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Abstract— This paper addresses the problem of designing an
efficient exploration strategy for multiple mobile agents. As
an exploration strategy, an intelligent waypoint generation is
considered, where the trajectory of the agent is governed by
the properties of the explored phenomenon. Here it is assumed
that the explored field is sparse in it’s spatial distribution;
consequently, it is assumed that a certain agent’s movement
trajectory might favor a sparse solution, as contrasted to
simple sampling strategies. Specifically, these trajectories lead
to an emergence of a structured sensing matrix consisting of
shifted sensor impulse responses. Nevertheless some properties
of this matrix, such as low mutual coherence, are essential
for a successful sparse reconstruction of the phenomenon.
Thus, the agents are directed to move so as to favor the
desired properties of the sensing matrix, an approach termed
sparse exploration. Unfortunately, numerical techniques for
optimization of the sensing matrix are intractable. Therefore
this paper proposes a number of heuristics, which numerically
optimize the measurement locations of the agents so as to
favor a sparse solution. Synthetic experiments are performed
to demonstrate the effectiveness of the proposed heuristics
as compared to simple random walk or regular movement
patterns.

I. INTRODUCTION

In exploring an unknown environment with autonomous
multiple mobile agents, or swarms, it is crucial to define
a main guiding principle that will help a swarm toau-
tonomously, i.e., without a direct human interaction, define
a next point of interest. For instance, a planetary exploration
can exemplify well such scenarios, where a direct steering
of a robot on a remote planet might be difficult. Also, such
a principle might be helpful for disaster relief organizations,
e.g., if robots should autonomously find people in adversity.

Essentially, exploration can be defined as a collection of
samples, or measurements, that provide sufficient informa-
tion about a metric or a field of interest. Depending on a
particular environment, these samples can be collected more
efficiently if some structure of the explored phenomenon can
be assumed. Obviously, it is possible to sample in systematic
fashion, over some sampling grids, which take the Shannon
sampling theorem into account. Yet when the structure is
known, the exploration can profit from it. One reasonable
assumption is that the explored phenomenon consists of
a relatively small number of well-localized impulses, i.e.,
that the process is sparse. In this case the explored field
can be reconstructed from fewer measurements, compared
to Shannon’s sampling theorem, i.e., more efficiently using

1All authors are with the Institute of Communications and
Navigation of the German Aerospace Center (DLR), Oberpfaffenhofen,
82234 Wessling, Germany, christoph.manss@dlr.de,
dmitriy.shutin@dlr.de, alberto.viserasruiz@dlr.de,
thomas.wiedemann@dlr.de, joachim.mueller@dlr.de

methods of compressive sampling [1]–[3]. Thus, for this
exploration problem the application of sparse reconstruction
techniques are addressed in this work.

In Compressed Sensing (CS) a measurement sample is
represented as a linear combination of the original (and
sparse) data. This can be described mathematically asy =
Φf , wherey are M collected samples,Φ is the M × N

sampling matrix withM << N and f is the original data
as aN × 1 vector.

If, then, the data is sparse, i.e. the data mostly consists
of zeros, CS guarantees the reconstruction of the non-zero
components inf by means of anℓ1-constrained optimization
[4], even if the sampling equation is highly underdetermined.
However,Φ plays an important part in the CS strategy and
certain properties of it are crucial for reconstruction, i.e.
finding f . Thus, we would like to optimizeΦ in a way to
achieve better waypoints and trajectories for the exploration
process.
The idea is to interpret every row ofΦ as a sensor’s Channel
Impulse Response (CIR), i.e. a footprint of the sensor, which
is dependent on the sampling position. Hence, the sampling
positions have to be chosen in a way that optimizesΦ.

Nevertheless, the sampling matrix has been optimized in
the literature before and other researchers put effort in the use
of CS for exploration, measuring and path planning. Some
related work is shown in the following.

To optimize the sampling matrix a gradient of a sampling
matrix’s Grammian matrix is computed in [5]. The sampling
matrix is dense and has values drawn from a Gaussian
distribution. This algorithm generates sensing matrices with
a lower mutual coherence with a sparsifying transformation
(dictionary), which improves the reconstruction with Orthog-
onal Matching Pursuit (OMP). Similar approaches have been
made in [6], where the sampling matrix and a dictionary are
optimized jointly by minimizing the mutual coherence. In [7]
the coherence of a dense matrix is optimized, also, but with a
method involving Lagrange multipliers. In this paper the data
is already considered being sparse and, hence, has no need
of a sparsification by a dictionary. Also, these mentioned
methods can not keep the sensor’s CIR structure in each
row of Φ, because its Grammian is often optimized towards
the identity matrix. Therefore they are not suitable for the
intended objective in this paper.

