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Abstract—This paper proposes a novel azimuth-range decouple
based L1 regularization imaging approach for the focusing in Ter-
rain Observation by Progressive Scans (TOPS) synthetic aperture
radar (SAR). Due to conventional L1 regularization technique
requires transferring the two-dimensional (2-D) echo data into
a vector and reconstructing the scene via 2-D matrix operations
leading to significantly more computational complexity, it very
difficult to apply in high-resolution and wide-swath SAR imaging,
e.g., TOPS. The proposed method can achieve azimuth-range
decouple by constructing an approximated observation operator
to simulate the raw data, the inverse of matching filtering (MF)
procedure, which makes large-scale sparse reconstruction, or
called compressive sensing (CS) reconstruction of surveillance
region with full- or down-sampled raw data in TOPS SAR
possible. Compared to MF algorithm, e.g., extended chirp scaling-
baseband azimuth scaling (ECS-BAS), it shows huge potential
in image performance improvement. While compared with con-
ventional L1 regularization technique, it significantly reduces
the computational cost, and provides similar image features.
Furthermore, this novel approach also can obtain a non-sparse
estimation of considered scene retaining a similar background
statistical distribution as MF based image, which can be used
to the further application of SAR images with precondition
being a preserving image statistical properties, e.g., constant false
alarm rate detection (CFAR). Experimental results along with a
performance analysis validate the proposed method.

Index Terms—Synthetic aperture radar (SAR), terrain obser-
vation by progressive scans (TOPS), extended chirp scaling (EC-
S), baseband azimuth scaling (BAS), azimuth-range decouple, L1

regularization, complex approximated message passing (CAMP).
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IN modern synthetic aperture radar (SAR) processing [1],
wide-swath imaging is one of the most important devel-

opment trends which has been commonly used in marine
monitoring, ship detection, etc. Terrain Observation by Pro-
gressive Scans (TOPS) is a novel wide-swath SAR imaging
mode which increases the swath by periodically switching the
incidence angle of antenna among different subswaths from
near to far range [2], [3]. Compared to ScanSAR [4], the other
typical wide-swath mode, TOPS can overcome the problems
of scalloping and azimuth varying signal-to-ambiguity ratio
efficiently through steering the antenna mechanically or elec-
tronically in the along-track direction [5].

Chirp scaling [6], [7] is a well-known matching filtering
(MF) based SAR focusing algorithm, which can obtain high-
resolution SAR image without using interpolation operation,
and hence has been widely used in Stripmap [8], [9] and
Spotlight [10], [11] modes. In 1996, Moreira et al. have
developed an extended chirp scaling (ECS) algorithm [12] for
ScanSAR imaging by achieving azimuth scaling with Spectral
Analysis (SPECAN) technique [13], and further applied ECS
to Stripmap [12] and Spotlight [14] SAR successfully. For
TOPS, Prats et al. proposed a baseband azimuth scaling
(BAS) algorithm in 2010 [5], which extends the conventional
ECS approach, utilizes the sub-aperture technique to resolve
the aliased Doppler spectra without interpolation, and hence
obtains high-resolution TOPS SAR image. In these years,
several algorithms have been proposed and show exciting
performance in raw data processing of TOPS [15]- [20]. Gen-
erally, above-mentioned existing TOPS SAR imaging methods
are computationally efficient, but may suffer severely from
clutter and sidelobes, which restrict their application in target
identification, feature extraction, etc.

Compressive sensing (CS) [21], [22], an important devel-
opment in sparse signal processing, was proposed by Donoho
et al. in 2006. CS theory shows that, if measurement matrix
satisfies some conditions, e.g., restricted isometry property
(RIP) [23], original sparse signals can be recovered from
far less samples than the well-known Shannon-Nyquist sam-
pling theory requires [24], [25]. Baraniuk and Steeghs first
introduced CS to radar imaging in 2007 [26]. Then sparse
reconstruction was widely used and led to promising results
in radar signal processing, e.g., synthetic aperture radar to-
mography (TomoSAR) [27], inverse synthetic aperture radar
(ISAR) [28], and multiple input multiple output (MIMO)
[29]. Certainly, sparse signal processing technique also can be
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applied to SAR imaging. In 2012, Zhang et al. demonstrated
this combination, called sparse microwave imaging, and recon-
structed the surveillance region by solving a Lq (0 ≤ q ≤ 1)
regularization problem [30]. Then Çetin et al. summarized
the development of sparsity-driven SAR imaging in 2014
[31]. Compared to MF based SAR imaging techniques, it
can improve the recovered image quality efficiently [32].
However, due to azimuth and range directions are coupled in
raw data domain, conventional Lq regularization methods need
to transfer the two-dimensional (2-D) raw data into a vector
before reconstruction, which is time-consuming and produces
significant computational complexity, hence is very difficult to
apply in practical large-scale imaging. To solve this problem,
Zhang et al. proposed an azimuth-range decouple based Lq
regularization SAR imaging idea to reduce the computational
cost [30], and applied this concept to Stripmap and ScanSAR
imaging successfully [33], [34]. This method decouples az-
imuth and range couple by constructing an approximated
observation operator to simulate the raw data, the inverse of
MF procedure, and hence relieves the computational pressure
compared with conventional Lq regularization technique.

Complex approximated message passing (CAMP), a L1

regularization recovery algorithm, was proposed by Maleki et
al. [35]- [37]. Compared to other Lq regularization recovery
algorithms, e.g., iterative thresholding algorithm (ITA) [38],
orthogonal matching pursuit (OMP) [39], CAMP can not
only obtain a sparse image of considered scene, but also a
non-sparse estimation of surveillance region with background
statistical properties similar to the MF based result, and hence
can be used for further application of S AR image which
precondition is the preserving image statistical distribution,
e.g., constant false alarm rate (CFAR) detection [37].

In this paper, the main constructions are that we propose a
novel azimuth-range decouple based L1 regularization TOPS
SAR imaging mechanism, and successfully apply it to the
large-scale sparse reconstruction of considered scene from raw
data. In the proposed method, we use the echo simulation
operator constructed based on ECS-BAS algorithm to replace
the exact observation (measurement matrix) in convention-
al L1 regularization based TOPS SAR imaging, where the
construction of a high dimensional measurement matrix can
be avoided, and then utilize the CAMP algorithm to recover
the considered scene from the observations by means of the
constructed echo simulation operator. For clarity, the proposed
method is denoted as L1-ECS-BAS-CAMP. Compare to MF
based imaging approaches, the proposed method can improve
the image performance efficiently, e.g., sidelobes reduction,
clutter suppression, and down-sampling reconstruction for s-
parse scene. While compared to conventional L1 regularization
recovery technique, it can significantly reduce computational
cost, and achieve similar recovered image quality. This method
makes large-scale regularization reconstruction, or called CS
reconstruction, of surveillance region in TOPS SAR with full-
or down-sampled raw data become possible. In addition, since
CAMP recovered non-sparse image preserves the background
statistical distribution as MF based result, thus it can be further
used for the image statistical property based applications.

