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Abstract— Information gathering algorithms aim to intelli-
gently select the robot actions required to efficiently obtain
an accurate reconstruction of a physical process, such as an
occupancy map, or a magnetic field. Many recent works have
proposed algorithms for information gathering. However, these
algorithms employ discretization of the state space, which
makes them computationally intractable for robotic systems
with complex dynamics. Moreover, most algorithms are not
suited for online information gathering tasks. This paper
presents a novel approach that tackles the two aforementioned
issues. Specifically, our approach includes two intertwined
steps: a Gaussian processes (GPs)-based prediction that allows
a robot to identify highly unexplored locations, and an RRT*-
based informative path planning that guides the robot towards
those locations. The combination of the two steps allows an
online realization of the algorithm, while eliminates the need of
discretization. We demonstrate the effectiveness of the proposed
algorithm in simulations, as well as with an experiment in which
a ground-based robot explores the magnetic field intensity
within an indoor environment populated with obstacles.

I. INTRODUCTION

Information gathering is a fundamental task in a wide
range of robotic applications [1], [2]. The objective is to
gather information efficiently, saving resources like time,
battery, etc. This may be economically advantageous or even
life-critical in search and rescue missions.

In this paper, we devise information gathering strategies
that allow a robot to collect information, while optimizing
the resources employed. Here we follow an approach that is
widely used in the literature: first, an underlying model of
the physical process under study together with some metric
of information quality is employed to predict the impact
of certain robot actions and states. Second, an active non-
myopic sensing strategy is used to maximize the mentioned
metric [3], [4].

A number of information quality metrics has been pro-
posed for information gathering, like entropy [5], Fisher
information [6] or mutual information [7]. The calculation
of the information quality metric requires an underlying
model for representing the observed process. In this work,
we propose the use of Gaussian processes (GPs) [8] for such
purpose, which represent a powerful method to model spatial
phenomena.
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Fig. 1: Ground-based robot exploring a magnetic field inten-
sity (projected on the ground) within an indoor environment
populated with obstacles.

The use of the mutual information for active sensing with
GPs has been extensively studied by Krause et. al. [9].
However, they consider two assumptions that make the algo-
rithm not suitable for online information gathering problems.
First, the authors assume that the hyperparameters that define
the GPs covariance function are a priori known, which
does not typically hold. Additionally, they assume discrete
sensor placements and do not consider the robot’s motion
and constraints. Furthermore, the computation of mutual
information is expensive for online information gathering.

Several works that relax the first assumption (i.e., the
known hyperparameters) have been also proposed in the
literature [10], [2]. [10] derives a non-myopic algorithm that
considers the exploration-exploitation trade-off with respect
to the GPs hyperparameters. However, [10] considers nei-
ther the robot’s dynamics constraints, nor the presence of
obstacles. In [2], the authors propose a decentralized greedy
multi-agent algorithm, where each of the robots gathers
information about the process of interest within an obstacle-
free environment, and learns the optimal hyperparameters
given the current measurements. In contrast to these works
we derive an algorithm that handles a complex environment,
i.e. an environment that is populated with obstacles and does
not require a spatial gridding of explored space.

The central question that we address in this paper is how
to efficiently gather information of an unknown physical
process, which takes place in a complex environment, with a
robot that runs an algorithm online as it collects information.
We solve this problem by proposing a two-step strategy. First,



the algorithm finds a highly informative location according
to a pre-specified information quality metric. This location
we term a station – a concept inspired by frontiers in au-
tonomous robotic exploration [11]. Once the station is found,
the robot plans a path towards the station. When planning,
we trade-off path cost with the information gained while
traversing the path to the station. This we term informative
path planning. Once the robot reaches the station it will
update its GP model, and the robot will look for the next
station and then planning a new a path leveraging the updated
model.

A. Informative Path Planning

Informative path planning encompasses algorithms that
aim to plan a path which is both feasible given the robot’s
differential constraints and optimal with respect to some
information quality metric. Our focus lies specifically in in-
formative path planning for information gathering tasks [12],
[13].

