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Abstract

We propose a general, numerically reliable computational approach to solve the pole and eigenstructure assignment problem
for descriptor systems. In the multi-input case, the proposed approach addresses the intrinsic non-uniqueness of the pole
assignment problem solution by simultaneously minimizing the sensitivity of the feedback gain and of closed-loop eigenvalues.
For this purpose, a minimum norm robust pole assignment problem is formulated and solved as an unconstrained minimization
problem for a suitably chosen cost function. By using a generalized Sylvester equation-based parameterization, an explicit
expression of the gradient of the cost function is derived to allow the efficient solution of the minimization problem by using
powerful gradient search-based minimization techniques.
© 2003 Published by Elsevier Science B.V.
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1. Introduction

Pole assignment techniques to modify the dynamic
response of linear systems are among the most stud-
ied problems in modern control theory. The complete
theoretical solution of this problem for standard sys-
tems has been followed by the development of many
computational methods (see for example, the collec-
tion of reprints in [13]). Sensitivity analysis of the
pole assignment problem (see[10] and references
therein) moves one step forward the understanding of
difficulties and practical limitations associated with
the usage of solution methods.

We address the solution of the pole assignment
problem for the following descriptor system:

Eλx(t) = Ax(t) + Bu(t), (1)

wherex(t) ∈ R
n, u(t) ∈ R

m, A, B, E are real ma-
trices of appropriate dimensions withE square and
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generally singular,λx(t) = ẋ(t) for a continuous-time
system, andλx(t) = x(t + 1) for a discrete-time sys-
tem. We assume thatr = rankE, the pencilA − λE

is regular, i.e. det(A− λE) �≡ 0, and the system(1) is
controllable, i.e. rank(A− λE,B) = n for λ ∈ C and
rank[E B ] = n. In what follows we denote with
Λ(A,E) the set of generalized eigenvalues of the pair
(A,E). Note that in general there exist at leastr infi-
nite eigenvalues. If the numbern∞ of infinite eigen-
values exceedsr, thenn∞ − r eigenvalues are called
the impulsive modesof the system.

We consider the followingdescriptor eigenvalue as-
signment problem(DEAP).

DEAP. Given a set ofn self-conjugate complex
numbersΓn = {λ1, . . . , λn} (some values could pos-
sibly be infinite), determine the gain matricesF and
K in the proportional-derivative feedback

u(t) = Fx(t) − Kλx(t) + v(t)

such that the closed-loop system pencilA + BF −
λ(E + BK) is regular and
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Λ(A + BF, E + BK) = Γn.

One of the main applications of the DEAP is in solv-
ing several coprime factorizations problems of general
rational matrices[12,16]. For example, by choosing
Γn with only finite elements, coprime factorizations
with proper factors can be computed, while forΓn
with only infinite values, coprime factorizations with
polynomial factors result.

A particular DEAP withconstant-ratio proportional-
derivativefeedback

u(t) = F( cosθx(t) − sinθλx(t)) + v(t)

has been studied in[20]. The solution of the DEAP
with this type of feedback has interesting applica-
tions in solving minimum-degree coprime factoriza-
tions problems[12]. The proportional state feedback

u(t) = Fx(t) + v(t)

can be used to assign the maximum numberr of finite
eigenvalues[8,14], by moving all impulsive modes
of the open-loop system to arbitrary finite positions.
The solution of this DEAP represents the first step to
compute normalized coprime factorizations of general
rational matrices by the methods proposed in[17].
Finally, thestandardeigenvalue assignment problem
corresponds toE = I, K = 0, andΓn having only
finite values.

A generalized Schur method to solve the DEAP has
been proposed in[16]. This method is based on the
generalized real Schur form(GRSF) of the pair(A,E)
which allows a sequential eigenvalue assignment, by
combining low order eigenvalue assignment (of or-
ders 1 or 2) with reordering of diagonal blocks of a
pair in GRSF. For the solution of the constant-ratio
proportional-derivative DEAP, a similar technique can
be employed. Alternatively, with the help of a bilin-
ear transformation (see[12,20]), the problem can be
reduced to a problem with invertibleE and solved,
using the generalized Schur method with proportional
feedback[15].