The rest of this paper is organized as follows. Section II

Fig. 1. TOPS SAR imaging geometry.

provides a brief introduction of ECS-BAS algorithm. Then
conventional L1 regularization based TOPS SAR imaging
scheme along with a CAMP iterative recovery for one-
dimensional (1-D) signal are demonstrated in Section III.
Section IV presents the proposed method detailedly form mod-
el construction, azimuth-range decouple principle, algorithm
derivation, parameter setting, to computational cost analysis.
Section V provides the experimental results based on simulated
data along with a comprehensive performance analysis in
Section VI. The reconstruction of non-sparse scene is shown
in Section VII. And conclusions are draw in Section VII with
several useful remarks.

II. EXTENDED CHIRP SCALING-BASEBAND AZIMUTH
SCALING

As shown in Fig. 1, TOPS SAR exploits the burst working
mechanism. Thus the baseband echo data y (η, τ) at time (η, τ)
can be expressed as

y (η, τ) =

∫∫
(p,q) ∈ Cb

x (p, q) · rect
(
η

Tb

)

· ωa

(
(η − p/vr)− ηc (η)

Tobs

)
· exp

{
−j 4π

λ
r

}
· s
(
τ − 2r

c

)
dpdq. (1)

The meaning of parameters are as follows.

η Azimuth time

τ Range time

p Target azimuth position, 1 ≤ p ≤ NP
q Target ground range position, 1 ≤ q ≤ NQ
x (p, q) Backscattered coefficient at point (p, q)

λ Wavelength

ωa (·) Antenna azimuth weighting

c Light speed
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vr Platform velocity

Tb Burst duration

Tobs Signal cycle period

ηc (η) Beam center crossing time

s (τ) Transmitted pulse signal

Hr Relative altitude of platform

r Slant range with

r (p, q, η) =

√
Hr

2 + q2 + (p− vrη)2

In BAS [5], the data should be divided in several subaper-
tures whose size satisfy

Tsub 6
PRF −Ba

krot
(2)

where Ba is the processed azimuth bandwidth, and krot is the
instantaneous Doppler centroid varying rate. Then the echo
data in (1) of one point target can be rewritten as

y (η, τ) = x (p, q) · rect
(
η

Tb

)
· rect

(
η − ηsub
Tsub

)
· ωa

(
(η − p/vr)− ηc (η)

Tobs

)
· exp

{
−j 4π

λ
r

}
· s
(
τ − 2r

c

)
(3)

where ηsub = p/vf with vf being the footprint velocity.
Let operatorR (·) indicate the ECS-BAS imaging procedure

[5], [12], which flow diagram is depicted in the upper row of
Fig. 2. The definition of several operators used in ECS-BAS
are listed as following.

Fr Range Fourier transform

Fa Azimuth Fourier transform

F−1
r Range inverse Fourier transform

F−1
a Azimuth inverse Fourier transform

Γsub Sub− aperture division
Γsum Sub− aperture recombination
Θ1 Chirp scaling operation matrix

Θ2 RCMC, SRC, Range compression

operation matrix

Θ3 Phase correction operation matrix

Θ4 Replace hyperbolic azimuth phase with

quadratic phase operation matrix

Θ5 De− rotation operation matrix
Θ6 Azimuth compression and weighting

operation matrix

Θ7 Phase preservation operation matrix

In ECS-BAS, after sub-aperture division, using chirp signal
as the transmitted pulse s (τ), chirp scaling operation matrix
Θ1, bulk range cell migration correction (RCMC), secondary
range compression (SRC), and range compression operation
matrix Θ2, and phase correction operation matrix Θ3 can be
represented as

Θ1 (fη, τ) =

exp

jπKs (fη; rref)C (fη)

τ − τref

D
(
fη,Vrref

)
2


(4)

Θ2 (fη, fτ ) = exp

{
jπ

f2
τ

Ks (fη; rref) · [1 + C (fη)]

}

· exp

{
j4π

rrefC (fη)

cD (fηref , Vrref)
fτ

}
(5)

Θ3 (fη, τ) =

exp

{
−jπKs (fη, rref) [1 + C (fη)]Cs (fη)

D2 (fηref , Vrref)
(τ − τref)

2

}
(6)

where fη and fτ are the azimuth and range frequency, respec-
tively; rref is the reference slant range; τref is the range time
corresponding to rref ; r0 is the nearest range; f0 = c/λ is the
carrier frequency; and Ks (fη; rref) is the modified modulation
rate of chirp signal which can be expressed as

Ks (fη; r) =
Kr

1−Kr
cr0f2

η

2V 2
r f

3
0D

3(fη,Vr)

(7)

with

D (fη, Vr) =

√
1−

(
fηλ

2Vr

)2

(8)

and the chirp scaling factor C (fη) being

C (fη) =
D (fηref , Vrref)

D (fη, Vrref)
− 1. (9)

After above three operations, BAS will replace the hyperbolic
azimuth phase with a quadratic phase by using

Θ4 (fη, τ) = exp

{
j4π

r0f0D (fη, Vr)

c

}
· exp

{
−jπ fη

2

Kscl

}
(10)
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Fig. 2. Flow diagram of the proposed L1-ECS-BAS-CAMP TOPS SAR imaging method.

where the scaling Doppler rate is

Kscl = −
2v2
rref

λrscl(r0)
(11)

where vrref is the effective velocity at reference range, rscl(r0)
is a function of slant range r0 with r0 =

√
H2 + q2. Due

to the time at scene center is zero, the demodulation can be
performed based on the following de-rotation function

Θ5 (η, r0) = exp
{
−jπKrot (r0) η

2
}

(12)

with Krot (r0) = −2v2
r

/
λrrot(r0).

In the next, the individual subapertures will be assembled.
At this time, the effective chirp rate will be changed from
Krot (r0) to Keff (r0) = Kscl (r0) − Krot (r0). After above
operations, azimuth compression and weighting will be done
based on the matrix

Θ6 (fη, r0) = W (fη) · exp
{
jπ

1

Keff
f2
η

}
(13)

with W (fη) being the weighting function. Finally, matrix

Θ7 (η, r0) =

exp

{
−jπ

2v2
rref

λ (rrot(r0)− rscl(r0))
·
(
1− rscl0

rrot0

)2

· η2

}
(14)

is used for phase preserving, where rrot0 is the distance to
the rotation center which has a fixed value when the scaling
range equals to the range of target, and rslc0 is a scaling range
decided by the azimuth sampling. The scaling vector rscl(r0)
and rotation vector rrot(r0) satisfy

rscl(r0) =
rscl0

rrot0
rrot(r0) (15)

and

rrot(r0) =
rrot0 − r0

1− rscl0/rrot0
. (16)

After performing above operations based on Θ1 ∼ Θ7, we
can obtain the focused TOPS SAR image.

