Momentum Predictability and Heat Accumulation in Laser-based Space Debris Removal

Stefan Scharring, Lukas Eisert, Raoul-Amadeus Lorbeer, Hans-Albert Eckel *German Aerospace Center (DLR), Institute of Technical Physics*

International High Power Laser Ablation Symposium HPLA 2018 Tuesday, March 27

Knowledge for Tomorrow

Motivation

Momentum Scatter

- Irregularly shaped targets
- Random target orientation
- Unknown target material

Impulse components in repetitive laser irradiation

Motivation

Momentum Scatter

- Irregularly shaped targets
- Random target orientation
- Unknown target material

Impulse components in repetitive laser irradiation

Heat Accumulation

- Thermal stress
- Droplet ejection
- Target Melting

Molten aluminum target after repetitive laser irradiation

Heat Accumulation in Laser Ablation

• Residual heat for metals:
$$\eta_{res} = \frac{Q_{heat}}{E_I} \approx 15 \dots 25 \%$$

Heat Accumulation in Laser Ablation

- Residual heat for metals: $\eta_{res} = \frac{Q_{heat}}{E_L} \approx 15 \dots 25 \%$
- Almost neglected in debris removal research
- Adressed in: Schall, Acta Astronaut. 24: 343 (1991)
- Melting of flat targets: "Debris Compactor"

Heat Accumulation in Laser Ablation

- Residual heat for metals: $\eta_{res} = \frac{Q_{heat}}{E_I} \approx 15 \dots 25 \%$
- Almost neglected in debris removal research
- Adressed in: Schall, Acta Astronaut. 24: 343 (1991)
- Melting of flat targets: "Debris Compactor"

Heat Accumulation in Laser Ablation

- Residual heat for metals: $\eta_{res} = \frac{Q_{heat}}{E_I} \approx 15 \dots 25 \%$
- Almost neglected in debris removal research
- Adressed in: Schall, Acta Astronaut. 24: 343 (1991)
- Melting of flat targets: "Debris Compactor"

Thermo-Mechanical Coupling Coefficient *c*_{tm}

• How much momentum can be transferred, taking into account for the residual heat?

$$c_{tm} = \frac{\Delta p}{Q_{heat}} \left(= \frac{\Delta p}{\eta_{res} E_L} = \frac{c_m}{\eta_{res}} \right)$$

Scharring et al., AIAA Journal (DOI: 10.2514/1.J056718)

Heat Accumulation in Laser Ablation

- Residual heat for metals: $\eta_{res} = \frac{Q_{heat}}{E_I} \approx 15 \dots 25 \%$
- Almost neglected in debris removal research
- Adressed in: Schall, Acta Astronaut. 24: 343 (1991)
- Melting of flat targets: "Debris Compactor"

Thermo-Mechanical Coupling Coefficient *c*_{tm}

• How much momentum can be transferred, taking into account for the residual heat?

$$c_{tm} = \frac{\Delta p}{Q_{heat}} \left(= \frac{\Delta p}{\eta_{res} E_L} = \frac{c_m}{\eta_{res}} \right)$$

Scharring et al., AIAA Journal (DOI: 10.2514/1.J056718)

• Limitation of $E_{res.heat}$ the melting point T_m :

$$E_{res.heat} \le c_p \cdot m \cdot (T_m - T_0)$$

Heat Accumulation in Laser Ablation

- Residual heat for metals: $\eta_{res} = \frac{Q_{heat}}{E_I} \approx 15 \dots 25 \%$
- Almost neglected in debris removal research
- Adressed in: Schall, Acta Astronaut. 24: 343 (1991)
- Melting of flat targets: "Debris Compactor"

Thermo-Mechanical Coupling Coefficient *c*_{tm}

• How much momentum can be transferred, taking into account for the residual heat?

$$c_{tm} = \frac{\Delta p}{Q_{heat}} \left(= \frac{\Delta p}{\eta_{res} E_L} = \frac{c_m}{\eta_{res}} \right)$$