None of the above algorithms is able to exploit
the intrinsic non-uniqueness of the DEAP in the
multi-input case by imposing additional conditions
when solving this problem. One aspect which is de-
sirable from a practical point of view is to determine
feedback matrices with small gains. Intuitively, this
must be advantageous since small feedback gains lead

to smaller control signals, and thus to less energy con-
sumption. Small gains are also beneficial to reduce
noise amplification. A second aspect important in pole
assignment is to achieve a small condition number
for the eigenvector matrices of the closed-loop sys-
tem pencil. This is the goal ofrobust pole assignment
as formulated for standard systems[7] (see also[2]
for a recent survey) and descriptor systems[8]. Both
these aspects are decisive for the overall sensitivity of
assigned eigenvalues, because, as was shown in the
standard systems case[10], high feedback gains or
high condition numbers lead to increased sensitivity
of the closed-loop eigenvalues. It appears thus that the
simultaneous minimization of the feedback norm and
condition of eigenvector matrix is a desirable general
goal for solving the DEAP.

The solution of robust DEAP has been addressed
in [4] for the case of distinct finite eigenvalues inΓn.
The solution approach relies on a parameterization
involving a preliminary polynomial right coprime
factorization of the rational matrix(λE − A)−1B.
Using this factorization, an eigenvector matrix is
constructed which depends explicitly on a set of free
parameters. These parameters are then adjusted using
minimization techniques to ensure low sensitivity of
eigenvalues. The main limitations of this approach
are its inability to address the case of infinite eigen-
values and of multiple real eigenvalues. Furthermore,
the computation of the preliminary factorization is
in general a difficult computational problem for high
order systems.

The solutions of DEAP proposed in[8,14] address
the case of impulse-free pure proportional feedback.
In essence, the algorithm of[14] relies on the tech-
niques of[8], but the solution provided in[14] covers
only the case of simple eigenvalues at infinity (n∞ =
r). The solution approach of[8] to the robust DEAP
computes first a suitable eigenvector matrix for the
closed-loop eigenvalues. This is done iteratively, by
improving successively the condition numbers charac-
terizing the sensitivity of closed-loop eigenvalues. Af-
ter convergence, the feedback is determined by solving
two linear equations. The difficulties of this approach
lie mainly in the selection of the eigenvectors and in
the possible slow convergence of the iterative selec-
tion schemes. Moreover, since the selection methods
are primarily intended for distinct eigenvalues, they
can hardly address the case of multiple eigenvalues.
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Thus, this approach cannot be considered a general
method. All above-mentioned methods do not address
the norm minimization aspect, which is also essential
for achieving a low sensitivity of the eigenvalue as-
signment problem.

In this paper, we propose a general, numerically re-
liable approach to solve the DEAP in its most general
setting. Our approach explicitly addresses the compu-
tation of minimum norm state feedback which solves
the DEAP and simultaneously minimizes the sensitiv-
ity of the closed-loop eigenvalues. The solutions of
the DEAP relies on a Sylvester system-based parame-
terization. By specifying a set of free parameters, the
closed-loop eigenvector matrix results as the solution
of a generalized Sylvester system. The free parameters
can be adjusted by an optimization-based search to
ensure low norm feedback gains and well-conditioned
eigenvector matrix. For the efficient solution of the
minimization problems, powerful unconstrained mini-
mization methods based on gradient search techniques
can be employed. For this purpose, we derived an ex-
plicit expression of the gradient of the cost function.
We discuss several functional and numerical features
of the proposed approach, as generality, flexibility (for
example, to assign a desired eigenstructure or to per-
form a partial pole assignment), numerical stability,
computational efficiency. Numerical examples illus-
trate some of the features of the proposed approach to
solve DEAPs.

2. Solution of DEAP

Our approach is based on a straightforward
Sylvester equation-based parametrization of the
DEAP. Let F and K be matrices which solve the
DEAP. Then, there must exist invertible matricesX
andY such that

Y−1(A + BF)X = Ã, Y−1(E + BK)X = Ẽ, (2)

where the matrices̃A andẼ are such thatΛ(Ã, Ẽ) =
Γn. If we defineG := FX andL := KX, then (2)
can be rewritten as the following Sylvester system of
matrix equations to be satisfied byX andY :

AX− YÃ + BG = 0, EX− YẼ + BL = 0. (3)

Now we can try to solve the DEAP assuming thatÃ

andẼ are chosen such thatΛ(Ã, Ẽ) = Γn, andG and

L are given parameter matrices. To solve the DEAP,
we need to solve(3) for X andY and, providedX and
Y are invertible, we compute the feedback matrices as

F = GX−1, K = LX−1. (4)

To enforce the invertibility ofX andY , we conjecture,
on basis of results in[3], that the matrices̃A, Ẽ, G
andL must fulfill the conditions: (1) the pair(Ã −
λẼ,G−λL) is observable; (2)Λ(A,E)∩Λ(Ã, Ẽ) =
∅. These conditions together with the controllability
of pair (A−λE,B) ensure thatX andY satisfying(3)
aregenericallyinvertible.