In [12] the authors tackle the optimal information gath-
ering problem with a multi-robot system. However, they
assume a discretized grid environment that is obstacle-free.
The assumption of a grid environment presents two major
drawbacks. First, the introduction of the cell’s size adds
an additional parameter to the algorithm. Second, recent
works have proposed information gathering algorithms for
robots with large state spaces that include kinematic and/or
kinodynamic constraints, like e.g. UAVs [14]. Graph-based
algorithms with such motion models become increasingly
complex [15]. In this work, we propose an approach that
is able to incorporate arbitrary information quality metrics,
environments populated with obstacles, and account for arbi-
trary robot dynamics. Specifically, we propose the adaptation
of the asymptotically optimal rapidly exploring random trees
(RRT*) [16] for information gathering tasks.

The incorporation of information quality metrics in the
RRTs has been already investigated in the literature. The
information-rich RRT (iRRT) extends the RRT algorithm by
incorporating a Fisher information measure [6]. However,
[6] is limited to tracking applications. Also, RRTs have
been used for exploration tasks with an UAV [17]. There
the authors generate several alternative trajectories with the
RRT algorithm and select the one that results in the highest
mutual information between the current estimate and the
corresponding prediction conditioned on a selected route. We
will use this algorithm to benchmark the performance of the
proposed informative path planner. In [18], the use of rapidly
exploring random cycles (RRC) for persistent monitoring of
a spatio-temporal Gaussian random field is proposed. Our
focus lies, however, on efficient information gathering of a
static physical process; i.e. we aim to gather the maximum
information in the minimum amount of time.

The work by [13] is the one that is closest to our
information gathering strategy. There, the authors propose
the rapidly exploring information gathering (RIG) planner – a
sampling based algorithm that is able to solve the information
gathering problem under a pre-specified budget constraint.

They assume that the underlying model that describes the
process is a priori known, and the robot does not need
to reach a particular goal position. Our work addresses a
similar problem but it differs in two principal aspects: (i)
our algorithm does not require prior information of the
physical process, which, in contrast to [13], allows an online
realization of the algorithm; (ii) our algorithm introduces
a trade-off between information gathering and a cost of
a particular selected path. The consequence of last aspect
leads to a path objective function that incorporates both an
information quality metric as well as a cost term. A cost
function that trades-off these two terms was also proposed
by [19]. They formulate a cost function that trades-off the
mutual information and the path cost. In this work, we define
a function that combines both the information and the path
cost and incorporate it as a utility in our modified RRT*
algorithm. In conjunction with intelligent station selection,
the informative path planing represents the key contribution
of this paper.

The remainder of the paper is organized as follows. Sec-
tion II states formally the problem. In Section III we describe
the proposed information gathering algorithm. Section IV
presents the analysis performed to validate the algorithm
through simulations. Section V describes the experimental
results, followed by conclusions.

II. PROBLEM STATEMENT

We wish to explore an a priori unknown physical process
with a robot as accurately as possible, in the sense of
minimizing the difference between a process estimate and
ground truth, and do so efficiently, i.e. consuming as little as
possible of the limited resources such as time or energy. To
this end, we devise in this paper movement strategies so as
to reduce the posterior error over the unseen regions of the
exploration space as efficiently as possible.

To achieve this, we make a few simplifying assumptions:
1) This physical process takes place in an environment

populated with obstacles that are a priori known. This
assumption allows us to abstract the exploration of the
physical process from the mapping of the environment.

2) The physical process is time-invariant during the in-
formation gathering task.

3) The robot’s position is known exactly and noise-free.
Uncertainty in positioning can also be accounted for
using e.g., GPs [20].

Let us now introduce the notation that we will use in the
remainder of the paper. The robot position will be denoted by
x ∈ X ⊂ R3, where X is the environment in which the robot
operates. The environment X corresponds to the free space
in the robot’s configuration space. The robot’s motion model
is given by a function x(t+dt) = f(x(t),u) that relates the
robot’s current position x(t) and future position x(t + dt)
given a control input u. The physical process at position
x ∈ X is given by the variable y(x) ⊂ R. Typically, however,
the process value is not observed directly, but measured
using some sensors. Here we assume a simple sensor model
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Fig. 2: Algorithm block diagram.

that represents a measured process as z(x) = y(x) + ε(x),
where noise samples ε(x) are independent and identically
distributed according to ε(x) ∼ N (0, σ2

n), i.e., they follow a
Gaussian distribution with zero mean and variance σ2

n.
In this work we propose an algorithm that allows a

robot to autonomously decide where to measure next in
order to reconstruct accurately and efficiently the physical
process values y(x) at any position x ∈ X . Naturally, this
requires a model that can accurately represent the observed
phenomenon. Here we make use of GPs for this purpose [8].