An adaptive and distributed method to optimizeΦ has
been proposed in [8]. They use an adapt-then-combine dif-
fusion strategy for evaluating the sampling matrix’s gradient
of multiple agents. Even so, they assume random sampling
matrices with values drawn from a Gaussian distribution and
they don’t consider a structure in the sampling matrix.
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Fig. 1. Measurement model with multiple agents, e.g. UAVs. Eachagent
has its trajectory with measurement points on it. The environment E is
discretized and the sensor footprint is shown in grey. This footprint is the
CIR of the sensor (i.e.h), which is one row of the sampling matrixΦ.

Contrary, [9] proposes a way to construct purely determin-
istic generated sensing matrices with the use of finite fields.
Although, according to the author, the deterministic matrices
are always inferior to random matrices, he claims that his
approach generates the so far best deterministic constructed
sampling matrices. However, these generated matrices are of
no use in this paper, because they are not able to take a
sensor’s CIR into account.

Compressed Sensing for active measuring has been used
in [10], where the sampling strategy of a laser scanner is
changed to get more performance in the reconstruction by
means ofl1-optimization. They estimate important areas for
the scanner to measure and increase the number of samples
in such areas.

A path-planning concept for CS is introduced in [11].
They optimize different movement strategies with a parti-
cle swarm optimization to reduce the cost of measuring,
direction change and motion. Compressed Sensing is then
used to reduce the number of measurements, which further
minimizes their proposed cost-function. Their approach has
less energy consumption and comparable field reconstruction
results.

The state of the art shows that CS is useful to save energy
and time for exploration purposes, but is still an active
field of research. Therefore we propose a new exploration
paradigm by means of an adaption of the CS’s sampling
matrix, which can involve CIRs of sensors, to generate way-
points for exploration purposes. After a problem statementin
Section II, different optimization strategies of such structured
matrices for exploration purposes are discussed in Section
III. The efficiency of those strategies for reconstruction
and exploration is evaluated by Monte-Carlo simulations in
Section IV.

II. COMPRESSED SENSING

Consider now a swarm exploration problem withP inde-
pendent mobile agents. The goal of the swarm is to coop-
eratively explore, i.e., sample, a spatially-distributedfield f

that is defined over some two-dimensional exploration area
E ⊂ R

2. In the following we will assume thatE is divided
into N grid cells, such thatf ∈ R

N is an N -dimensional

vector. Each agent performs linear measurements of the field
f as follows

yi[n] = hi(xi[n])
T f + ǫi[n], (1)

where yi[n] is the nth sample taken by theith agent,
hi(xi[n]) ∈ R

N is the impulse response of theith agent’s
measurement system at locationxi[n] ∈ E, and ǫi[n] is
the corresponding measurement noise. By collectingM

measurement samples of allP agents in a single vector
y = [y1[0], . . . , y1[M − 1], . . . , yP [0], . . . , yP [M − 1]]T , we
can formulate (1) in a vector form as follows:

y = Φ(X)f + ǫ, (2)

where ǫ =
[
ǫ1[0], . . . , ǫ1[M − 1], . . . , ǫP [0], . . . , ǫP [M −

1]
]T

, X =
[
x1[0], . . . ,x1[M − 1], . . . ,xP [0], . . . ,xP [M −

1]
]
, and

Φ(X) =
[
h1(x1[0]), . . . ,h1(x1[M − 1]), . . .

. . .,hP (xP [0]), . . . ,hP (xP [M − 1])
]T

.
(3)

This measuring process is also shown in Fig. 1.
Assuming thatf is sparse, i.e., out ofN values only a

few are non-zero.1 Under this assumption, the theory of CS
predicts thatf can be reconstructed more efficiently, in a
sense that fewer measurements are needed [2]. Moreover,
finding the sparse solution amounts to solving the following
ℓ1-constrained convex optimization problem [1], [2], [12]

f̂ = arg min
f

||f ||ℓ1 s.t. ||y −Φ(X)f || < ǫ, (4)

with ||ǫ|| = ǫ. The success of the optimization (4) in finding
a sparse solution hinges upon the properties of the matrix
Φ(X). Specifically, the matrixΦ(X) has to satisfy a so-
called Restricted Isometry Property (RIP) [1]–[3], which
implies that

(1− δ)||f ||2 ≤ ||Φ(X)f ||2 ≤ (1 + δ)||f ||2, (5)

for some smallδ > 0. In other words,Φ(X) should behave
like a nearly isometric map and this requirement (5) is
satisfied also for matrices that have low mutual coherence
[7], [13], [14]. Mutual coherence is defined as a maximum
correlation between columns ofΦ(X): a small mutual co-
herence will also imply RIP, which ensures that (4) recovers
a sparse solution.