If the pair (Ã, Ẽ) is in a Weierstrass form, thenX
andY play the roles of the eigenvector matrices for
the closed-loop system pair(A + BF, E + BK). In
light of the sensitivity results in[10] for standard sys-
tems, it is meaningful to exploit the non-uniqueness
of the DEAP for multi-input systems by minimizing
additionally the sensitivity of the closed-loop eigen-
values and the norm of the feedback matrix. This leads
to a minimum norm robustDEAP for which we pro-
pose a solution method combining unconstrained op-
timization techniques with the parametric Sylvester
equation-based approach.

As a measure of the sensitivity of closed-loop
eigenvalues, we use the condition numbersκF (X) and
κF (Y) of X andY with respect to the Frobenius norm.
For computational convenience, instead of minimiz-
ing κF (X) := ‖X‖F‖X−1‖F , the minimization of the
sum‖X‖2

F +‖X−1‖2
F can be alternatively performed,

since the two optimization problems are mathemati-
cally equivalent[1]. Thus, for the simultaneous mini-
mization of the norm of the state feedback matricesF

andK and of the two condition numbersκF (X) and
κF (Y) we can use the following performance index:

J = 1
2α(‖X‖2

F + ‖X−1‖2
F + ‖Y‖2

F + ‖Y−1‖2
F )

+ 1
2(1 − α)(‖F‖2

F + ‖K‖2
F ), (5)

where 0≤ α ≤ 1 is a weighting factor. Forα = 0,
J defines a pure norm minimization problem, while
for α = 1 we get a pure robust DEAP. Intermediary
values ofα lead to a combination of both aspects.

The main advantage of the Sylvester equation-based
parameterization is that it allows a straightforward
derivation of analytic expressions of gradients of
the performance criterionJ with respect to the free
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parametersG andL. We have the following result for
the DEAP (for the proof seeAppendix A).

Proposition 1. Let(F,K) be the pair of state feedback
matrices computed as in(4), assigning the desired
eigenvaluesΓn for given(Ã, Ẽ) and(G,L). Then, the
gradients of J with respect to G and L are given by

∇GJ = (1 − α)FX−T + BTU,

∇LJ = (1 − α)KX−T + BTV,
(6)

where U and V satisfy the Sylvester system:

ATU + ETV = S, UÃT + VẼT = −T (7)

for

S = (1 − α)(FTF + KTK)X−T

+α(−X + X−TX−1X−T),

T = α(−Y + Y−TY−1Y−T).

Each function and gradient evaluation involves
the solution of the two Sylvester systems(3) and
(7). An efficient algorithm to solve these equations
is available[6]. In the next section, we describe a
transformation-based approach by which gradient
computations can be substantially speeded up.

Having explicit analytical expressions for the
function and its gradient it is easy to employ any
gradient-based technique to minimizeJ . However,
since the dimension of the minimization problem,
2nm, could be large, a particularly well-suited class of
methods to use is the class of unconstrained descent
methods, as for instance, the limited memory BFGS
method[9] used in conjunction with a line search pro-
cedure with guaranteed decrease[11]. The guaranteed
decrease feature of these methods ensures that for
α > 0 the condition numbersκF (X) andκF (Y) pro-
gressively decrease and thus the solutionsX andY of
(3) remain invertible at each iteration once invertible
solutions have been determined at the first iteration.

Remark 2. When using gradient techniques to solve
DEAPs by function minimization, it is likely that the
computed solution is only a local minimum. One way
to try to cure this aspect is by solving the problem
repeatedly with different initializations, and choosing
that solution which produces the lowest value of the
cost function. Note however, that in most of cases the

global minimum leads to condition numbers of the
transformation matricesX andY which have the same
order of magnitude as those corresponding to any of
local minima. Thus there is practically no difference
for solving a robust eigenvalue assignment problem if
the global minimum or one of local minima is em-
ployed to compute the feedback.

3. Algorithmic features

A satisfactory eigenvalue assignment algorithm
must fulfill several requirements to serve as basis for a
numerically robust software implementation. In what
follows we discuss the main algorithmic features of
the Sylvester equation approach, as generality, flexi-
bility, numerical stability, computational efficiency.

3.1. Generality

A general eigenvalue assignment algorithm must
be able to assign an arbitrary set of eigenvalues. Fur-
thermore, in an ideal case, such an algorithm would
also be able to assign a desired eigenstructure for
the closed-loop system. Although the first requirement
seems to be trivial, even well-known methods imple-
mented in commercial software do not fulfill this re-
quirement. For example, the robust pole assignment
methods of[8] cannot assign poles with multiplici-
ties greater than the rank ofB. In what follows, we
show that the Sylvester approach allows both the as-
signment of an arbitrary set of eigenvalues and of
a given admissible eigenstructure for the closed-loop
eigenvalues.