Scharring et al., AIAA Journal (DOI: 10.2514/1.J056718)

• Limitation of $E_{res.heat}$ the melting point T_m :

$$E_{res.heat} \le c_p \cdot m \cdot (T_m - T_0)$$

• Maximum momentum transfer:

$$\Delta p_{max} = c_{tm} \cdot c_p \cdot m \cdot (T_m - T_0)$$

Heat Accumulation in Laser Ablation

- Residual heat for metals: $\eta_{res} = \frac{Q_{heat}}{E_I} \approx 15 \dots 25 \%$
- Almost neglected in debris removal research
- Adressed in: Schall, Acta Astronaut. 24: 343 (1991)
- Melting of flat targets: "Debris Compactor"

Thermo-Mechanical Coupling Coefficient c_{tm}

• How much momentum can be transferred, taking into account for the residual heat?

$$c_{tm} = \frac{\Delta p}{Q_{heat}} \left(= \frac{\Delta p}{\eta_{res} E_L} = \frac{c_m}{\eta_{res}} \right)$$

Scharring et al., AIAA Journal (DOI: 10.2514/1.J056718)

• Limitation of $E_{res.heat}$ the melting point T_m :

$$E_{res.heat} \le c_p \cdot m \cdot (T_m - T_0)$$

• Maximum momentum transfer:

$$\Delta p_{max} = c_{tm} \cdot c_p \cdot m \cdot (T_m - T_0)$$

• Maximum velocity increment:

$$\Delta v_{max} = \frac{c_m}{\eta_{res}} \cdot c_p \cdot (T_m - T_0)$$

Area-matrix concept
$$\vec{p} = c_m \Phi_L \vec{k} \cdot \underline{G}$$

Liedahl et al., Adv. Space Res. 52(5): 895 – 915 (2013)

Area-matrix concept
$$\vec{p} = c_m \Phi_L \vec{k} \cdot \underline{G}$$

Liedahl et al., Adv. Space Res. 52(5): 895 – 915 (2013)

EXPEDIT

$$\vec{p} = \sum_{j} \vec{p_j} = \sum_{j} -c_m(\Phi_L, \vartheta) \cdot \Phi_L(\vec{r}) \cdot \cos\vartheta_j(\vec{r}) d\hat{n}_j(\vec{r})$$

Scharring et al., Opt. Eng. 56(1): 011007 (2017)

EXamination **P**rogram for irr**E**gularly shape**D** debr**I**s **T**argets

Area-matrix concept
$$\vec{p} = c_m \Phi_L \vec{k} \cdot \underline{G}$$

Liedahl et al., Adv. Space Res. 52(5): 895 – 915 (2013)

EXPEDIT

$$\vec{p} = \sum_{i} \vec{p}_{j} = \sum_{i} -c_{m}(\Phi_{L}, \vartheta) \cdot \Phi_{L}(\vec{r}) \cdot \cos \vartheta_{j}(\vec{r}) d\hat{n}_{j}(\vec{r})$$

Scharring et al., Opt. Eng. 56(1): 011007 (2017)

EXamination Program for irrEgularly shapeD debrls Targets

Discretization of Laser $\Phi = \Phi(\vec{r})$ Raytracing of Gaussian beam profile: Nvidia Optix, GPU Discretization of Matter Finite surface elements (obj files) Discretization of Interaction Parameter dependencies of $c_m(\Phi), \eta_{res}(\Phi)$

Programming language: C++ Python wrapper for API: Monte Carlo studies, Orbital propagation

Area-matrix concept
$$\vec{p} = c_m \Phi_L \vec{k} \cdot \underline{G}$$

Liedahl et al., Adv. Space Res. 52(5): 895 – 915 (2013)