III. EFFICIENT INFORMATION GATHERING USING
SAMPLING-BASED PLANNERS AND GPS

This section presents our proposed algorithm for informa-
tion gathering. Section III-A shows an overview of the algo-
rithm. Then, we describe in detail the two main components
of the algorithm: (i) section III-B presents the algorithm used
to search for a highly informative station; and (ii) section III-
C describes our novel RRT*-based informative path planner.
To finalize, we discuss in Section III-D the particular choice
of the information quality metric.

A. Algorithm Overview

We propose an algorithm that allows a robot to au-
tonomously and efficiently gather information of an unknown
physical process with a robot of arbitrary dynamics within
an environment populated with obstacles. The algorithm
consists of two main steps: (i) first, we search for locations
of high uncertainty –stations–, and (ii) second, we find a
path towards the station that trades off informativeness and
cost. The former is realized with a highly efficient algorithm
that allows us to identify unexplored areas. And the latter is
realized with a more complex algorithm that refines the path
towards the station. It is the combination of both steps what
allows us to achieve an efficient information gathering.

A block diagram of the whole scheme is shown in Fig-
ure 2. Our proposed algorithm works as follows: Firstly,
the robot learns the best GPs model given the acquired
measurements. This is done by maximizing the GPs log-
marginal likelihood [8], finding the hyperparameters θ∗.

Once we estimate θ∗, the robot searches for a highly
informative station s∗ using the SearchStation algorithm
(Section III-B). The algorithm takes as an input the robot’s
current position x and free state space X , a budget constraint
on the path cost b, and the hyperparameters θ∗ that allow

the robot to calculate the expected information contained
at a station. In addition to the station s∗, the algorithm
outputs a suboptimal, yet feasible path Ps – an ordered list
of waypoints τ ∈ X – between the robot’s current position
and the selected station, and the corresponding path utility
us. More on the computation of the utility and its properties
will be discussed in Sec. III-C.

Then the robot plans a trajectory from its current position
x to the station s∗ using the InformativePlanner algo-
rithm (Section III-C). The algorithm result is a trajectory Pp,
together with its corresponding utility up that trades off the
information gathering with the path’s cost. The algorithm has
an anytime nature. Then, it is possible that, for the planning
time pre-defined by the user, the algorithm is either not able
to find a path or the found path is of worse quality (in terms
of used utility) than Ps. To make sure that a solution is
found, we compare the two found solutions and select the
best path Px,s∗ according to our information quality metric.

Finally, the robot follows the trajectory Px,s∗ until it
reaches the station s∗, while it measures the physical pro-
cess at positions τ along the path, and incorporates those
measurements and their respective locations to its knowledge
database. Then, the main loop is repeated until some stopping
criterion is fulfilled, e.g., maximum exploration time, or
the remaining process uncertainty. Once the robot finishes
gathering information, it can predict the value of the process
µ∗ and the associated uncertainty Σ∗ of the prediction for
any point in X using GPs regression [8].

B. Search for Highly Informative Stations
Let us now consider the searching algorithm for a new

station in more detail. As we mentioned, a station is related
to a highly unexplored area; i.e. a position that is highly
informative according to a pre-specified information quality
metric. In addition, the search of a station must fulfill the
following two requirements: (i) it must be reachable for
the robot; (ii) its calculation must be efficient, and must
have an anytime nature to allow the online realization of
the algorithm. To realize these requirements, we propose an
adaptation of the kynodinamic RRT algorithm [15] where
we extend the RRT nodes to incorporate an information
measure [13]. Specifically, here each node includes (i) a
spatial location xnew, (ii) the expected information at that
location xnew, and (iii) the cost of reaching xnew from the
robot current position traversing the tree. Let us emphasize
that RRT provides a quick way to ”sort out” stations that are
not reachable by the robot. Using e.g. RRT* for realizing
this test is possible, but computationally less efficient.