An arbitrary set of eigenvaluesΓn can be assigned
with the Sylvester equation-based approach by suit-
ably choosing the matrix pair(Ã, Ẽ). SupposeΓn
containsp distinct eigenvaluesλ1, . . . , λp, and each
eigenvalueλi has multiplicityki. If infinite eigenval-
ues are present, assume thatλp = ∞. We can choose
the pair(Ã, Ẽ) in a Weierstrass canonical form:

Ã − λẼ

=




Jk1(λ1) − λI 0 0

.

.

.
. . .

.

.

.
.
.
.

0 Jkp−1(λp−1) − λI 0

0 0 I − λJkp (0)


,
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whereJk(λ) denotes a Jordan block of orderk for the
eigenvalueλ. For a complex eigenvalueλi belonging
to a multiple pair of complex conjugated eigenvalues
(λi, λ̄i), a 2ki × 2ki real Jordan block can be used in-
stead of twoki×ki complex Jordan blocks[5, p. 365].
If rankB = m > 1, better conditioned transformation
matricesX andY can be obtained by employing sev-
eral Jordan blocks of lower dimensions for each mul-
tiple eigenvalue. Thus for eachλi of multiplicity ki, up
tom Jordan blocks with dimensions at most [ki/m]+1
can be used, where [·] denotes the integer part.

If the desired closed-loop spectrumΓn = Λ(Ã, Ẽ)

is disjoint from the open-loop spectrumΛ(A,E), then
by choosing suitableG andL, the Sylvester system(3)
has the unique solutionX andY with X invertible, and
the solution matricesF andK are computed from(4).
The case of overlapping open-loop and closed-loop
spectra can be easily addressed by means of a prelim-
inary state-feedback withF0 andK0 chosen such that
Γn andΛ(A+BF0, E+BK0) are disjoint (as apracti-
cal solution, two randomly generated matricesF0 and
K0 can be used). If we solve the DEAP for the mod-
ified pair (A + BF0 − λ(E + BK0), B) and (F1,K1)

is the corresponding solution, then(F,K) = (F0 +
F1,K0 + K1) is the solution of the original problem.

3.2. Flexibility

The Sylvester equation approach in conjunction
with the optimization-based search for a minimum
norm and well-conditioned feedback exploits the in-
trinsic freedom of the multi-input DEAP to address
additional requirements, as for example, the condi-
tioning aspect of the eigenvalue assignment problem.
Note that most of existing eigenvalue assignment
algorithms do not have the flexibility to exploit this
structural feature of the problem, and even algorithms
for robust pole assignment, address only partially
this aspect by ignoring completely the feedback
norm minimization. Moreover, these methods have
also restrictions with respect to the allocation of the
closed-loop eigenstructure.

Another desirable feature of a flexible eigenvalue
assignment method is to allow apartial eigenvalue
assignment, i.e. to keep unmodified some of the
open-loop eigenvalues while moving the rest of eigen-
values to desirable locations. Since the partial eigen-
value assignment is a very useful feature, especially

in the case of stabilizing high order systems, we show
how this feature can be easily accommodated within
the Sylvester equation-based approach.

It is easy to see that the performance indexJ is
invariant to an orthogonal system similarity trans-
formation, i.e. ifF andK are the optimal feedback
matrices for the descriptor pair(A − λE,B), then
F̂ = FZ and K̂ = KZ are the optimal feedback
matrices for the transformed pair(Â − λÊ, B̂) :=
(QTAZ− λQTEZ,QTB), whereQ andZ are orthog-
onal matrices. Thus, if we want to keep unmodified
the generalized eigenvalues of the pair(A,E) lying
in a “good” regionCg of C and to modify only those
lying in its complementCb := C \ Cg (the “bad”
region), then we can first reduce(A,E) to an ordered
GRSF to obtain the triple:

QTEZ =
[
E11 E12

0 E22

]
, QTAZ =

[
A11 A12

0 A22

]
,

QTB =
[
B1

B2

]
, (8)

whereΛ(A11, E11) ⊂ Cg and Λ(A22, E22) ⊂ Cb.
With this separation, we can perform a partial eigen-
value assignment by solving for the optimal solution
F2 andK2 the DEAP for the reduced descriptor pair
(A22−λE22, B2). The overall optimal feedback matri-
ces result asF = [ 0 F2 ]ZT andK = [ 0 K2 ]ZT.
This approach to the solution of the partial eigenvalue
assignment problem represents a numerically sound
approach to address DEAPs with overlapping open-
and closed-loop spectra.