It can be seen from the model (2) that the properties
of the sensing matrixΦ(X) are essentially determined by
the positions of the agents, or, more specifically, by the
trajectories of the mobile agents as they move through
the exploration area. This permits us formulating asparse
exploration paradigm. Specifically, as sparse exploration
we understand an algorithm that computes the movement
trajectories of the agents so as to favor a sparse estimate of
some (sparse) fieldf in the exploration areaE by optimizing
the sensing matrixΦ(X).

1In a more general setting, we can assumef to be sparse in some
dictionaryD, so thatb = Df , with b being sparse. In this case we can
defineΨ(X) = Φ(X)D, which will lead to model (2):y = Ψ(X)f + ǫ.
In the following this case will not be considered as it does not impact the
methodology we intend to demonstrate later.



III. SENSING MATRIX OPTIMIZATION

Sensing matrix optimization is a challenging topic and has
been extensively studied in the literature [5], [6], [8], [9]. In
our case the direct optimization ofΦ(X) is non-trivial due
to the combinatorial nature of the problem [7]: computing
the RIP or evaluating mutual coherence would require an
exhaustive search over all possible trajectories of all agents.
Instead, here we propose to employ several heuristics that
optimize the spectral structure of the sensing matrix instead
of a direct optimization of the matrix coherence or RIP. In
the following the sensing matrix’s properties that are more
profitable for the estimation problem proposed are discussed
in this paper.

First, we would prefer that each new measurement does
not decrease the rank of the sensing matrixΦ(X), which
is important for every Basic Pursuit technique [7]. Note
that initially, when only a few measurements are available,
the sensing matrix is rank-deficient. Thus, our hope is that
when the new measurements become available, they will be
“orthogonal” to the already available information.
Second, the singular values of the sensing matrixΦ(X)
should preferably be all equal, or with small variance, to
mimic a matrix with low mutual coherence. With these
properties in mind we propose the following heuristics.

• linearIndependence: The first heuristic that we propose
optimizes the coverage of exploration area for thekth
agent as

x̂k[n+ 1] = arg min
xk∈E

P∑

p=1

n∑

j=0

∣∣hp(xp[j])
Thk(xk)

∣∣+

k−1∑

q=1

∣∣hq(x̂q[n+ 1])Thk(xk)
∣∣ ,

(6)

wheren = 0, . . . ,M − 1 andk = 1, . . . , P . Note that
as the full coverage we understand such a measurement
strategy under which the agents eventually cover with
their sensor footprints the whole exploration areaE.
Optimization (6) ensures that the correlation between
sensor footprints at the existing measurement locations
and the next one is minimized. Thus, the row-rank of
the matrix grows with each new measurement. As a
side-effect, the agents will not take measurements at
the same locations. Yet, neither the coherence nor the
RIP of the sensing matrix is optimized directly.

• maxDet: Another criterion that we consider aims at
optimizing the singular values of the sensing matrix.
Again, we do not do it directly, but instead maxi-
mize the determinant of the matrix productΦ̃(X) =
Φ(X)ΦT (X), where we exploit the relationship be-
tween the singular values ofΦ(X) and eigenvalues
of Φ̃(X), which correspond to the RIP in (5) [12].
Formally, the optimization can be stated as follows

x̂k[n+ 1] = arg max
xk∈E

det Φ̃(X), (7)

where in this casẽΦ(X) is a(nP+k×nP+k)-matrix.
Expression (7) ensures that the volume of column space
spanned by the sensing matrix grows with each new
measurement.

• maxMean, minVar: Another criterion that we pro-
pose consists in direct optimization of the eigenvalues,
specifically in minimizing their variance and maximiz-
ing their mean. SincẽΦ(X) is quadratic and positive
definite, its eigenvaluesλ are equal to its squared singu-
lar valuesσ2. Thus,Φ̃’s singular values are optimized
to estimate the next location such as

x̂k[n+ 1] = arg max
xk∈E

nP+k∑
j=0

σj(X)

nP + k
, (8)

x̂k[n+ 1] = arg min
xk∈E

nP+k∑
j=0

(
σj(X)− σ̄

)

nP + k
, (9)

whereσ̄ is the mean of the singular values ofΦ̃. Also,
the number of singular values has to increase after each
iteration, i.e.,rank{Φ̃}

!
= nP + k.