Formally, the search of the optimal station s∗ can be
formulated as:

s∗ = argmax
x′∈X

I(x′) s.t. c(Px,x′) ≤ b, (1)

where I(x′) is a measure of the expected information at
position x′ (the particular measure employed is described in
Section III-D), c(Px,x′) is the cost of traversing path Px,x′ ,
and b is some predefined maximum cost of a trajectory. We
use the time needed to traverse a path as the path cost.



The optimization of (1) is realized with the
SearchStation algorithm. This works as follows:
first our adapted RRT grows a set of trajectories of at most
cost b. Then we search the RRT node – station – s∗ of
highest expected information. Finally, the algorithm outputs
a path Ps that links the robot’s current position and the
station, and the respective utility us of path Ps.

C. Informative Path Planner using RRT*

Once the station is found, the algorithm plans the path
between the robot’s current position and the station. This
path must fulfill the following two requirements: (i) it is
feasible given the robot’s dynamics and does not incur
collisions with obstacles; (ii) it is efficient, in the sense of
maximizing the information gathering while minimizing the
path cost. To solve this problem, we propose the use of a
modified version of RRT* that incorporates both the path’s
information and cost to the tree’s nodes. In addition, we
include a pruning condition that controls the tree’s growth
and keeps the algorithm’s computational complexity constant
with respect to the environment size.

Formally, we aim to find the optimal path Px,s∗ between
states x and s∗. This can be formulated as the following
optimization problem:

argmax
PxA,xB

⊂X
f(I(PxA,xB

), c(PxA,xB
))

s.t.: xA = x,xB = s∗
c(PxA,xB

) < b.

(2)

Here I(·) and c(·) are the functions that evaluate the infor-
mation and cost of the path, f(·, ·) is a function that evaluates
the information-cost trade-off (the utility), and b a budget
for the path cost. We summarize the InformativePlanner

algorithm in Algorithm 1.
The RRT* algorithm is an evolution of the RRT algorithm

that has been shown to be asymptotically optimal. It differs
from RRT in two aspects: choosing a parent and rewiring.
In contrast to RRT, the RRT* algorithm chooses the parent
of the node xnew as the node from the set of neighboring
nodes Vnear that allows us to reach xnew with the minimum
cost. Here we replace the concept of the path cost by the
concept of utility. The utility u of a path is a value that
weights the importance of a path. In this paper, we formulate
the utility, given by function f(·, ·), so that it fulfills our
information gathering objective; i.e. we aim to gather as
much information as possible along the path towards the
station while generating trajectories with the minimum cost.
The function f(·, ·) should grow with I and decrease as the
path cost becomes large. Like in [19], [21], we represent this
trade-off with the following function:

f(I(PxA,xB
), c(PxA,xB

)) =
I(PxA,xB

)

c(PxA,xB
)
. (3)

The cost metric c(PxA,xB
) is chosen as a time needed

to traverse the path PxA,xB
. The information quality

metric I(PxA,xB
), which we calculate with the function

InformationP will be explained in detail in Section III-D.

Algorithm 1 InformativePlanner(x, s∗,θ∗,X, b,X )

1: V ← {x}; E ← ∅; Pp ← ∅; up ← −∞;
2:
3: while ! StopPlanner do
4: xrand ← SampleFree;
5: Nnearest ← Nearest(xrand,V);
6: xnew ← Steer(xNnearest ,xrand);

7: . Check trajectory feasibility and budget constraint
8: if CollFree(PxNnearest

,xnew ) AND cmax < b then
9: xmax ← xNnearest ;

10: . Calculate cost and information of path to node
11: cmax ← cNnearest + c(PxNnearest

,xnew )

12: Imax ← InformationP(xnew,Nnearest,G,θ∗,X)
13: . Calculate path utility
14: umax ← f(Imax, cmax)
15: Vnear ← Near(xnew,V);
16: for Nnear ∈ Vnear do . Choose parent
17: if CollisionFree(PxNnear ,xnew ) then
18: cnew ← cNnear + c(PxNnear ,xnew );

19: Inew ← InformationP(xnew,Nnear,G,θ∗,X)
20: unew ← f(Inew, cnew)
21: . Parent that results in highest path utility
22: if unew > umax then
23: xmax ← xNnear ; cmax ← cnew;