EXPEDIT

$$\vec{p} = \sum_{j} \vec{p}_{j} = \sum_{j} -c_{m}(\Phi_{L}, \vartheta) \cdot \Phi_{L}(\vec{r}) \cdot \cos \vartheta_{j}(\vec{r}) d\hat{n}_{j}(\vec{r})$$

Scharring et al., Opt. Eng. 56(1): 011007 (2017)

EXamination **P**rogram for irr**E**gularly shape**D** debr**I**s **T**argets

Discretization of Laser $\Phi = \Phi(\vec{r})$ Raytracing of Gaussian beam profile: Nvidia Optix, GPU Discretization of Matter Finite surface elements (obj files) Discretization of Interaction

Parameter dependencies of $c_m(\Phi)$, $\eta_{res}(\Phi)$

Programming language: C++ Python wrapper for API: Monte Carlo studies, Orbital propagation

Area-matrix concept
$$\vec{p} = c_m \Phi_L \vec{k} \cdot \underline{G}$$

Liedahl et al., Adv. Space Res. 52(5): 895 – 915 (2013)

EXPEDIT

$$\vec{p} = \sum_{j} \vec{p_j} = \sum_{j} -c_m(\Phi_L, \vartheta) \cdot \Phi_L(\vec{r}) \cdot \cos \vartheta_j(\vec{r}) d\hat{n}_j(\vec{r})$$

Scharring et al., Opt. Eng. 56(1): 011007 (2017)

EXamination **P**rogram for irr**E**gularly shape**D** debr**I**s **T**argets

Discretization of Laser $\Phi = \Phi(\vec{r})$

Raytracing of Gaussian beam profile: Nvidia Optix, GPU Discretization of Matter

Finite surface elements (obj files)

Discretization of Interaction

Parameter dependencies of $c_m(\Phi)$, $\eta_{res}(\Phi)$

Programming language: C++ Python wrapper for API: Monte Carlo studies, Orbital propagation

Local momentum density on the surface of an irregularly shaped target. *Cow model courtesy of NVidia.*

Parameters

Laser: CLEANSPACE concept

B. Esmiller et al., Appl. Opt. 53(31): 145-154 (2014)

- Pulse energy: $E_L = 25 \ kJ$
- Pulse duration: $\tau = 10 ns$
- Wavelength: $\lambda = 1064 nm$
- Spot diameter $(1/_{e^2})$: $d_{spot} = 66.7 \ cm$
- Mean fluence: $\langle \Phi \rangle = 7.2 \ J/cm^2$
- Beam Discretization:
 - 0.1 mm resolution
- Monte Carlo:
 - Random target orientation
 - 2000 sample shots / target
 - Beam center = Target CMS

Parameters

- Laser: CLEANSPACE concept B. Esmiller et al., Appl. Opt. 53(31): 145-154 (2014)
 - Pulse energy: $E_L = 25 kJ$
 - Pulse duration: $\tau = 10 ns$
 - Wavelength: $\lambda = 1064 nm$
 - Spot diameter $(1/_{e^2})$: $d_{spot} = 66.7 \ cm$
 - Mean fluence: $\langle \Phi \rangle = 7.2 \ J/cm^2$
- Beam Discretization:
 - 0.1 mm resolution
- Monte Carlo:
 - Random target orientation
 - 2000 sample shots / target
 - Beam center = Target CMS

Parameters

- Laser: CLEANSPACE concept B. Esmiller et al., Appl. Opt. 53(31): 145-154 (2014)
 - Pulse energy: $E_L = 25 \ kJ$
 - Pulse duration: $\tau = 10 ns$
 - Wavelength: $\lambda = 1064 nm$
 - Spot diameter $(1/_{e^2})$: $d_{spot} = 66.7 \ cm$
 - Mean fluence: $\langle \Phi \rangle = 7.2 \ J/cm^2$
- Beam Discretization:
 - 0.1 mm resolution
- Monte Carlo:
 - Random target orientation
 - 2000 sample shots / target
 - Beam center = Target CMS