III. CAMP FOR L1 REGULARIZATION BASED TOPS SAR
IMAGING

In this section, we focus on the conventional L1 regu-
larization based TOPS SAR imaging including the general
formalization of imaging model, with detailed introduction of a
CAMP iterative algorithm for L1 regularization reconstruction.

A. TOPS SAR Imaging Model

We assume the surveillance region is rectangular, with NP
pixels in azimuth and NQ pixels in range, and characterize a
point by its 2-D index (p, q). Let X denote a NP ×NQ matrix
whose (p, q) entry is x (p, q), and x = vec (X) ∈ CN×1,
where the operation vec (·) stacks the columns one after the
other. Let bac represents the floor of a nonnegative real number



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, JANUARY 2017 5

a. For 1 ≤ n ≤ N with N = NP ×NQ, define

pn = b(n− 1)/NP c+ 1

qn = n− (pn − 1)NP . (17)

The nth entry of x is then x (pn, qn).

According to the imaging model (1), we discrete the time
series as Tm (m = 1, 2, · · · ,M). Let Y ∈ CNη×Nτ represent
the 2-D echo data, and y = vec (Y) ∈ CM×1 with M =
Nη ×Nτ . Thus we can obtain the discretized model as

y =

M∑
m=1

N∑
n=1

H (m,n)x (pn, qn) (18)

where TOPS SAR observation matrix H ∼= {H (m,n)}M×N
represents the imaging geometry relationship between radar
and surveillance region, which can be expressed as

H (m,n) =

∫∫
(η,τ)∈Tm

rect
(
η

Tb

)
· ωa

(
(η − p/v)− ηc (η)

Tobs

)

· exp

{
−j 4π

λ
r

}
· s
(
τ − 2r

c

)
dηdτ. (19)

Therefore, TOPS SAR imaging model of one burst without
down-sampling can be rewritten as

y = Hx + n0 (20)

where n0 ∈ CM×1 is the noise vector. Let Ψ ∼= {ψm} ∈
CL×M , L ≤ M denote the sampling matrix, then the down-
sampled 1-D echo data yd ∈ CL×1 is

yd = ΨHx + n0 = Φx + n0 (21)

where Φ ∼= {φ (l, n)}L×N is the 1-D Lq regularization based
SAR imaging measurement matrix which can be expressed as

φ (l, n) =

∫∫
(η,τ)∈Tm

rect
(
η

Tb

)
· ωa

(
(η − p/v)− ηc (η)

Tobs

)

· exp

{
−j 4π

λ
r

}
· s
(
τ − 2r

c

)
· ψm (η, τ) dηdτ.

(22)

If L =M , then Ψ is an identity matrix, i.e., there is no down-
sampling for the echo data.

In TOPS, the rotation of antenna will reduce the observation
time of target. Therefore, we have ‖p‖ ≤ Tsvr with

Ts = (ωrTb + λ/La)
√
H2 + q2

/
vr + Tb (23)

where ωr is the antenna rotation rate, and La is the antenna
size. In Ts, only the targets in

[
−Tse2 , Tse2

]
with Tse = Ts −

2 λ
La

r
vr

have the all-aperture echo data and can be achieved
regularization reconstruction based on the imaging model (21).

B. L1 Regularization Reconstruction

Since (21) is an under-determined linear system when L <
M , if x is sparse enough and Φ satisfies RIP condition [23],
then we can recover the considered scene x by solving the
Lasso [40], a kind of L1 regularization problem as

x̂ = argmin
x

{
1

2
‖yd −Φx‖22 + ζ‖x‖1

}
(24)

where ζ is the regularization parameter. After above recovery,
x should be reshaped back into a matrix representing the
backscattering of 2-D considered scene.

The optimization problem argmin
x

{
1
2 ‖v − x‖22 + ζ‖x‖1

}
has a closed form solution

β (v; ζ)
∆
= (|v| − ζ) · ej ·angle(v) · 1 (|v| > ζ) (25)

where 1 (·) is the indicator factor, angle (·) indicates the
phase of a complex number, and β (·; ζ) is the complex soft
thresholding function applied component-wise to the input
element v.

C. CAMP Iterative Algorithm

L1 regularization problem can be solved efficiently by
several algorithms, e.g., ITA. However, in SAR imaging, these
existing algorithms will not obtain an image that preserves the
background statistical properties as MF result, which restrict
the further application of the regularization reconstruction
SAR image, e.g., CFAR detection. CAMP introduces a “state
evolution” (SE) term which represents the evolution of the
“noise” standard deviation as the iteration proceeds, and pro-
duces sparse and non-sparse (noisy) estimations of considered
scene at the same time [36]. Thus, not only can we obtain a
sparse solution of the considered scene as other regularization
recovery algorithms, but also a non-sparse image with similar
background distribution as MF recovered result. The CAMP
iterative recovery algorithm used to solve the L1 regularization
problem (24) is detailed in Table I, where µ is the iterative
parameter, σt is the standard deviation of the “noise” vector,

z(t) ∆
= x̃(t) − x (26)

with x̃(t) being the non-sparse estimation of the considered
scene x at tth iteration.

∣∣x̃(t+1)
∣∣
k+1

denotes the k+ 1 largest
component of

∣∣x̃(t+1)
∣∣ with k = ‖x‖0. δ is the down-sampling

ratio with δ = L/N , 〈·〉 is the average operator, βR and βI

are the real and imagery part of complex soft thresholding
function, β, and ∂βR

∂xR
and ∂βI

∂xI
are the partial derivative of

βR and βI with respect to the real and imagery part of input
element, respectively.
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TABLE I
CAMP ALGORITHM FOR L1 REGULARIZATION BASED TOPS SAR IMAGING

Input:- Down-sampled echo data yd, Measurement matrix Φ

Initial: x̂(0) = 0, w(0) = yd

Iterative parameter µ, Error parameter ε, Maximum iterative step Tmax

Iteration: While t ≤ Tmax and Residual >ε

Step1: x̃(t+1) = ΦHw(t) + x̂(t)

Step2: σt+1 =
∣∣∣x̃(t+1)

∣∣∣
k+1

Step3: w(t+1) = y − Φx̂(t) + w(t) 1

2δ

(〈
∂βR

∂xR

(
x̃(t+1);µσt+1

)〉
+

〈
∂βI

∂xI

(
x̃(t+1);µσt+1

)〉)
Step4: x̂(t+1) = β

(
x̃(t+1);µσt+1

)
Step5: Residual =

∥∥∥x̂(t+1) − x̂(t)
∥∥∥

2

Step6: t = t+ 1

end

Output: Reconstructed sparse image x̂ = x̂(t+1)

Reconstructed non-sparse image x̃ = x̃(t+1)

IV. ECS-BAS BASED AZIMUTH-RANGE DECOUPLE L1

REGULARIZATION TOPS SAR IMAGING VIA CAMP
(L1-ECS-BAS-CAMP)

In this section, using ECS-BAS algorithm depicted in Sec-
tion II as the imaging operator R (·), we propose and derive
a CAMP based azimuth-range decouple L1 regularization
TOPS SAR focusing mechanism, and demonstrate it from
model construction, iterative recovery, parameter setting, to
computational cost analysis in detail.