24: Imax ← Inew;umax ← unew

25: . Add node to tree
26: Nnew ←< xnew, Imax, cmax >;
27: V ← V ∪ {Nnew}; E ← E ∪ {Pxmax,xnew}
28: . Discard the nodes that will create a cycle
29: V ′near ← CyclesFree(xnew,Vnear,G)
30: for N ′near ∈ V ′near do . Rewire near nodes
31: cnew ← cNnew + c(PxNnew ,xN′near

);

32: Inew ← InformationP(xN ′near ,Nnew,G,θ∗,X)

33: unew ← f(Inew, cnew)
34: if CollisionFree(PxNnew ,xN′near

) then
35: . Rewire if higher path utility
36: if unew > f(IN ′near , cN ′near ) then
37: IN ′near ← Inew; cN ′near ← cnew
38: Nparent ← Parent(N ′near);
39: E ← E \ {PxNparent

,xN′near
} ∪ {Pxnew,xN′near

};
40: Pp, up ← FindBestPath(x, s∗,G); . Find best path to station
41: return Pp, up;

The second main difference between RRT and RRT*
lies on the incorporation of a rewiring process that allows
the algorithm to approach the optimal trajectory. Let us
remark that RRT* requires that two states must be connected
exactly during the rewiring process. This implies that the
system must be controllable. The rewiring is done by finding
minimum-cost sub-paths that allow reaching the V ′near nodes.
However, the use of non-monotonic utility function (3)
compromises the optimality guaranty of RRT*. Despite this,
our simulation results suggest that our informative planner
is still able to approach the optimal solution.

Furthermore, the non-monotonicity of our utility func-
tion (3) requires the inclusion of a mechanism to avoid the
creation of cycles in the tree. A cycle is a sequence of vertices
starting and ending at the same vertex. Let us emphasize that
the inclusion of a mechanism to avoid cycles allows us to,
in addition to RRT*, extend the algorithm to non-monotonic
path quality functions, such as our proposed path quality
measure or the one used by [19]. Cycles can be created



during the rewiring process if a nodeN ′near, which belongs to
the path that connects the robot’s position with Nnew, could
be reached with a higher utility from Nnew than its previous
utility. This problem does not arise with a monotonic utility
function, since the inclusion of a new node always incurs
a higher cost. Here, however, a longer path could have a
higher utility if we gather more information along it. For
this, we propose a procedure that is implemented before
the rewiring process in function CyclesFree (line 35). This
function takes as input xnew and Vnear, and removes those
elements of Vnear that belong to the path that links the robot’s
position with xnew by following graph G.

Once we finish the execution of the algorithm, which is
given by the StopP lanner criterion, we calculate the best
path in terms of utility that allows us to reach state xB

from xA with function FindBestPath. This function takes
all nodes in the graph and connects s∗ to those nodes that
are closer than a distance η from it. Then we calculate the
utility of all those possible paths and choose the one with
the highest utility. The utility, together with the computed
path form the algorithm output.

D. Information Quality Metric

The formulated algorithm relies on an information quality
metric to evaluate the informativeness of both, a position of
the environment –stations– and a whole path. In this work,
we use the entropy as information quality metric. Note that
this quantity can be pre-computed at each station before
running the path planning algorithm, which makes our metric
computationally efficient. Moreover, the entropy has been
shown to correlate well with the root mean squared error
(RMSE) of a reconstructed process [22]. In other words, a
position of high entropy will most likely incur a reduction of
the RMSE between the actual process and its model-based
estimation. Let us point out that the entropy at a particular
location can be easily calculated from the predicted process
covariance [2].

The computation of the information of a particular path
translates to summing all the pre-computed individual en-
tropies of those positions that belong to the path. However,
in contrast to, e.g. MI, the sum of entropies does not have
a diminishing property since it does not consider the cross-
correlations [9]. To overcome this issue, we propose in this
paper the mean entropy as information quality metric. This
is primarily motivated by the concept of entropy rate, which
is a limit of the joint entropy as the number of observations
grows. Entropy rate converges to the averaged entropy as a
special case. In fact, in contrast to the sum of entropies, the
mean entropy presents a diminishing property. For example,
imagine two paths that have the same sum of entropies. An
averaged entropy would favor the one that requires fewer
measurements. Formally we define our information quality
metric as a mean entropy H̄(Px,x′) along the path:

I(Px,x′) = H̄(Px,x′) =
1

|Px,x′ |
∑

τ∈Px,x′

H(τ ) (4)

where |·| is the cardinality of a set, i.e. the number of vertices
of path Px,x′ , τ ∈ X are the positions that compose the path,
and H(τ ) is the entropy of a single position.