3.3. Numerical stability and accuracy

The computation of the optimal solutionF andK
for the computed optimal parameter matricesG and
L involves the solution of two systems of linear equa-
tions: the Sylvester system(3) to computeX andY
[6], and the linear system[
F

K

]
X =

[
G

L

]

to compute the feedback matricesF andK. Thus the
Sylvester equation-based approach can be considered
to bepractically numerically stable.
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Concerning the accuracy of the results, in a robust
pole assignment problem it is expected that for a care-
fully chosen set of closed-loop eigenvalues and corre-
sponding eigenstructure theoptimalX is reasonably
well-conditioned. Thus the last computational step to
determine the feedback matrices in(4) is guaranteed
to be very accurate. The main source of errors is the
solution of the Sylvester system, and thus the separa-
tion of spectra of the pairs(A,E) and (Ã, Ẽ) is the
essential factor here. However, a good separation can
always be achieved by an initial eigenvalue shifting
with a preliminary feedback (see alsoSection 3.1) and
a partial eigenvalue assignment can be performed in
the case of overlapping spectra. Thus, for most practi-
cal problems we can expect that the computed results
corresponding to an optimal solution are very accurate.

3.4. Computational efficiency

The overall efficiency of the algorithms heavily de-
pends on the costs of function and gradient evalua-
tions. Each function and gradient evaluation involves
the solution of the two generalized Sylvesterequations
(3) and (7)sharing the same coefficient matrices. The
standard procedure to solve these equations is the
well-known generalized Schur method[6]. This ap-
proach can be efficiently employed in our case pro-
vided the pair(A,E) is reduced first to a GRSF using
an orthogonal similarity transformation and assuming
further that the pair(Ã, Ẽ) is in a Weierstrass form (a
particular GRSF). The reduction of(A,E), performed
only once, requires about 25n3 operations and can be
seamlessly combined with the reordering of the GRSF
to accommodate with the partial eigenvalue assign-
ment requirement. The solution of the minimization
problem can be performed to obtain the optimal so-
lutions F̂ and K̂ for the transformed descriptor pair
(Â−λÊ, B̂) = (QTAZ−λQTEZ,QTB) with the pair
(Â, Ê) in GRSF and(Ã, Ẽ) in Weierstrass form. The
solution of the original DEAP results asF = F̂ZT and
K = K̂ZT. For the transformed problem, the func-
tion and gradient evaluations can be performed very
efficiently since now we have to solve only reduced
Sylvester equations with the coefficient matrices in
GRSF. This involves about 2n3 operations for the so-
lution of each Sylvester system by using the algorithm
of [6]. Thus the overall cost to evaluate the function
and its gradient is about 10n3 operations, from which

6n3 operations account to form the free termsS and
T in (7).

4. Numerical examples

Consider the system from[8] with the matrices

A =




0 1.1 0 0 0

0 0 1.56 0 0

1.23 0 0 1.98 0

0 0 0 0 0

0 0 1.01 0 0



,

E =




0 0 0 1.72 0

0 0 0 0 0

−0.82 0 0 0 0

0 0 0 0 0

0 0 0 0 1



,

B =




0 0 0

1.55 0 0

0 1.07 0

0 0 −1.11

0 −2.5 0



.

This system is not regular since det(A − λE) ≡
0, but it can be made regular with a preliminary
state feedback. We assigned the closed-loop eigen-
value setΓ5 = {−0.5,−1,−2,∞,∞} using both
proportional-derivative feedback as well as pure
proportional feedback. This example illustrates not
only the ability of the new approach to compute
well-conditioned (sometimes almost orthogonal)
eigenvector matrices, but also its ability to solve the
DEAP even for non-regular systems or to solve the
DEAP in the case when infinite eigenvalues are present
in both the open-loop and closed-loop systems.

For the solution of DEAP, we chosẽA =
diag(−0.5,−1,−2,1,1), Ẽ = diag(1,1,1,0,0) and
solved the minimization problem forJ for several
values ofα. For the resulting optimal solutions, we
computed in each case the 2-norm condition numbers
κ2(X) and κ2(Y), and the 2-norm of the compound
feedback matrix [F K ]. The results are given in
Table 1. It is easy to observe that for decreasing values
of α the norms of feedback matrices decrease, but the
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Table 1
Results for the proportional-derivative feedback DEAP

α ‖[F K]‖2 κ2(X) κ2(Y)

1 1.35 3.75 1.57
0.1 0.58 3.97 3.18
0.01 0.33 4.25 6.52
0.001 0.21 5.06 16.98
0.0001 0.13 9.86 57.07
0 0.014 445 1.88× 107

condition numbers of eigenvector matrices increase.
For pure norm minimization, a very small norm has
been achieved but with a very ill-conditioned trans-
formation matrixY . Each solution forα in the range
[10−2,1] is practically acceptable.