A. Model

Similar to 1-D imaging in Section III, we can write the 2-D
TOPS SAR imaging model without down-sampling as

Y = AX (27)

where Y ∈ CNη×Nτ is the 2-D echo data; X ∈ CNP×NQ is
the backscattered coefficient of the surveillance region; and A
is the TOPS SAR radar system observation matrix constructed
based on (1) and TOPS imaging geometry. After performing
down-sampling of Y, and considering the existing of noise
N0, down-sampled 2-D echo data Yd can be expressed as

Yd = Ξ ◦Y = Ξ ◦ (AX) + N0 (28)

where operation ◦ is the Hadamard product, Ξ ∈ RNη×Nτ is
the binary down-sampling matrix, which represents the sparse
sampling strategy of Y.

B. Principle of L1-ECS-BAS-CAMP

According to the model in (28), we can achieve the L1

regularization reconstruction of considered scene by solving
the optimization problem

X̂ = argmin
X

{
1

2
‖Yd − Ξ ◦ (AX)‖2F + γ ‖X‖1

}
(29)

where X̂ is the L1 regularization recovered backscattered
coefficient of 2-D considered scene, ‖·‖F is the Frobenius
norm of a matrix, and γ is the regularization parameter.

It should be noted that, since TOPS SAR imaging obser-
vation matrix A could not be constructed directly based on
the relationship between 2-D echo data Y and backscattered
coefficient X, thus we can not achieve the regularization
reconstruction of considered scene by solving the optimization
problem (29). An alterative method is introduced in Section III.
However, its computational cost is unacceptable in the practi-
cal processing of huge raw data. Therefore, if we want to use
regularization technique to recover the large-scale surveillance
region, azimuth-range decouple is essential so as to reduce the
computational complexity and memory occupation efficiently.

In TOPS, conventional MF based imaging procedure R (·),
e.g., ECS-BAS introduced in Section II, can be expressed as

XMF = R (Y) . (30)

After introducing the exact observation model (27) to (30), the
relationship between backscattered coefficient of considered
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scene X and MF recovered image XMF can be written as

XMF = R (Y) = R (AX) . (31)

It is known that XMF is always the approximation of X
because of the existing of artifacts, e.g., sidelobes, noise.
Therefore, for the relationship shown in (31), if RA ≈ I,
then we can use the inverse of R, i.e., R−1 to approximate
A. Based on this, the basic idea of azimuth-range decouple is
replacing the radar observation matrix A with an approximated
observation operator, or called echo simulation operator, which
performs the transformation from complex reflectivity image
to original echo data, This principle can be generalized as

M (X) = R−1 (X) ≈ AX (32)

with M (·) being the echo simulation operator, which is an
approximation of radar observation matrix A.

After above replacement, we can rewrite the optimization
problem in (29) of L1 regularization TOPS SAR imaging as

X̂ = min
X

{
1

2
‖Yd − Ξa ◦ M (X) ◦ Ξr‖2F + γ ‖X‖1

}
(33)

where Ξa ∈ RNr×Nτ and Ξτ ∈ RNη×Nτ are the binary matrix
which denote the down-sampling strategy in azimuth and range
directions, respectively.

C. Iterative Recovery of L1-ECS-BAS-CAMP

As shown in Fig. 2, the ECS-BAS TOPS SAR imaging
procedure R (·) can be expressed as

R (Y) = F−1
a

(
FaΓsum

[
F−1
a (FaΓsub [Y] ◦Θ1Fr

◦ Θ2F
−1
r ◦Θ3 ◦Θ4

)
◦Θ5

]
◦Θ6

)
. (34)

As above discussion, we know that echo simulation operator
M (·) is the inverse of R (·). Thus, according to the procedure
shown in (34), we can write M (·) as (see Fig. 2)

M (X) = Γsub
[
F−1
a

(
FaΓsum

[
F−1
a

(
FaX ◦ΘH

6

)
◦ΘH

5

]
◦ ΘH

4 ◦ΘH
3 Fr ◦ΘH

2 F−1
r ◦ΘH

1

)]
(35)

where symbol (·)H is the conjugate transpose operation. Due
to R (·) and M (·) in (34) and (35) are reversible operators
for each other, thus for the considered scene X, we have

X = R (M (X)) . (36)

Similar to 1-D reconstruction shown in Table I, in the
following, we will derive the 2-D matrix operation based

CAMP iterative recovery algorithm to solve the optimization
problem (33). Firstly, we initialize the reconstructed sparse
and non-sparse estimations of considered scene as X̂(0) = 0
and X̃(0) = 0, respectively; and the echo data matrix as
W(0) = Yd. For t th step, non-sparse image is estimated as

X̃(t+1) = R
(
ΞT
a ◦W(t) ◦ΞT

r

)
+ X̂(t). (37)

After adaptively setting σt+1 as σt+1 =
∣∣∣X̃(t+1)

∣∣∣
k+1

, we will
update the echo data by using

W(t+1) = Yd − Ξa ◦M
(
X̂(t)

)
◦Ξr + W(t) 1

2δ

·
(〈

∂βR

∂xR

(
X̃(t+1);µσt+1

)〉
+

〈
∂βI

∂xI

(
X̃(t+1);µσt+1

)〉)
(38)

and then recover the sparse image X̂(t+1) by means of

X̂(t+1) = β
(
X̃(t+1);µσt+1

)
. (39)

If condition
∥∥∥X̂(t+1) − X̂(t)

∥∥∥
F

/∥∥∥X̂(t)
∥∥∥
F

6 ε or t = Tmax
satisfies, with ε being a constant error parameter, above
iteration will be stopped, and outputs the final reconstructed
sparse and non-sparse images of considered scene as

X̂ = X̂(t+1)

X̃ = X̃(t+1). (40)

Otherwise, let t = t+ 1, the iteration will be continued.
After above regularization recovery, operation matrix Θ7

will be used to perform phase compensation as

X̂ = X̂ ◦ Θ7

X̃ = X̃ ◦ Θ7. (41)

D. Parameter Employed

The meaning of several components in the proposed L1-
ECS-BAS-CAMP method are shown as following.

1) The “noise” matrix, Z(t) is defined as

Z(t) ∆
= X̃(t) − X. (42)

2) σt is the standard deviation of Z(t), and σ∗ = lim
t→∞

σt.
In practical TOPS SAR imaging, the noise and clutter
distributions are unknown, so we use σt =

∣∣∣X̃(t)
∣∣∣
k+1

as
an estimation of σt in this paper.

3) Regularization parameter, γ, should be chosen to satisfy

0 < γ ≤ ‖XMF ‖1 (43)
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where XMF is the recovered image of MF based TOPS
SAR imaging algorithm.