To finalize, let us motivate the use of entropy against
a state-of-the-art information metric: mutual information.
Mutual information is a metric that has been extensively
employed in the literature as we described in Section I.
Indeed, it seems like a perfect fit for selecting information
sampling locations because it takes into account the cross-
correlations of the test points. However, we have observed
that such a function is not adequate for algorithms that
require an extensive computation of the information quality
metric, as it is pointed out in [23]. Simulations results
presented in Section IV-B.2 demonstrate this hypothesis.

IV. SIMULATIONS AND DISCUSSION OF RESULTS

In this section we present the simulations setup and
performance results of the proposed algorithm. We divide
this analysis in two main parts. First, we compare our infor-
mative path planner against some state-of-the-art algorithms.
Second, we evaluate our whole algorithm in an active sensing
task of an unknown physical process that takes place within
a complex environment.

A. Simulations Setup

Here we describe the simulation setup used to validate the
algorithm with synthetic and real data. We use the PyGPs1

library to perform the GPs regression and learning of the
hyperparameters. We carry out each of the simulations 40
times.

We test our algorithm with simulated and real data as
ground truth. These data are stored as grids of 20× 20 cells
with a resolution of 5 and 10 centimetres. The estimated
mean of the GP at the centre of these cells will be used to
analyze the error of the estimated model with respect to the
ground truth. Please notice that the exploration is performed
in continuous space, and no discretization is required.

For the simulation we assume a round-shaped holonomic
robot with 5 centimetres radius that moves with a con-
stant speed of 0.2 metres per second. Here we employ a
holonomic-robot to abstract the active sensing strategy from
the robot’s motion. However, the proposed algorithm is valid
for arbitrary robot’s dynamics given the restrictions imposed
by RRT or RRT* algorithms. We also assume that the robot
needs an infinitesimally small time to take a measurement.
The robot can move in a continuous space, and measurements
taken within one cell of the grid are assumed to be equal
within the limits of additive noise.

For the SearchStation and InformativePlanner al-
gorithms we select the following parameters: the parameter
η and the distance employed by the function Near are
both set to the measurement’s resolution, i.e., 5 or 10
centimetres. We select the running time as stop criterion for
the SearchStation and InformativePlanner algorithms,
with a value of 5 and 10 seconds respectively. The budget

1pyGPs - A Package for Gaussian Processes.
http://www-ai.cs.uni-dortmund.de/weblab/static/api docs/pyGPs/.
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Fig. 3: Simulation scenarios used to test the performance of
our informative path planner algorithm.

parameter b is set to 10 seconds, which corresponds to a
planning horizon of 2 metres given the robot’s speed. We
initialize the GPs hyperparameters to the following values
l = 1, σf = 1, σn = 0.1.

B. Analysis of the Informative Path Planner

1) Setup: In this section, the objective is to analyze the
performance of the informative path planner alone. This
assumes an available GP model with fixed hyperparameters.
The goal of our informative path planner algorithm is, given
this model, to find the trajectory that optimizes equation (2)
as fast as possible. Since our information function corre-
sponds to the mean entropy, we simulate two scenarios with
different entropy structures (see Figure 3):
• Scenario 1 recreates a physical process with low spatial

correlation in which a robot has already gathered two
patches of measurements (blue areas). We employ the
following hyperparameters: l = 0.02, σf = 0.084, σn =
0.02.

• Scenario 2 recreates the same scenario, but now we
consider a process with higher spatial correlation. Here
we set l = 0.13, σf = 0.084, σn = 0.09.

We fix the agent’s initial position to (x = 0.2, y = 0.5)
and set the station at (x = 0.8, y = 0.5) for all the
simulations runs.

2) Choice of the Information Quality Metric: We argue
in Section III-D that we employ as information metric mean
entropy instead of mutual information for computational
reasons. We test this hypothesis by running Algorithm 1
and replacing the information metric given by (4) with the
mutual information. Results correspond to the average over
40 simulations runs for a planning time of 180 seconds.
We show the results in Table I. We can conclude that our
information metric, given by equation (4) outperforms the
mutual information in an online sensing setting.