For reference purpose, we give the feedback matri-
ces computed for the pure robust DEAP (α = 1):

F =




0.0713 −0.2135 −0.1447 0.6371 −0.1770

−0.0708 0.1770 0.4130 0.3929 0.0373

−0.2483 −0.2858 0.0012 −0.3999 0.9293


 ,

K =




0.0705 0.1758 −0.5965 −0.2388 −0.0443

0.1425 0.0033 −0.0111 −0.4988 0.3255

0.3163 0.0623 −0.2114 0.4182 −0.1678


 .

The robustness of the solution can be easily checked
by computing the eigenvalues of the pair(A+BF, E+
BK) for the matricesF andK truncated to the dis-
played four digits. The resulting closed-loop eigenval-
ues are

{−1.999997,−0.999998,−0.50004,∞,∞}
and thus are accurate to five decimal digits.

To compare our approach with the method of[8],
we solved the DEAP by using only proportional feed-
back. The results are given inTable 2. The same
tendencies for decreasing norms ofF and increas-

Table 2
Results for proportional feedback DEAP

α ‖F‖2 κ2(X) κ2(Y)

1 1.79 4.23 2.88
0.1 0.81 4.52 4.88
0.01 0.47 5.18 9.61
0.001 0.28 9.47 27.01
0.0001 0.17 19.86 96.39
0 0.0096 376.6 5.48× 107

ing ill-conditioning with decreasingα values can be
observed as inTable 1. Because of increased para-
metric freedom, the proportional-derivative feedback
achieves smaller norms for the same ranges of the con-
dition numbers.

For reference purpose, we give the proportional
feedback matrix computed for the pure robust DEAP
(α = 1):

F =

 −0.0584 0.2600 −0.3888 0.6921 0.0467

0.0647 0.0406 0.3480 0.0364 0.4027

0.3249 1.0523 −0.3263 1.1542 −0.0544


 .

The robustness of the solution can be easily checked by
computing the eigenvalues of the pair(A+BF, E)with
the elements of matrixF truncated to the displayed
four digits. The resulting closed-loop eigenvalues are

{−1.99985,−0.999997,−0.500033,∞,∞}
and thus are accurate to four decimal digits. This re-
sult is marginally better than that reported in[8] both
with respect to the condition number ofX as well as
the magnitude ofF . Note, however, that practically
the same robustness can be achieved forα = 0.01
with a four times smaller magnitude of the feedback
matrixF .

5. Conclusions

We focused on developing a reliable numerical ap-
proach to exploit the intrinsic non-uniqueness of the
DEAP. One possibility to address the non-uniqueness
is by formulating the DEAP as a minimum norm ro-
bust pole assignment problem. By using a convenient
parametrization, a solution of the DEAP is sought
by minimizing a special cost function expressing the
weighted requirements for minimum norm of the
feedback matrix and the minimum sensitivity of the
closed-loop eigenvalues. The derived explicit expres-
sion for the gradient of the cost function allows the
use of standard gradient search-based minimization
techniques. Similar expressions for the constant-ratio
proportional-derivative feedback DEAP and pure
proportional feedback DEAP have been derived in
[19].

The efficient evaluation of the cost functions and
gradients is of paramount importance for the useful-
ness of the proposed approach. Using transformation



1228 A. Varga / Future Generation Computer Systems 19 (2003) 1221–1230

techniques in conjunction with the solution of reduced
generalized Sylvester equations is the main ingredient
to achieve this goal. Furthermore, it allows to address,
with practically no extra costs, the partial pole as-
signment problem too. We believe that the proposed
robust pole assignment approach is a viable way to
solve large DEAPs in the perspective of the require-
ments formulated by recent sensitivity analysis results
[10].

In a broader context, the Sylvester equation-based
approach provides a unified framework to solve vari-
ous eigenvalue assignment problems for standard, de-
scriptor and even periodic systems[18]. In light of
discussions on generality and flexibility, this approach
has the potential to become the standard way to solve
all classes of eigenvalue assignment problems.

Appendix A. Proofs

To proveProposition 1we need the following result.