4) The set of iterative parameter µ relies on σ∗ and γ.
CAMP algorithm and Lasso problem are connected
through the relationship between µ and γ. According
to the analysis in [36], if µ satisfies

γ , µσ∗

(
1− 1

2δ
E
(〈

∂βR

∂xR
(XMF ;µσ∗)

〉
+

〈
∂βI

∂xI
(XMF ;µσ∗)

〉))
(44)

then CAMP with iterative parameter µ can be used
to solve the Lasso problem with regularization pa-
rameter γ. Where E (·) is the expectation operator. In
L1-ECS-BAS-CAMP, we set σ∗ = |XMF |k+1, and
γmax=‖XMF ‖1, to estimate the upper bound of µ as
µmax through (44).

E. Computational Cost

Let I denote the required iterative steps of accurate recovery,
M = Nη ×Nτ and N = NP ×NQ. Then the compu-
tational complexity of conventional ECS-BAS algorithm is
CECS−BAS = O (M log (M)). For each iteration of the
proposed method, its computation includes two main parts,
the calculations of an inverse ECS-BAS and a ECS-BAS
procedure, which has complexity of O (M log (M)), and a
decouple thresholding operation with complexity O (N). Thus
the total computational complexity of L1-ECS-BAS-CAMP is
of the order CPro = O (IM log (M)). For conventional L1

regularization method, as discussed in Section III, it needs to
transfer the 2-D echo data into a vector and reconstruct the
considered scene via 2-D matrix operations for every image
point in turn, which complexity reaches CL1 = O (IMN).
This is unacceptable for large-scale TOPS SAR imaging.
Compared to conventional L1 regularization approach, the
accelerated rate of the proposed method is approximately

rC =
CL1

CPro
= O

(
N

log (M)

)
. (45)

In memory occupation, since L1-ECS-BAS-CAMP only
needs to storage the input, output and several matrices shown
in Fig. 2, its memory requirement is only around MPro =
O (N) bytes which at the same order as ECS-BAS. In compar-
ison, since conventional L1 regularization method performs the
sparse reconstruction based on a measurement matrix which
size is M×N , and hence its memory occupation is extremely
large, approximately ML1 = O (MN) bytes.

Above analysis shows that compared to conventional L1

regularization approach, the proposed method reduces the
computational complexity and memory occupation to the same
order as ECS-BAS based TOPS SAR imaging algorithm,
and hence makes regularization reconstruction of large-scale
considered scene in TOPS become possible.
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Fig. 3. Surveillance region in the simulation (in dB).

TABLE II
SIMULATION PARAMETERS

Parameter Value
Carrier frequency 9.65 GHz

Azimuth beamwidth (3 dB) 0.36o

Platform effective velocity 7200.00 m/s

Platform height 500.00 km

Mean lookangle 30.00o

System PRF 3456.00 Hz

Antenna length 5.00 m

Azimuth beam rotation rate 5.00o/s

Burst duration 0.40 s

Transmitted pulse duration 5.00 µs

Transmitted pulse bandwidth 15.00 MHz

Sampling frequency 20.00 MHz

V. EXPERIMENTAL RESULT AND DISCUSSION VIA
SIMULATED DATA

In this section, we perform several experiments based on
the simulated data along with a discussion to validate the
proposed method. As shown in Fig. 3, ten point targets located
on the different positions are set as surveillance region. The
size of surveillance region is (3890 m (Range) × 23080 m
(Azimuth)). Simulation parameters are listed in Table II. All
experiments will be conducted on a workstation of 8-core
2.20-GHz Inter Core i5-5200U CPU with 16 GB memory.
The algorithms are implemented in Matlab 2013a. Since the
restriction of memory requirement and computational time, in
the experiments, we only use the ECS-BAS recovered images
as comparison to illustrate the validity of L1-ECS-BAS-CAMP
in the image performance improvement. To demonstrate the
experimental results intuitively and clearly, three point targets,
called T1, T2, and T3 (see Fig. 3), are chosen as the example to
validate L1-ECS-BAS-CAMP. The relative location (reference
is the center of surveillance region) of T1, T2, and T3 are (-
1125 m (Range) × -7700 m (Azimuth)), (0 m (Range) × 0 m
(Azimuth)), and (1125 m (Range) × 7700 m (Azimuth)).
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Fig. 4. Contour plots of three point targets (in dB). (a) T1 (ECS-BAS). (b)
T1 (L1-ECS-BAS-CAMP (Sparse image)). (c) T2 (ECS-BAS). (d) T2 (L1-
ECS-BAS-CAMP (Sparse image)). (e) T3 (ECS-BAS). (f) T3 (L1-ECS-BAS-
CAMP (Sparse image)).

A. Sidelobe Suppression

Fig. 4 is the contour plots of T1, T2, and T3 reconstructed
by ECS-BAS (Left column) and the proposed L1-ECS-BAS-
CAMP (sparse image) (Right column) algorithms, respective-
ly. In order to validate the effect of sidelobe suppression of
L1-ECS-BAS-CAMP clearly, we didn’t add any noise and
clutter to the simulated echo data of point targets. Fig. 4 shows
that both methods can recover three point targets accurately,
while L1-ECS-BAS-CAMP can reduce sidelobes efficiently,
regardless of azimuth or range direction, even remove side-
lobes completely (range direction in Fig. 4(f)). However, it
should be noted that these results were obtained in an ideal
condition, i.e., signal to clutter and noise ratio SCNR =∞. In
practical TOPS SAR imaging, we could not expect to achieve
such perfect suppression.

B. Noise and Clutter Suppression

In this simulation, to perform meaningful comparisons, we
artificially introduced some noise and clutter to the simulated
echo data of surveillance region. Real part of the simulated

(a) (b)

Fig. 5. Real part of the simulated echo data (a) before and (b) after adding
noise and clutter.
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Fig. 6. Contour plots of point targets based on the simulated echo data with
noise and clutter (in dB). (a) T1 (ECS-BAS). (b) T1 (L1-ECS-BAS-CAMP
(Sparse image)). (c) T2 (ECS-BAS). (d) T2 (L1-ECS-BAS-CAMP (Sparse
image)). (e) T3 (ECS-BAS). (f) T3 (L1-ECS-BAS-CAMP (Sparse image)).