3) Performance Analysis: We benchmark our algorithm,
to which we will refer as Algorithm, against two state-of-
the-art sampling-based informative path planning algorithms:
• (i) the technique of [17], where multiple paths

are obtained by running the RRT planner several

tfirst[s] Entropy [bits] Cost [s]

Mean Entropy 6.31 −6.93 6.79
Mutual Information 46.71 −3.54 6.86

TABLE I: Analysis of the information function. We compare
our proposed information function (mean entropy) with the
mutual information. We perform this comparison in terms of
the time to find a first path (tfirst) from the initial position
to the station, posterior entropy calculated over the complete
environment that results after measuring along the path, and
cost of the resulting path.

times, and the paths are then evaluated according to
the information metric; this algorithm we will term
Multiples RRT;

• (ii) the RIG-tree planner [13], to which we will refer as
RIG Algorithm.

In both cases, the same utility function as in our algo-
rithm is employed. For the RIG-tree we use one of the
approaches suggested by the authors in [13]. Specifically,
we consider the pruning based on the heuristic that the
utility function is modular. Here, we have defined two nodes
as co-located if they are within the same cell of the grid.
For more details about the implementation, please refer to
the original paper [13]. We have also tested several other
alternatives proposed by the authors, but they offered a lower
performance in our particular setup.

Moreover, the two benchmark algorithms are not designed
to meet a goal constraint; they explore the environment
with no goal. This makes a comparison with our algorithm
difficult. We solve this by selecting all samples that are closer
than a distance η from the goal, and then connecting them to
the goal position. This results in paths that link the agent’s
position with the goal.

We compare the three considered algorithms in terms of an
independent metric – the posterior entropy – that results after
measuring the planned path. Let us remark that we calculate
the posterior entropy over the complete environment, and
we consider 180 seconds of planning time. In addition, we
compare the cost of the resulting paths. Table II shows the
results for the three algorithms. We can conclude that our
algorithm is the one that offers the best ratio entropy-cost
for all scenarios. Specifically, the most relevant scenario for
this evaluation is scenario 2 since it presents a higher spatial
correlation. Let us remark that for this scenario our algorithm
results in a twofold and sevenfold increase respect to the
other alternatives while offering a similar path cost.

C. Analysis of the Exploration Strategy

1) Setup: We validate in this section our information
gathering strategy in an environment that emulates a corridor
with different rooms (see Figure 4). In this section the full
technique is analyzed. Specifically, the system uses both
SearchStation and InformativePlanner algorithms for
exploration and learns online the parameters of the GP
model.
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Fig. 4: Left: scenarios employed to test our proposed information gathering strategy. The black polygons correspond to the
obstacles and the underlying picture is the magnetic field intensity we aim to explore. Right: mean and variance of the root
mean squared error (RMSE) between the estimation of the process and the ground truth.

Entropy [bits] Path Cost [s]

Scenario 1
Algorithm 383.25 3.03

Multiples RRT 383.75 3.26
RIG Algorithm 383.86 4.24

Scenario 2
Algorithm −6.93 6.79

Multiples RRT −3.68 6.23
RIG Algorithm 0.03 5.65

TABLE II: Path cost and posterior entropy evaluated over
the complete environment after measuring the resulting path
given 180 seconds of planning time.

The simulations employ real data that corresponds to the
magnetic field intensity in an indoor environment. This data
was collected with a ground-based robot equipped with a
magnetometer at the German Aerospace Center (DLR).

2) Performance Analysis: The goal of our active-sensing
information gathering algorithm is to reduce the RMSE
between ground truth and estimation of the process as fast
as possible. Let us remark that we also consider for the
calculation of the RMSE the positions that are below the
obstacles and those that are not reachable by the robot. In
this section, we compare the devised strategy for exploration
with the following strategies:

• Greedy approach: the next station is selected as a
neighboring cell according to the cell size of the ground
truth data, which is then also the next pose for the robot.

• Random approach: an RRT is grown from the current
pose for the same planning time and budget b as in
SearchStation algorithm. The next station is selected
randomly from the leaves of the RRT and the associated
path is employed to reach the station.

