting curve of a 2D Yukawa crystal in the (κ, Γ) plane. The solid
curve corresponds to the condition CT = 4.3vT. The symbols correspond to
the results of the numerical melting “experiment.”23 The dotted line corre-
sponds to the solution of Eq. (1) with the asymptotic T = 0 values of elastic
constants.5

plasmas.24–27 In the latter case, the screening is normally
weak,28,29 κ . 1, which corresponds to the soft interaction
limit. Thermodynamics and dynamics of 2D Yukawa sys-
tems are well understood;23,30,31 simple practical expressions
for thermodynamic functions32 and sound velocities16,33 have
been derived. In particular, the transverse sound velocity of
an ideal Yukawa lattice can be expressed using the Madelung
constant M(κ) as16

C2
T =

v2
T

8

(
κ2 ∂

2M

∂κ2
+ κ

∂M
∂κ
−M

)
,

where the product MΓ defines the lattice energy per particle
in units of temperature (reduced lattice sum). Using condi-
tion (3) with an “average” const = 4.3, the dependence Γm(κ)
for the triangular lattice has been calculated. The resulting
melting line (solid curve) appears in Fig. 1. The agreement
with the numerical melting “experiment”23 is satisfactory
in the weakly screened regime. An early attempt to esti-
mate the location of the melting curve by using Eq. (1)
with the asymptotic T = 0 values of elastic constants5 is
depicted by the dotted curve. A significant improvement is
documented.

To conclude, a simple criterion for melting of two-
dimensional crystals with soft long-ranged interactions has
been proposed. It states that the ratio of the transverse sound
velocity of an ideal crystalline lattice to the thermal velocity
is a quasi-universal number close to 4.3 at melting. Appli-
cation of these criteria allows estimating melting lines in
a simple yet relatively accurate manner. Two-dimensional
weakly screened Yukawa systems represent just one relevant
example.
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