TOPS SAR echo data before and after adding noise and
clutter is shown in Fig. 5. Fig. 6 is the contour plots of three
selected point targets recovered by ECS-BAS (Left column)
and L1-ECS-BAS-CAMP (sparse image) (Right column) via
the echo data with noise and clutter. Compared to ECS-
BAS, we can see that the proposed method suppresses noise
and clutter efficiently and recovers the position of all point
targets accurately. To evaluate the noise and clutter suppression
ability of L1-ECS-BAS-CAMP quantitatively, we introduce
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Fig. 7. Contour plots of three point targets based on 50% and 25% random down-sampled simulated echo data (in dB). From left to right: ECS-BAS with 50%
echo data, L1-ECS-BAS-CAMP with 50% echo data, ECS-BAS with 25% echo data, L1-ECS-BAS-CAMP with 25% echo data. (Upper row) T1. (Middle
row) T2. (Lower row) T3.

the target-to-background ratio (TBR) [41]

TBR(X)
∆
= 20 log10

 max(p,q)∈T

∣∣∣(X)(p,q)

∣∣∣
(1/NB)

∑
(p,q)∈B

∣∣∣(X)(p,q)

∣∣∣

(46)

where T indicates the target area, which is surrounded by
the background region, B whose number of pixels is NB.
Quantitative analysis of noise and clutter suppression with
TBR is shown in Table III. Its result accords with the visual
representation in Fig. 6, i.e., L1-ECS-BAS-CAMP significant-
ly outclasses ECS-BAS in noise and clutter suppression, and
reduces TBR approximately 40 dB, which means that nearly
all noise and clutter are removed.

C. Down-sampling Recovery

An advantage of CS is that it can recover the original
sparse signal from far less samples than the sampling theory
requires. Thus, in practical data collection of SAR system, we
can achieve larger swath by reducing the number of sampling

TABLE III
TBR IN THE IMAGES RECONSTRUCTED BY DIFFERENT METHODS

Target Target 1 Target 2 Target 3

ECS-BAS 30.16 dB 30.55 dB 30.85 dB

L1-ECS-BAS-CAMP 70.38 dB 67.86 dB 68.85 dB

points. To demonstrate the validity of our proposed algorithm
in down-sampled echo data based TOPS SAR imaging, we per-
form 50% and 25% random down-sampling for full-sampled
echo data shown in Fig. 5(a), and reconstruct the considered
scene by ECS-BAS and L1-ECS-BAS-CAMP, respectively
(see Fig. 7). Fig. 7 depicts that since the lack of samples,
ECS-BAS could not recover the point targets successfully with
obvious ambiguities and energy dispersion. While L1-ECS-
BAS-CAMP also can reconstruct the considered scene well
with lower sidelobes even only using 25% samples.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Normalized reconstructed images of three point targets (in dB). (a) T1
(ECS-BAS). (b) T1 (L1-ECS-BAS-CAMP (Non-sparse image)). (c) T2 (ECS-
BAS). (d) T2 (L1-ECS-BAS-CAMP (Non-sparse image)). (e) T3 (ECS-BAS).
(f) T3 (L1-ECS-BAS-CAMP (Non-sparse image)).

D. Non-sparse Reconstruction of Surveillance Region

As above discussion of CAMP in Section III and Section
IV, compared to other L1 regularization recovery algorithms,
the superiority of CAMP is that it can obtain both sparse
and non-sparse estimations simultaneously of original signal.
In above simulations, to validate the effectiveness of the
proposed method in performance improvement, the sparse
images recovered by L1-ECS-BAS-CAMP are enough. In this
experiment, Fig. 8 shows the reconstructed non-sparse image
of three point targets (Right column) by the proposed method
along with the results of ECS-BAS (Left column) based on
the simulated echo data shown in Fig. 5(a). Note that the non-
sparse images not only protrude the target as recovered sparse
images, but also retain the background distribution as ECS-
BAS results only with amplitude decreased approximately
50 dB. This characteristic will be very helpful in CFAR [37].

E. Dependence on Iterative Parameter µ

In the proposed method, µ is a parameter controls the con-
vergence speed of iterative algorithm, which should satisfy

0 < µ−1
max ≤ µ−1 ≤ 1. (47)
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Fig. 9. (a) Recovered precision based on RMSE, and (b) computational time
of the proposed method as a function of iterative parameter µ−1.

When µ−1 moves from 0 to 1, the convergence speed of
L1-ECS-BAS-CAMP will increase, while the precision of
recovered solution will decrease. In the experiments of this
subsection, using MF recovered image XMF of considered
scene shown in Fig. 3, we can calculate the maximum value of
γ as γmax = ‖XMF ‖1 = 35.45, and then estimate the upper
bound of µ based on the relationship in (44) as µ−1

max ≈ 0.05.
To give an impression about the impact of iterative parameter
µ on the performance of the proposed method, Fig. 9 shows
the recovered precision and convergence speed of L1-ECS-
BAS-CAMP as a function of µ−1. In Fig. 9(a), we use
relative mean square error (RMSE) as the judging criterion
of recovered precision. It says that the reconstructed accuracy
of L1-ECS-BAS-CAMP is inversely proportional to the value
of µ−1. While the computational time will decrease when
µ−1 moves from 0 to 1 (see Fig. 9(b)). This experimental
result accords with above theoretical analysis. Based on this,
in practical TOPS SAR imaging, the value of µ should be
selected as a compromise between convergence speed and
recovered precision. In this paper, after considering above two
factors, we set µ−1 = 0.5.

VI. PERFORMANCE ANALYSIS

In above theoretical analysis, we know that a main ad-
vantage of L1-ECS-BAS-CAMP is less computational time
and lower memory requirement compared with conventional
L1 regularization based TOPS SAR imaging method, and at
the same order of ECS-BAS algorithm. While it also can
achieve similar performance improvement of SAR images as
L1 regularization technique shown in Table I. In section V,
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Fig. 10. Normalized reconstructed images of simulated point targets (in dB) by (Left column) ECS-BAS, (Middle column) L1-CAMP (Non-sparse image),
and (Right colum) L1-ECS-BAS-CAMP (Non-sparse image), respectively. The size of considered scene is (Upper row) 38 (Range) × 106 (Azimuth) samples
(304 × 848 after interpolation), (Middle row) 126 (Range) × 188 (Azimuth) samples (1008 × 1504 after interpolation), (Lower row) 156 (Range) × 420
(Azimuth) samples (1248 × 3340 after interpolation).

we have validated the effectiveness of the proposed method in
image performance improvement and down-sampling imaging.
In this section, to quantitatively evaluate the proposed method
especially in the decrease of computational cost, we perform
several experiments based on the smaller considered scenes,
and obtain the images by not only ECS-BAS and the proposed
L1-ECS-BAS-CAMP methods, but also the conventional L1

regularization algorithm which has a higher requirement of
computer performance. The simulation parameters are nearly
identical to Table II except for the platform height Hr. In
the experiments, we change the size of considered scene
through setting different value of platform height. For clarity,
the conventional CAMP based L1 regularization TOPS SAR
imaging method shown in Table I is denoted as L1-CAMP.
It should be noted that the images shown in this paper are
plotted after eight times interpolation of recovered results both

in azimuth and range directions. In addition, all quantitative
analysis are performed based on the non-sparse solutions of
L1-CAMP and L1-ECS-BAS-CAMP in this section.