Parameters

- Laser: CLEANSPACE concept B. Esmiller et al., Appl. Opt. 53(31): 145-154 (2014)
 - Pulse energy: $E_L = 25 kJ$
 - Pulse duration: $\tau = 10 ns$
 - Wavelength: $\lambda = 1064 nm$
 - Spot diameter $(1/_{e^2})$: $d_{spot} = 66.7 \ cm$
 - Mean fluence: $\langle \Phi \rangle = 7.2 \ J/cm^2$
- Beam Discretization:
 - 0.1 mm resolution
- Monte Carlo:
 - Random target orientation
 - 2000 sample shots / target
 - Beam center = Target CMS

- 100, randomly generated
- Flake-like ellipsoids
- Material: aluminium

Parameters

- Laser: CLEANSPACE concept B. Esmiller et al., Appl. Opt. 53(31): 145-154 (2014)
 - Pulse energy: $E_L = 25 kJ$
 - Pulse duration: $\tau = 10 ns$
 - Wavelength: $\lambda = 1064 nm$
 - Spot diameter $(1/_{e^2})$: $d_{spot} = 66.7 \ cm$
 - Mean fluence: $\langle \Phi \rangle = 7.2 J/cm^2$
- Beam Discretization:
 - 0.1 mm resolution
- Monte Carlo:
 - Random target orientation
 - 2000 sample shots / target
 - Beam center = Target CMS

Targets

- 100, randomly generated
- Flake-like ellipsoids
- Material: aluminium

Laser-matter Interaction

- Results from HD simulations (Polly-2T*)
- Datafit parameters → Expedit simulation

Parameters

- Laser: CLEANSPACE concept B. Esmiller et al., Appl. Opt. 53(31): 145-154 (2014)
 - Pulse energy: $E_I = 25 kI$
 - Pulse duration: $\tau = 10 ns$
 - Wavelength: $\lambda = 1064 nm$
 - Spot diameter $(1/_{e^2})$: $d_{spot} = 66.7 \ cm$
 - Mean fluence: $\langle \Phi \rangle = 7.2 \ J/cm^2$
- Beam Discretization:
 - 0.1 mm resolution
- Monte Carlo:
 - Random target orientation
 - 2000 sample shots / target
 - Beam center = Target CMS

- 100, randomly generated
- Flake-like ellipsoids
- Material: aluminium

- Results from HD simulations (Polly-2T*)
- Datafit parameters \rightarrow Expedit simulation

Monte Carlo Study: Random Target Orientation

Velocity Increment Δv

- \rightarrow Consideration of large momentum scatter necessary
- \rightarrow Collision analysis for conceivable trajectories required

Simulation setup (3 DOF)

- Target CMS = beam center
- Random target orientation
- Gaussian laser spot profile

Monte Carlo Study: Random Target Orientation

Simulation setup (3 DOF)

- Target CMS = beam center
- Random target orientation
- Gaussian laser spot profile

Velocity Increment Δv

→ Consideration of large momentum scatter necessary → Large thrust angle yields significant losses in Δv_x . → Collision analysis for conceivable trajectories required → Lateral momentum might cancel out in multi-pulse irradiation.

Mean thrust angle

Various Target Materials

Impulse Coupling Characteristics $c_m(\Phi)$

Simulation setup (3 DOF)

- Target CMS = beam center
- Random target orientation
- Target material: Al, Steel, Cu

Various Target Materials

Simulation setup (3 DOF)

- Target CMS = beam center
- Random target orientation
- Target material: Al, Steel, Cu

Velocity Increment Δv

 \rightarrow Remote material reconnaissance advisable for precise orbit modification

Impulse Coupling Characteristics $c_m(\Phi)$

Thermo-Mechanical Coupling

Heating

Simulation setup (3 DOF)

- Target CMS = beam center
- Random target orientation
- Target: Aluminum

Thermo-Mechanical Coupling

Simulation setup (3 DOF)