Let us clarify our motivation to employ the greedy and
random benchmarks. The algorithms Multiples RRT and
RIG Algorithm are one-shot algorithms. In other words,
given an a priori known model the algorithms run for some
user pre-defined time and produce a path. This is also what
our informative planner (Algorithm 3) is designed to do.
This was the motivation to compare the algorithms with
each other. In this section we evaluate our full exploration

strategy (Algorithm 1) that is able to explore an a priori
unknown process. Let us remark again that Multiples RRT

and RIG Algorithm do not consider this feature. In the lit-
erature, two common approaches to deal with an exploration
of an unknown process are a random trajectory, and a greedy
one [2], [10]. Therefore, we used these two to benchmark our
exploration strategy. We believe that the proposed evaluation
is the fairest to compare each of the different approaches
according to its capabilities.

Figure 4 shows the mean and variance of the RMSE
between the actual process and our estimation for all exe-
cutions. We also test the methods under assumption that the
optimal hyperparameters are known and fixed (listed with
an asterisk sign). Observe that the proposed informative al-
gorithm clearly outperforms the other strategies. The greedy
approach with the optimal hyperparameters is the only one
that offers a comparable performance after the 900 seconds
mission. Note, however, that it requires prior knowledge
about the process.

To finalize, let us compare our full exploration strategy
with the RIG Algorithm. Although this algorithm and our
strategy have a different motivation, as previously pointed
out, we compare both of them to get a better understanding of
our proposed algorithm capabilities. Specifically, we consider
the following for the RIG Algorithm: (i) the model is a
priori known; i.e. we know the GPs hyperparameters and
they do not need no be estimated, (ii) the utility function
corresponds to the mutual information, as suggested by the
authors in [13], and (iii) the planning time is 600 seconds and
then we let the robot follow and measure along the planned
path. Let us remark that these are favorable conditions for
the RIG Algorithm as our algorithm assumes an a priori
unknown model that needs to be estimated online. We have
run the simulation 40 times starting from different positions
in the environment. Then we have calculated the RMSE
between the ground truth and the process estimation after
measuring along the calculated path. The average RMSE
that we obtained for the RIG Algorithm is 0.27, which
is much higher than the one obtained by our algorithm
that is 0.05. We believe that the lower performance of the
RIG Algorithm lies on the fact that the algorithm grows a



single tree to explore the complete environment. Notice that
the complexity of adding a new sample grows exponentially
as the tree grows, which difficult the exploration of the
complete environment. In contrast, our algorithm runs mul-
tiple consecutive trees using our devised two-step approach
that allows to identify unexplored areas and to perform an
efficient exploration.

V. EXPERIMENTS AND DISCUSSION OF RESULTS

In addition to the simulations, we have performed an ex-
periment in an indoor laboratory environment populated with
obstacles (see Figure 1). Experimental results demonstrate
that our proposed strategy is able to decrease the RMSE
to approx. 1.24 µT , which represents a 1200% improvement
respect to a random and greedy trajectory. A video that shows
the real-time execution of the experiment is attached to the
paper.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have presented an active sensing approach
for efficient information gathering in environments populated
with obstacles using GPs. The GPs model allows to capture
spatial correlations of the process, and are used to make
predictions about the process value and the corresponding
uncertainty at locations not yet visited by the robot. The
predicted process uncertainty guides the robot trajectories:
it select stations where the uncertainty within a certain
range from the current position is the highest. To reach the
stations we propose a modification of the RRT* algorithm
that also exploits the learned GP model for informative
planning. Specifically, the algorithm trades-off the cost of the
generated path with the information gained while traversing
the generated route.

The presented algorithm has been validated using synthetic
data, which illustrates well the impact of information gain
on the generated trajectories. Also, an experiment with a
single robot has been performed with the goal of exploring
a magnetic field in a laboratory populated with obstacles.
Results show that the devised information gathering strategy
achieves a 1200% improvement respect to the two considered
state-of-the-art approaches.

As future work, we aim to extend the proposed algorithm
to handle uncertainty both in the robot’s pose and motion.
In addition we should consider as well the mapping of the
environment. Another natural extension for the algorithm is
to consider the multi-robot case. This way we could benefit
from the correct coordination between robots to achieve a
much higher performance.
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