A. Compare with L1-CAMP

Fig. 10 shows the image reconstructed by ECS-BAS, along
with the L1-CAMP and L1-ECS-BAS-CAMP recovered non-
sparse estimations of considered scenes with different sizes
by using full-sampled simulated echo data without any noise
and clutter. From Fig. 10, we can see that no matter what
size of considered scene is set, both L1-CAMP and L1-ECS-
BAS-CAMP algorithms all can suppress sidelobes efficiently
compared with MF based method, ECS-BAS, regardless of
in azimuth or range direction. While L1-ECS-BAS-CAMP
shows a similar ability in image performance improvement as
conventional L1 regularization TOPS SAR imaging technique.
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Fig. 11. Computational cost of ECS-BAS, L1-CAMP, and L1-ECS-BAS-CAMP as a function of scene size. (a) Computational time. (b) Memory occupation.
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Fig. 12. (a) TBR and (b) RMSE of the images reconstructed by L1-CAMP and L1-ECS-BAS-CAMP methods as a function of iterative step t.

B. Analysis of Computational Cost

Fig. 11 depicts the computational cost of ECS-BAS, L1-
CAMP, and L1-ECS-BAS-CAMP methods under different
sizes of considered scene. Fig. 11(a) shows that even if the
scene size is just 242× 1086 ≈ 2.62× 105, we still need 103

seconds to recover the considered scene by using L1-CAMP
algorithm. However, in practical SAR imaging including TOP-
S, the scene size is usually larger than 1024×8192, this means
that L1-CAMP needs more than 12 days to achieve the regular-
ization reconstruction of surveillance region with the working
computer having at least 64 TB memory. This is unacceptable
for the real-time processing. L1-ECS-BAS-CAMP relieves this
pressure well, which reduces the computational time to the
same order as MF algorithm (see Fig. 11(a)). Fig. 11(b) gives
the memory requirement of L1-CAMP and L1-ECS-BAS-
CAMP in TOPS SAR focusing. This result accords with above
theoretical analysis, i.e., the proposed method can reduce the
memory occupation dramatically compared with L1-CAMP. In
addition, we find that no matter for computed time or memory
requirement, the difference between L1-CAMP and L1-ECS-
BAS-CAMP will gradually enlarge as the scene size increases.

C. Recovery Accuracy and Convergence Speed Versus SCNR

In this subsection, we only set one point target located
on the scene center as surveillance region whose size is 138
(Range) × 118 (Azimuth) samples, then artificially introduced
some noise and clutter with SCNR = −5 dB, 0 dB, 5 dB
to the simulated echo data, and reconstructed the consid-
ered scene by L1-CAMP and L1-ECS-BAS-CAMP via full-
sampled echo data, respectively. The definition of SCNR is

SCNR
∆
= 10 log10

(
Pt
Pc

)
(48)

where Pt and Pc are the power of target and the power of
noise and clutter, respectively.

Fig. 12 shows the TBR and RMSE of the recovered
results as a function of iterative step t. We can see that
no matter for TBR or RMSE, all curves of L1-CAMP and
L1-ECS-BAS-CAMP with different SCNRs have a similar
variation tendency, and will be converged to a fixed value
after about 10 iterations. This convergent value is depend-
ed on the value of SCNR. It says that if less noise and
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TABLE IV
PERFORMANCE OF THE RECONSTRUCTED IMAGES UNDER DIFFERENT COMBINATION OF SCNR AND DOWN-SAMPLING RATIO [dB]

SCNR = 10dB δ= 100% δ= 50% δ= 25%

TBR PSLR ISLR TBR PSLR ISLR TBR PSLR ISLR

ECS-BAS 57.01 -13.22 -09.67 43.86 -11.89 -06.03 39.12 -11.17 -03.43

L1-CAMP 80.15 -61.16 -57.03 79.58 -59.91 -53.51 78.28 -59.15 -50.79

L1-ECS-BAS-CAMP 79.73 -61.67 -57.66 78.48 -60.41 -54.12 77.36 -59.62 -51.43

SCNR = 0dB δ= 100% δ= 50% δ= 25%

TBR PSLR ISLR TBR PSLR ISLR TBR PSLR ISLR

ECS-BAS 43.31 -13.27 -09.34 38.05 -14.62 -07.04 34.24 -09.17 -03.01

L1-CAMP 79.47 -61.22 -56.70 77.91 -62.49 -54.28 76.62 -57.74 -50.48

L1-ECS-BAS-CAMP 78.35 -61.72 -57.32 76.92 -62.98 -54.92 75.86 -58.26 -51.15

SCNR = −10dB δ= 100% δ= 50% δ= 25%

TBR PSLR ISLR TBR PSLR ISLR TBR PSLR ISLR

ECS-BAS 24.78 -14.67 -01.73 20.43 -08.42 03.30 19.28 -08.26 03.76

L1-CAMP 70.60 -62.39 -48.62 67.57 -56.39 -44.07 66.64 -56.21 -43.52

L1-ECS-BAS-CAMP 70.46 -62.87 -49.26 67.47 -56.72 -44.53 66.67 -56.45 -43.85

clutter are added to the simulated echo data, higher TBR
and lower RMSE, i.e., a better image performance will be
obtained by means of both L1-CAMP and L1-ECS-BAS-
CAMP methods. In addition, similar to the plots shown in
Fig. 10, the proposed method also suppresses the noise and
clutter efficiently compared to MF based algorithm with T-
BR being 34.02 dB (SCNR = −5 dB), 43.38 dB (SCNR =
0 dB), 51.10 dB (SCNR = 5 dB), while has a similar effect
of image performance improvement as L1-CAMP. In Fig. 12,
we find that when SCNR ≥ −5 dB, considered scene will be
recovered successfully, and the value of SCNR will not influ-
ence the required iterative steps (about 10 in this experiment)
for the convergence of our proposed method. Since each circle
in L1-ECS-BAS-CAMP has a similar computational time, thus
there are nearly no difference in convergence speed of L1-
ECS-BAS-CAMP under different SCNRs. This means that the
existing noise and clutter will not affect the convergent time
of our proposed method. Certainly, above analysis between
SCNR and computational time is also adapt for L1-CAMP.

D. Performance Versus Down-sampling Ratio and SCNR

To comprehensively compare ECS-BAS, L1-CAMP, and our
proposed L1-ECS-BAS-CAMP methods in image performance
improvement, we made several experiments based on the
different combination of down-sampling ratio δ and SCNR,
and use TBR, PSLR, and ISLR as the evaluation criterion of
the reconstructed image quality. Simulated scene is identical
to the last subsection. In order to illustrate our purpose easily
and clearly, without lose of generality, we only performed the
random down-sampling along the azimuth direction based on

the value of δ, and exploited azimuth PSLR and ISLR to
gauge the image quality quantitatively. Table IV shows the
value of TBR, PSLR, and ISLR in the ECS-BAS, L1-CAMP,
and L1-ECS-BAS-CAMP recovered images under different
combination of SCNR and down-sampling ratio. We know that
the down-sampling of echo data will cause the azimuth energy
dispersion in MF results. This phenomenon corresponds to the
increase of ISLR in ECS-BAS recovered images as shown
in Table IV, and finally result in the failed reconstruction.
While regularization based algorithms also can recover the
considered scene accurately even only with 25 % azimuth data
and SCNR = −10 dB. In Table IV, we can see that compared
with ECS-BAS, the proposed method suppresses the noise and
clutter efficiently with decreasing TBR at least 25 dB, reduces
sidelobes dramatically with debasing ISLR more than 45 dB,
and also shows a better robustness. In addition, Table IV
depicts that L1-ECS-BAS-CAMP has a similar effect in image
performance improvement as conventional L1 regularization
imaging technique, no matter what kind of combination of δ
and SCNR is set, which is accorded with the results in Fig. 10.