Lemma A.1. Let A,E ∈ R
n×n, Ã, Ẽ ∈ R

r×r and
C,D ∈ R

n×r be given such thatΛ(A,E)∩Λ(Ã, Ẽ) =
∅. LetX ∈ R

n×r andY ∈ R
n×r be the solution of the

Sylvester system:

AX− YÃ = C, EX− YẼ = D. (A.1)

Then for S, T ∈ R
n×r we havetr[STX + T TY ] =

tr[UTC + VTD], where U,V ∈ R
n×r satisfy the

Sylvester system:

ATU + ETV = S, UÃT + VẼT = −T. (A.2)

Proof. By using Kronecker products and the notation
x̄ = vec(X) for the vec(·) operator, we can express
the solution of(A.1) as

[
x̄

ȳ

]
= P−1

[
c̄

d̄

]
,

where

P =
[
Ir ⊗ A −ÃT ⊗ In

Ir ⊗ E −ẼT ⊗ In

]
.

We obtain successively

tr[STX + T TY ]

= [ s̄T t̄T ]

[
x̄

ȳ

]
= [ q̄T r̄T ]P−1

[
c̄

d̄

]

= [ ūTv̄T ]

[
c̄

d̄

]
,

where

PT

[
ū

v̄

]
=

[
q̄

r̄

]
. (A.3)

However,

PT =
[
Ir ⊗ AT Ir ⊗ ET

−Ã ⊗ In −Ẽ ⊗ In

]

and thus(A.3) corresponds to the Sylvester system
(A.2). We further have

tr[STX + T TY ] = [ ūT v̄T ]

[
c̄

d̄

]

= tr[UTC + VTD]. �

Proof of Proposition 1. We write the cost function
(5) in the form:

J = (1 − α)(J1 + J2) + α(J3 + J4 + J5 + J6),

(A.4)

where J1 = (1/2)tr[FTF ], J2 = (1/2)tr[KTK],
J3 = (1/2)tr[XTX], J4 = (1/2)tr[X−TX−1], J5 =
(1/2)tr[YTY ], J6 = (1/2)tr[Y−TY−1]. It follows that
for Z = G or Z = L, we have

∇ZJ = (1 − α)(∇ZJ1 + ∇ZJ2) + α

6∑
i=3

∇ZJi.

For J1 = (1/2)tr[FTF ], we deduce the gradients
∇GJ1 and∇LJ1 from the first order variation:

0J1 := tr[(∇GJ1)
T0G + (∇LJ1)

T0L] = tr[FT0F ].
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From(4), we get0F = 0GX−1 − GX−10XX−1 and
we have successively

0J1 = tr[FT(0G − F0X)X−1]

= tr[X−1FT(0G − F0X)]

= tr[X−1FT0G] − tr[X−1FTF0X].

From (3), it follows that 0X satisfies the Sylvester
system:

A0X − 0YÃ = −B0G,

E0X − 0YẼ = −B0L.

By usingLemma A.1, we can write tr[X−1FTF0X] =
−tr[UT

1B0G+VT
1 B0L], where fori = 1,U1 andV1

satisfy the Sylvester system:

ATUi + ETVi = Si, UiÃ
T + ViẼ

T = −Ti

(A.5)

with S1 = FTFX−T andT1 = 0. We further obtain

0J1 = tr[(X−1FT + UT
1B)0G + VT

1 B0L]

from which the gradients ofJ1 result as

∇GJ1 = FX−T + BTU1, ∇LJ1 = BTV1. (A.6)

In a completely similar way we obtain

∇GJ2 = BTU2, ∇LJ2 = KX−T + BTV2, (A.7)

where fori = 2, U2 andV2 satisfy (A.5) with S2 =
KTKX−T andT2 = 0. By usingLemma A.1repeat-
edly, we determine the gradients ofJi, for i = 3, . . . ,6
in the form:

∇GJi = BTUi, ∇LJi = BTVi, (A.8)

whereUi andVi satisfy(A.5) for appropriateSi andTi.
For J3 = (1/2)tr[XTX], we have0J3 = tr[XT0X]
and fromLemma A.1we getS3 = −X andT3 = 0.
For the termJ4 = (1/2)tr[X−TX−1], we have

0J4 = −tr[X−TX−10XX−1]

= −tr[X−1X−TX−10X]

and again from Lemma A.1 we obtain S4 =
X−TX−1X−T andT4 = 0. In a similar way, we ob-
tain for J5 and J6: S5 = 0, T5 = −Y , S6 = 0 and
T6 = Y−TY−1Y−T. The linearity of Sylvester equa-
tion allows to combine the different right-hand side

terms in two unique terms:

S = (1 − α)(S1 + S2) + α(S3 + S4 + S5 + S6),

T = (1 − α)(T1 + T2) + α(T3 + T4 + T5 + T6)

and to write the corresponding solutionsU andV in
the same form:

U = (1 − α)(U1 + U2) + α(U3 + U4 + U5 + U6),

V = (1 − α)(V1 + V2) + α(V3 + V4 + V5 + V6).