- Target CMS = beam center
- Random target orientation
- **Target: Aluminum**

(Thermo-)mechanical Coupling

Heating

- \rightarrow Safe Debris Removal requires strong limitation laser pulse number.
- → CLEANSPACE, AI: max. 100 laser pulses during one transit

Various Laser Configurations

Single Pulse Characteristics

Simulation setup

- Various laser configurations
- $c_m(\Phi), \eta_{res}(\Phi)$ from simulations
- Target: Aluminum

Various Laser Configurations

Simulation setup

- Various laser configurations
- $c_m(\Phi), \eta_{res}(\Phi)$ from simulations
- Target: Aluminum

Momentum Predictability

- Discretization of Area Matrix approach with CUDAparallelized C++ code *Expedit* on GPU
- Large scatter in Δv
- Material reconnaissance for Δv prediction
- Pulse number limitation within one transit: \rightarrow Moderate absolute prediction error in Δv
 - \rightarrow lower Rep-rates / average power needed

Laser debris removal within several subsequent object passes.

B. Esmiller et al., HPLA-BEP 2014

Momentum Predictability

- Discretization of Area Matrix approach with CUDAparallelized C++ code *Expedit* on GPU
- Large scatter in Δv
- Material reconnaissance for Δv prediction
- Pulse number limitation within one transit:
 - \rightarrow Moderate absolute prediction error in Δv
 - \rightarrow lower Rep-rates / average power needed

Outlook

 \rightarrow Poster Session: R.-A. Lorbeer et al., Laser-Based Space Debris Removal – Laser-Induced Momentum Generation on True Scale Debris-Like Targets

Laser debris removal within several subsequent object passes

B. Esmiller et al., HPLA-BEP 2014

Momentum Predictability

- Discretization of Area Matrix approach with CUDAparallelized C++ code *Expedit* on GPU
- Large scatter in Δv
- Material reconnaissance for Δv prediction
- Pulse number limitation within one transit:
 - \rightarrow Moderate absolute prediction error in Δv
 - \rightarrow lower Rep-rates / average power needed

Outlook

 \rightarrow Poster Session: R.-A. Lorbeer et al., Laser-Based Space Debris Removal – Laser-Induced Momentum Generation on True Scale Debris-Like Targets

Heat Accumulation

B. Esmiller et al., HPLA-BEP 2014

- Discretized Add-on to *Expedit* based on HD simulation data
- Temperature increment per pulse: up to $\Delta T \approx 5K$
- Material reconnaissance for ΔT prediction
- Pulse number limitation within one transit:
 → Avoidance of target melting
 - \rightarrow lower Rep-rates / average power needed

Momentum Predictability

- Discretization of Area Matrix approach with CUDAparallelized C++ code *Expedit* on GPU
- Large scatter in Δv
- Material reconnaissance for Δv prediction
- Pulse number limitation within one transit:
 - \rightarrow Moderate absolute prediction error in Δv
 - \rightarrow lower Rep-rates / average power needed

Outlook

 \rightarrow Poster Session: R.-A. Lorbeer et al., Laser-Based Space Debris Removal – Laser-Induced Momentum Generation on True Scale Debris-Like Targets

lipation 07.6 Mace: 0.11 m Laser debris removal within several subsequent object passes Heat Accumulation

B. Esmiller et al., HPLA-BEP 2014

- Discretized Add-on to Expedit based on HD simulation data
- Temperature increment per pulse: up to $\Delta T \approx 5K$
- Material reconnaissance for ΔT prediction
- Pulse number limitation within one transit:
 - \rightarrow Avoidance of target melting
 - \rightarrow lower Rep-rates / average power needed

Outlook

- Experimental data needed on:
- $c_m(\Phi,T)$: temperature-dependent momentum coupling $\eta_{res}(\Phi, T)$: heat (and stress) accumulation