As mentioned before also both criteria can be jointly
optimized that̂xk fulfills (8) and (9).

A. Algorithm for Waypoint Estimation

In the following the implementation of the optimization
algorithm and, thus, of the way point generation is discussed.
The pseudo-code of the method is summarized in the Algo-
rithm 1. At each iteration of the algorithm a next waypoint
for the agent is determined based on the above discussed
criteria. Essentially, each iteration consists of two parts.

First, a set of possible locations is determined, see Line 3.
This functionality is realized in thedetermineNeighbors()
function; here also a check can be implemented to exclude
way points that are either obstacles, unreachable due to
the motion constraints of the robot or fall outside of the
pre-defined search space. Of course, this is only possible
if the map is whether estimated before or a-priori known.
The search space, over which a list of possible waypoints
is determined, can be either local, when only locations in
the vicinity of the agent are considered (mainly close to
the sensor footprint’s border), or global, when the whole
environment is taken into account. In the following we will
denote these scopes asLocal andGlobal, respectively.

In the second part of the algorithm in Line 5-7 a temporary
sensing matrixΦtemp is constructed by augmentingΦ(X)
with a new row that models a measurement at a new position
- addRow(). A possible new location is taken from the
neighbors-array, which hasQ ≤ N elements depending on
the used scope - Local or Global.
Then, depending on the chosen optimization strategy,Φtemp

is analyzed and if the objective function for a tested position
is improved, the position is accepted as the next movement
point. The corresponding computations are implemented in
the functionoptimizationStrategy() and realize equa-
tions (6), (7), (8), (9) or (8) and (9) together, depending on



the chosen optimization strategy. Once the solution is found,
the sampling matrixΦ is augmented with the corresponding
row, and the new measurement location is stored. As the
output of the Algorithm 1 we obtain a set of waypoints and
the corresponding sensing matrixΦ.

Algorithm 1 findWaypoints(M)

1: waypoints= ∅

2: for m = 0, . . . ,M do
3: neighbors= determineNeighbors()
4: nextPos= ∅

5: for neighbor = neighbors(0, . . . , Q) do
6: Φtemp = addRow(Φ, sensorModel(neighbor))
7: nextPos =optimizationStrategy(Φtemp, nextPos)
8: Φ = addRow(Φ, sensorModel(nextPos))
9: waypoints= add(nextPos)

return waypoints,Φ

IV. SIMULATION

A. Description of the simulation

In this section we will empirically analyze the performance
of the sensing matrix optimization strategies discussed above.
Therefore we simulate an environment with temperature
spots, which have to be estimated in location and intensity
with a thermal sensor. For simplicity, we will assume a
single agent, i.e.,P = 1, which is simulated as an UAV
flying at a heighth. Although the algorithm is proposed for
multiple agents, the result looks similar for one agent, if the
estimated waypoints are split and assigned to multiple agents
afterwards, assuming that each agent has the same sensor.
The exploration areaE can be considered as a square with
30 × 30 cells, so thatN = 900. Furthermore, to exclude
the impact of the noise on the performance of the estimator,
we will assume noise-free measurements, i.e.,ǫ ≡ 0. The
sensor’s footprint is modeled as an indicator function on the
interior of the circle with a radiusr = h sin(α), where
the sensor has a conical opening withα as opening angle.
Furthermore, the interior is weighted by a Gaussian kernel
with the widthw. This results in the sensor’s CIR. For all
measurements considered herer ≡ const andw ≡ const. In
this scenario the sensor footprint has a coverage of about
10% of the environment, which means11 measurements
cover the environment completely. However, the sensor foot-
print is circular and the environment rectangular and, thus,
overlapping of footprints is unavoidable but required, also.

As references we consider a simple random walk of the
agent through the exploration area, and a regular meander
pattern. Whereas, the meander counts the number of grid
cells in the square environmentE and takes equidistant
samples such that as much as possible of the area is covered.
The sampling distance of themeander strategy depends on
the applied number of measurements.

Each waypoint estimation with reconstruction is applied
500 times in theGlobal-case and50 times in thelocal-case.
The location and amplitude of the four non-zero elements in
E and the starting position of the agent is always changed
randomly in the beginning of each simulation. Then one

of the waypoint estimation strategies is applied and the
agent samples at the estimated locations. Afterwards, the
resulting measurements and the sensing matrix are used for
the environment’s reconstruction with the correspondingℓ1-
constrained reconstruction problem using CVXOPT2 library.
Subsequently the Normalized Mean Square Error (NMSE) is
computed with the original dataf and the estimated datâf
such as

e =

(
f − f̂

)T (
f − f̂

)

fT f
, (10)

which is the optimization strategy’s measure of performance
and later on shown in Fig. 2 and Fig. 5.
Equally, the mutual coherence is computed to see how the
optimization strategies are affected by it.