The matricesU and V satisfy the Sylvester system
(7) and the corresponding expression of gradients are
those in(6). �

References

[1] R. Byers, S.G. Nash, Approaches to robust pole assignment,
Int. J. Contr. 49 (1989) 97–117.

[2] E. Chu, Optimization and pole assignment in control system
design, Int. J. Appl. Math. Comput. Sci. 11 (2001) 1035–
1053.

[3] E. De Souza, S.P. Bhattacharyya, Controllability, observability
and the solution ofAX− XB = C, Lin. Alg. Appl. 39 (1981)
167–188.

[4] G.-R. Duan, R.J. Patton, Robust pole assignment in descriptor
systems via proportional plus partial derivative state feedback,
Int. J. Contr. 72 (1999) 1193–1203.

[5] D.E. Goldberg, P. Lancaster, L. Rodman, Invariant Subspaces
of Matrices with Applications, Wiley, New York, 1986.

[6] B. Kågström, L. Westin, Generalized Schur methods with
condition estimators for solving the generalized Sylvester
equation, IEEE Trans. Automat. Contr. 34 (1989) 745–751.

[7] J. Kautsky, N.K. Nichols, P. Van Dooren, Robust pole
assignment in linear state feedback, Int. J. Contr. 41 (1985)
1129–1155.

[8] J. Kautsky, N.K. Nichols, E.-W. Chu, Robust pole assignment
in singular control systems, Lin. Alg. Appl. 121 (1989) 9–37.

[9] D.C. Liu, J. Nocedal, On the limited memory BFGS method
for large scale optimization, Math. Program. 45 (1989) 503–
528.

[10] V.L. Mehrmann, H. Xu, An analysis of the pole placement
problem. II. The multi input case, Electr. Trans. Numer. Anal.
(ETNA) 5 (1997) 77–97.http://etna.mcs.kent.edu/.

[11] J.J. Moré, D.J. Thuente, On line search algorithms with
guaranteed sufficient decrease, ACM Trans. Math. Software
20 (1994) 286–307.

[12] C. Oar̆a, A. Varga, Minimal degree coprime factorization of
rational matrices, SIAM J. Matrix Anal. Appl. 21 (1999)
245–278.

[13] R.V. Patel, A.J. Laub, P. Van Dooren (Eds.), Numerical Linear
Algebra Techniques for Systems and Control, IEEE Press,
New York, 1994.

http://etna.mcs.kent.edu/


1230 A. Varga / Future Generation Computer Systems 19 (2003) 1221–1230

[14] V.L. Syrmos, F.L. Lewis, Robust eigenvalue assignment
for generalized systems, Automatica 28 (1992) 1223–
1228.

[15] A. Varga, On stabilization of descriptor systems, Syst. Contr.
Lett. 24 (1995) 133–138.

[16] A. Varga, Computation of coprime factorizations of rational
matrices, Lin. Alg. Appl. 271 (1998) 83–115.

[17] A. Varga, Computation of normalized coprime factorizations
of rational matrices, Syst. Contr. Lett. 33 (1998) 37–45.

[18] A. Varga, Robust pole assignment techniques via state
feedback, in: Proceedings of the CDC’2000, Sydney,
Australia, 2000, pp. 4655–4660.

[19] A. Varga, Robust pole assignment for descriptor systems,
in: Proceedings of the MTNS’2000 Symposium, Perpignan,
France, 2000.

[20] Z. Zhou, M.A. Shayman, T.-J. Tarn, Singular systems: a new
approach in the time domain, IEEE Trans. Automat. Contr.
32 (1987) 42–50.

A. Varga has been with the German
Aerospace Center (DLR) in Oberpfaffen-
hofen since 1993, where he is currently
a Senior Scientist. His main research in-
terests include the numerical methods for
linear systems analysis and design, and
robust numerical software for computer
aided control system design.


	A numerically reliable approach to robust pole assignment for descriptor systems
	Introduction
	Solution of DEAP
	Algorithmic features
	Generality
	Flexibility
	Numerical stability and accuracy
	Computational efficiency

	Numerical examples
	Conclusions
	Proofs
	References