Thank you for your kind attention

"Space debris," Finnegan, 7 years

Drop experiments with irregularly shaped targets \rightarrow Poster Session

Knowledge for Tomorrow

Q&A Backup Slides

Knowledge for Tomorrow

Literature Data on Residual Heat in Laser Ablation

τ	λ [μm]	f _{rep}	Mat.	η_{res} [%]	Ref.
1-6 µs	10.6	(1 pulse)	AI	10 - 40	Autric, Proc. SPIE 3343: 354 (HPLA I, 1998)
120 ns	1.064	(1 pulse)	AI	35	Lenk et al., Appl. Surf. Sce. 109/110: 419 (1997)
45 ns	0.69	(1 pulse)	AI	10 – 25	Vorobyev et al., Appl. Phys. A 82: 357 (2006)
6 ps	1.03	300 kHz	Steel	12.6	Weber et al., Opt. Express 25(4): 3966 (2017)
65 fs	0.8	(1 pulse)	Ti	20 - 60	Vorobyev et al., J. Phys.: Conf. Ser. 59: 418 (2007)
65 fs	0.8	(1 pulse)	Zn	10 - 40	Vorobyev et al., Opt. Express 14 (26): 13113 (2006)
60 fs	0.8	1 kHz	Cu, Al	10 - 40	Vorobyev et al., Appl. Phys. Lett. 86: 011916 (2005)
60 fs	0.8	(1 pulse)	AI	15 – 35	Vorobyev et al., Appl. Phys. A 82: 357 (2006)

Removal Laser Configurations: Heat Accumulation

Removal Laser Configurations: Heat Accumulation

Laser heating is:

• at least 3 orders of magnitude faster than heat re-radiation

Removal Laser Configurations: Heat Accumulation

Laser heating is:

- at least 3 orders of magnitude faster than heat re-radiation
- much slower than heat conduction (for significant T-gradients)

Simulations for AI sample targets

Target Melting: Space Debris Compactor

Ellipsoid Sample Targets from Monte Carlo Simulations

Residual Heat and Mechanical Stress in Short and Ultrashort-Pulse Ablation

Shockwave thermalization

Short Pulses, Example: 10 ns

Shockwave thermalization

Side Effect: Ablative Recoil

HD Simulations on Momentum Coupling Experimental Validation

Wide Range

Laser-matter-interaction parameter $I\lambda\sqrt{\tau}$ [W \sqrt{s} /cm]

D'Souza, B. C., PhD Thesis, University of Southern California, 2007 Niino, M. et al., Proc. SPIE, 3885: 370 – 377 (2000) Eckel, H.-A. et al., HPLA/BEP 2014 Uchida, S. et al. Proc. SPIE, 4065: 495 – 501 (2000) K. Kremeyer, et al., AIP Conf. Proc., 997: 147 – 158 (2008) C.R. Phipps et al., J. Appl. Phys. 64(3): 1083 – 1096 (1988)

HD Simulations on Momentum Coupling Experimental Validation

Wide Range

Laser-matter-interaction parameter $I\lambda\sqrt{\tau}$ [W \sqrt{s} /cm]

D'Souza, B. C., PhD Thesis, University of Southern California, 2007 Niino, M. et al., Proc. SPIE, 3885: 370 – 377 (2000) Eckel, H.-A. et al., HPLA/BEP 2014 Uchida, S. et al. Proc. SPIE, 4065: 495 – 501 (2000) K. Kremeyer, et al., AIP Conf. Proc., 997: 147 – 158 (2008) C.R. Phipps et al., J. Appl. Phys. 64(3): 1083 – 1096 (1988)

HD Simulations on Momentum Coupling Experimental Validation

Wide Range

Laser-matter-interaction parameter $I\lambda\sqrt{\tau}$ [W \sqrt{s}/cm]