B. Simulation and Discussion of Results

As can be seen in Fig. 2 optimization strategyMaxDet
(7) result in the lowest NMSE with increasing number of
measurements.

If the number of samples is significantly small,MaxMean
(8) performs best. The reason for this is that this strategy
samples in smaller distances to previous samples and if an
impulse is in this sampled area, it can be easily reconstructed.
Wheras theMinVar strategy (9) samples with a larger dis-
tance to other samples. This leads to many samples close to
the border ofE. It seems thatMaxDet is somehow a tradeoff
between those two optimization strategies. Generally, if the
number of samples is too small the reconstruction process
can not accurately estimate the position of each impulse,
which leads to a higher NMSE.

The Randomwalk and Meander strategies are first per-
forming well, but with increasing number of measurements
they are outperformed byMaxDet. Also, due to the random
nature of the Randomwalk, it is not guaranteed that the whole
environment is sensed. TheMeander strategy needs a higher
number of measurements to obtain a well distanced number
of measurements.
The strategy shown in (6) led to bad conditioned matrices
with the result that the reconstruction often fails and is
therefore not shown in Fig. 2.

A smaller mutual coherence ofΦ does lead to improve-
ments in the reconstruction procedure, as can be seen with
MaxDet. However, in the case ofRandomWalk andMeander,
the reconstruction is still good compared to the other algo-
rithms, although their sampling matrix has a larger mutual
coherence.

As an example Fig. 4 shows one sampling grid with 40
measurement locations estimated by theMaxDet strategy.
This strategy aims for sampling positions (rectangle) thatare
somehow located on the border of each footprint (circles).
With increasing number of measurements new sampling
positions are located in between. This is also the reason why
the mutual coherence decreases.

If the view of the optimization strategy is changed to
Local, sampling positions near the current positions are

2http : //cvxopt.org/



0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

number of generated measurementpoints

N
M

S
E

 

 

MaxDet

MaxMean

MinVar

MaxMeanAndMinVar

RandomWalk

Meander

Fig. 2. NMSE dependent on the number of measurements with a global-
view. This NMSE is averaged over 500 independent runs, wherethe
impulses positions and the initial positon of the agent are chosen randomly.
The NMSE is computed as mentioned in (10).
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Fig. 3. If the mutual coherenceµ(Φ) decreases, the performance of the
reconstruction increases (compare Fig. 2. The mutual coherence depends on
the sampling positons and the overlap of the sensor footprints.
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Fig. 4. A trajectory optimized by theMaxDet strategy. The rectangles are
the sampling position and the circles indicate the sensor footprint. In total
these are 40 measurements. The initial position has been chosen randomly.

considered only. The NMSE of the optimization strategies
MaxDet, RandomWalk with local-view are shown in Fig. 5.
Since the local-view does not offer every position inE, it is
inferior to the global-view strategies, but less computational
complex. The exploration paradigm is constrained by the
agent’s position and, thus, makes some bad decisions. This
results in a larger NMSE, but still the reconstruction is
solved.
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Fig. 5. NMSE dependent on the number of measurements with local-
view. This NMSE is averaged over 50 independent runs, where the impulses
positions and the initial positon of the agent are chosen randomly. Due to
the local-view and its constraints the algorithm sometimes makes a bad
decision.

V. CONCLUSION AND OUTLOOK

In this paper we have shown an exploration paradigm
for sparse environments that is based on CS and generates
points of interest by optimization of the sampling matrix
Φ. Although the optimization of such a matrix is non-
trivial, some empiric strategies have been proposed and
evaluated. This paper shows, also, how to directly use the
sensor’s footprint in the sampling matrix, which should make
CS more practical for mobile sensing in robotics. These
strategies have been tested against each other and the results
show that some give good results with respect to the NMSE.
Also, due to sparsity and the CS-strategy less than10% of
all possible measurement points are needed to estimate the
whole environment, which in the end saves time and energy.

Our group is looking forward to further investigate such
sparse-driven exploration strategies. Therefore, these strate-
gies should be implemented on multiple agents (P > 1), i.e.
UAVs, to show the performance in reality. Also, these strate-
gies should be enhanced by taking sparsification by means of
a dictionary into account. A dictionary should enable these
strategies to perform even in non-sparse environments.
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