VII. RECONSTRUCTION OF COMPLICATED SCENE

It is known that conventional L1 regularization SAR imag-
ing technique only can be applied to the recovery of sparse
scene because of the restriction of RIP condition and is not
appropriate for the non-sparse region, e.g., urban area. How-
ever, our proposed azimuth-range decouple L1 regularization
TOPS SAR imaging mechanism introduces a novel idea in the
regularization-based reconstruction of non-sparse surveillance
region via full-sampled echo data, while does not need to
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Fig. 13. Reconstructed image of non-sparse considered scene by different methods. (a) ECS. (b) L1-ECS-BAS-CAMP (Sparse image). (c) L1-ECS-BAS-CAMP
(Non-sparse image).

 

 

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

(a)
 

 

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

(b)
 

 

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

(c)

Fig. 14. Reconstructed image of non-sparse considered scene by different methods. (a) ECS. (b) L1-ECS-BAS-CAMP (Sparse image). (c) L1-ECS-BAS-CAMP
(Non-sparse image).

TABLE V
TBR IN THE RECOVERED IMAGE OF NON-SPARSE CONSIDERED SCENE

Region Region 1 Region 2 Region 3

ECS-BAS 27.90 dB 29.32 dB 26.31 dB

L1-ECS-BAS-CAMP (Sparse image) 36.00 dB 35.04 dB 34.63 dB

L1-ECS-BAS-CAMP (Non-sparse image) 35.95 dB 35.02 dB 34.57 dB

consider the scene sparsity. To validate this, in this section,
we set two complicated scenes as the simulated observed
regions which points’ position and amplitude are set based on
the real TerraSAR-X Spotlight SAR image data. Simulation
parameters are identical to Table I.

Fig. 13 and Fig. 14 show the recovered image of two
simulated non-sparse scenes (urban area) by using ECS and
L1-ECS-BAS-CAMP algorithms, respectively. Fig. 13(b) and
Fig. 14(b) are the sparse estimations, while Fig. 13(c) and
Fig. 14(c) are the non-sparse solutions of our proposed
method. Experimental results depict that the proposed method
also recovers the non-sparse urban surveillance region well,
and suppresses sidelobes and clutter efficiently. In addition,
it can be seen that the sparse and non-sparse solutions of
L1-ECS-BAS-CAMP have a similar image features. Let us
consider three regions indicated by the cyan rectangles in
Fig. 13. TBR of these regions are shown in Table V, which
results validate the effectiveness of L1-ECS-BAS-CAMP in
noise and clutter suppression not only for sparse scenes as
above discussion, but also for non-sparse surveillance regions.

VIII. CONCLUSION

This paper proposed a novel azimuth-range decouple based
L1 regularization TOPS SAR imaging mechanism, and suc-
cessfully applied it to the sparse reconstruction of large-scale
considered scene from raw data. In the proposed method, we
first exploit the echo simulation operator constructed based
on ECS-BAS to replace the exact observation matrix in
conventional L1 regularization based TOPS SAR imaging so
as to decouple the azimuth-range couple in raw data, and then
reconstruct the considered scene by means of CAMP algo-
rithm. Compared to MF based TOPS SAR imaging technique,
e.g., ECS-BAS, L1-ECS-BAS-CAMP provides the improved
image performance like significant sidelobes and clutter sup-
pression, and shows a better down-sampled data based imaging
ability. Compared with conventional L1 regularization tech-
nique, since it decouples azimuth-range couple well, L1-ECS-
BAS-CAMP significantly reduces the computational time and
memory occupation in image reconstruction, while providing
the similar image features. Furthermore, compared to other
recovery algorithms for solving the L1 regularization problem,
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CAMP based algorithm provides the sparse image of the
considered scene as well as a non-sparse estimation with
similar background statistical properties as MF based result,
which is very helpful for the further image statistical properties
based applications.

In addition, it should be noted that this method makes
large-scale sparse TOPS SAR imaging become possible, and
also can be used to the recovery of non-sparse surveillance
region. Furthermore, in practical TOPS system design, we can
increase the swath width through reducing PRF, and use our
presented mechanism to achieve the image focusing.
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[31] M. Çetin, I. Stojanovic, N. Önhon, K. Varshney, S. Samadi, W. C. Karl,
and A. S. Willsky, “Sparsity-driven synthetic aperture radar imaging:
Reconstruction, autofocusing, moving targets, and compressed sensing,”
IEEE Signal Process. Mag., vol. 31, no. 4, pp. 27-40, 2014.

[32] L. Zhao, L. Wang, L. Yang, A. M. Zoubir, and G. Bi, “The Race to
improve radar imagery: An overview of recent progress in statistical
sparsity-based techniques,” IEEE Signal Process. Mag., vol. 33, no. 6,
pp. 85-102, 2016.

[33] J. Fang, Z. Xu, B. Zhang, W. Hong, and Y. Wu, “Fast compressed
sensing SAR imaging based on approximated observation,” IEEE J. Sel.
Topics Appl. Earth Obs. Remote Sens., vol. 7, no. 1, pp. 352-363, 2014.

[34] H. Bi, B. Zhang, X. X. Zhu and W. Hong, “Azimuth-range decouple-
based L1 regularization method for wide ScanSAR imaging via extended
chirp scaling,” J. Appl. Remote Sens., vol. 11, no. 1, pp. 015007:1-12,
2017.

[35] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algo-
rithms for compressed sensing,” Proc. Nat. Acad. Sci., vol. 106, no. 45,
pp. 18914-18919, 2009.

[36] A. Maleki, L. Anitori, Z. Yang, and R. Baraniuk, “Asymptotic analysis
of complex LASSO via complex approximate message passing (CAMP),”
IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4290-4308, 2013.

[37] L. Anitori, A. Maleki, M. Otten, R. Baraniuk, and P. Hoogeboom
“Design and analysis of compressed sensing radar detectors,” IEEE Trans.
Signal process, vol. 61, no. 4, pp. 813-827, 2013.

[38] I. Daubechies, M. Defriese, and C. De Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Com-
mun. Pure Appl. Math., vol. LVII, pp. 1413-1457, 2004.

[39] J. A. Tropp, “Greed is good: Algorithmic results for sparse approxima-
tion,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231-2242, 2004.

[40] R. Tibshirani, “Regression shrinkage and selection via the LASSO,” J.
Roy. Stat. Soc., Series B, vol. 58, no. 1, pp. 267-288, 1996.
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