D'Souza, B. C., PhD Thesis, University of Southern California, 2007 Niino, M. et al., Proc. SPIE, 3885: 370 – 377 (2000) Eckel, H.-A. et al., HPLA/BEP 2014 Uchida, S. et al. Proc. SPIE, 4065: 495 – 501 (2000) K. Kremeyer, et al., AIP Conf. Proc., 997: 147 – 158 (2008) C.R. Phipps et al., J. Appl. Phys. 64(3): 1083 – 1096 (1988)

C.R. Phipps et al., J. Appl. Phys. 122: 193103 (2017)

Ultrashort Pulses

$c_{tm} = \frac{\Delta p}{Q_{Heat}} = \frac{\text{Thrust}}{\text{Heating Power}}$

Thermo-mechanical Coupling

$$\Delta v_{max} = \frac{c_m}{\eta_{res}} \cdot c_p \cdot (T_m - T_0) = c_{tm} \cdot c_p \cdot (T_m - T_0)$$

Thermo-mechanical Coupling

Pulse Length Dependency

- Short Pulses:
 - Unfavourable thermo-mech. coupling
 - Acceptable at larger fluences
- Ultrashort Pulses:
 - Advantageous thermo-mech. coupling
 - Even at moderate fluences

Thrust

 Δp

 C_{tm}

• Characteristic length L_c

- Characteristic length L_c
- Cross-sectional area A_x

Fig. 6. Sketch of NASA orthogonal Projection Dimensio et al. (2008).

- Characteristic length L_c
- Cross-sectional area A_x
- Area-to-mass ratio: A_x/m
- Material: mainly aluminum

et al. (2008).

- Characteristic length *L_c*
- Cross-sectional area A_x
- Area-to-mass ratio: A_x/m
- Material: mainly aluminum
- Typical shape: flakes

et al. (2008).

- Characteristic length *L_c*
- Cross-sectional area A_x
- Area-to-mass ratio: A_x/m
- Material: mainly aluminum
- Typical shape: flakes

$$L_x = 0.5556945 \cdot L_c[m]^{2.0047077} | L_c \ge 1.67 mm$$

NASA standard breakup model, in Hanada, ibid.

Laser cross-section area vs. area-to-mass ratio

Laser cross-sectional area (projections)

- Maximum: $A_{max} = \pi ab$
- Minimum: $A_{min} = \pi bc$

from: https://commons.wikimedia.org/wiki/File: Ellipsoide.svg CC-BY-SA-4.0, author: Ag2gaeh

Space debris cross-sectional area A, [cm²]

Space debris cross-sectional area

NASA standard breakup model, in T. Hanada et al., Adv. Space Res. 44(5): 558 – 567 (2009)

Analytical treatment of momentum scatter for a 1D plate

Target position in a Gaussian beam

• Optimum position:

$$r = 0 \rightarrow \Phi(r) = 2\langle \Phi \rangle, \Delta v \approx 2 \frac{c_m \cdot A \cdot \Phi}{m}$$

• Worst position:

$$r \gg \sigma$$
: $\Phi(r) < \Phi_0, \Delta v \approx 0$

Mean target orientation

- Optimum orientation: $\Delta v \rightarrow \frac{c_m \cdot A \cdot \Phi}{m}$
- Worst orientation: $\Delta v \rightarrow 0$

• Average orientation: $\alpha = 45^{\circ}$

Expedit Upgrade: Temperature-Sensitive Modeling of Repetitive Debris Irradiation

 \rightarrow Interaction of thermo-mechanical coupling and debris temperature

 $\rightarrow c_m(\Phi, T), \eta_{res}(\Phi, T)$ experimental data needed!

 \rightarrow Approximation $c_m(\Phi, T_{init}) = c_m (\Phi + c_p \varrho d(T_{init} - T_0), T_0)$

 \rightarrow Intra-pulse radiative cooldown

 \rightarrow Temperature-dependent material parameters: $c_p(T)$, $\varrho(T)$, $\varepsilon(T)$

