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Abstract— This paper addresses the problem of designing an methods of compressive sampling [1]-[3]. Thus, for this
efficient exploration strategy for multiple mobile agents. As  exploration problem the application of sparse reconstoct
an exploration strategy, an intelligent waypoint generation is techniques are addressed in this work.

considered, where the trajectory of the agent is governed by . .
the properties of the explored phenomenon. Here it is assumed In Compressed S_ensmg (CS,) a. measuremer!t .sample IS
that the explored field is sparse in it's spatial distribution; represented as a linear combination of the original (and
consequently, it is assumed that a certain agent's movement sparse) data. This can be described mathematically as
trajectory might favor a sparse solution, as contrasted to &f, wherey are M collected samples® is the M x N

simple sampling strategies. Specifically_, these t_rajectorie_s lead sampling matrix withM << N andf is the original data
to an emergence of a structured sensing matrix consisting of
&as alN x 1 vector.

shifted sensor impulse responses. Nevertheless some propertie . . .
of this matrix, such as low mutual coherence, are essential If, then, the data is sparse, i.e. the data mostly consists

for a successful sparse reconstruction of the phenomenon. of zeros, CS guarantees the reconstruction of the non-zero
Thus, the agents are directed to move so as to favor the components irf by means of arf;-constrained optimization
desired properties of the sensing matrix, an approach termed [4], even if the sampling equation is highly underdeterrdine

sparse exploration. Unfortunately, numerical techniques for . .
optimization of the sensing matrix are intractable. Therefore However,® plays an important part in the CS strategy and

this paper proposes a number of heuristics, which numerically Certain properties of it are crucial for reconstructiorg. i.
optimize the measurement locations of the agents so as to finding f. Thus, we would like to optimizép in a way to

favor a sparse solution. Synthetic experiments are performed achieve better waypoints and trajectories for the expitamat
to demonstrate the effectiveness of the proposed heuristics process
as compared to simple random walk or regular movement . . ,
patterns. The idea is to interpret every row @ as a sensor’'s Channel
Impulse Response (CIR), i.e. a footprint of the sensor, kwhic
. INTRODUCTION is dependent on the sampling position. Hence, the sampling

In exploring an unknown environment with autonomoud©Sitions have to be chosen in a way that optimi¢es
multiple mobile agents, or swarms, it is crucial to define Nevertheless, the sampling matrix has been optimized in
a main guiding principle that will help a swarm tau- the literature before and other researchers put effortarutie

tonomously, i.e., without a direct human interaction, define®f €S for exploration, measuring and path planning. Some

a next point of interest. For instance, a planetary exitmat "elated work is shown in the following. .
can exemplify well such scenarios, where a direct steering 10 OPtimize the sampling matrix a gradient of a sampling
of a robot on a remote planet might be difficult. Also, suchNatrix's Grammian matrix is computed in [5]. The sampling
a principle might be helpful for disaster relief organipats, Malrix is dense and has values drawn from a Gaussian
e.g., if robots should autonomously find people in adversitgliStribution. This algorithm generates sensing matricél w
Essentially, exploration can be defined as a collection & lower mutual coherence with a sparsifying transformation

samples, or measurements, that provide sufficient informdictionary), which improves the reconstruction with Qigh

tion about a metric or a field of interest. Depending on &nal Matching Pursuit (OMP). Similar approaches have been
particular environment, these samples can be collecteé mdPade in [6], where the sampling matrix and a dictionary are
efficiently if some structure of the explored phenomenon ca@Ptimized jointly by minimizing the mutual coherence. I} [7

be assumed. Obviously, it is possible to sample in systemaf1® coherence of a dense matrix is optimized, also, but with a
fashion, over some sampling grids, which take the Shannéﬂethc’d mvolvmg Lagrange multipliers. In this paper théada
sampling theorem into account. Yet when the structure {§ alréady considered being sparse and, hence, has no need
known, the exploration can profit from it. One reasonabl@ @ Sparsification by a dictionary. Also, these mentioned
assumption is that the explored phenomenon consists B€thods can not keep the sensors CIR structure in each
a relatively small number of well-localized impulses, ,i.e.'oW Of ®, because its Grammian is often optimized towards

that the process is sparse. In this case the explored fidlee identity matrix. Therefore they are not suitable for the

can be reconstructed from fewer measurements, compar8ignded objective in this paper.

to Shannon’s sampling theorem, i.e., more efficiently usinge'Z‘: sgoi)rggleed ?2‘1[8?is_;ﬂg‘;tiiem;;hggag‘:_tﬁ22{2?&Eiar‘]se i
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Exploration aredk vector. Each agent performs linear measurements of the field
Trajectory of agent? xp[0] f as follows

yiln] = hy(x[n]) " + e;[n], 1)
where y;[n] is the nth sample taken by theth agent,
xi[M = 1] h;(x;[n]) € RY is the impulse response of thith agent’s

measurement system at locatisn[n] € E, and ¢;[n] is
the corresponding measurement noise. By collectivig
- measurement samples of alt agents in a single vector
x1[0] hy(x;[n]) ~ Tr@ectory of agent y = [n[0],....5[M —1],....yp[0],...,yp[M — 1]]T, we
can formulate (1) in a vector form as follows:

Fig. 1. Measurement model with multiple agents, e.g. UAVs. Ezgpént

has its trajectory with measurement points on it. The envirorini is _
discretized and the sensor footprint is shown in grey. Toatdrint is the Y Q(X)f Te @)
CIR of the sensor (i.eh), which is one row of the sampling matri. where e = [61 [0] 61[]\/[ _ 1] €P[O] ep [M _
S e yee.s€
T
1] ,X: [Xl[O],...7X1[M—1]7...,Xp[0]7...,XP[M—

Contrary, [9] proposes a way to construct purely determinl—} » and

istic generated sensing matrices with the use of finite fields ®(X) = [h;(x1[0]), ..., hy(x1[M —1]),...
Although, according to the author, the deterministic ncasi h h r (3

. . . . . ceey p(Xp[O]),..., p(Xp[M—l])] .
are always inferior to random matrices, he claims that his ) ) -
approach generates the so far best deterministic conatruct! NiS measuring process is also shown in Fig. 1.
sampling matrices. However, these generated matricesfare oASSUMIng thatf is sparse, i.e., out ofV values only a
no use in this paper, because they are not able to take/@V are non-zeré.Under this assumption, the theory of CS
sensor's CIR into account. predicts thatf can be reconstructed more efficiently, in a

Compressed Sensing for active measuring has been us&fiSe that fewer measurements are needed [2]. Moreover,

in [10], where the sampling strategy of a laser scanner finding thg sparse squuoq a_mOL_mts to solving the following
changed to get more performance in the reconstruction fy-constrained convex optimization problem [1], [2], [12]

means ofl;-optimization. They estimate important areas for = arg min|[f]l;, st |y —@X)f||<e, (4)
the scanner to measure and increase the number of samples £
in such areas. with ||e|]| = e. The success of the optimization (4) in finding

A path-planning concept for CS is introduced in [11].a sparse solution hinges upon the properties of the matrix
They optimize different movement strategies with a parti®(X). Specifically, the matrix®(X) has to satisfy a so-
cle swarm optimization to reduce the cost of measuringialled Restricted Isometry Property (RIP) [1]-[3], which
direction change and motion. Compressed Sensing is thenplies that
used to reduce the number of measurements, which further
minimizes their proposed cost-function. Their approact ha (1= 9)lifllz < [[@(X)E]lz < (1 + O)l[E]l2, ©®)
less energy consumption and comparable field reconstructiéor some smalb > 0. In other words ®(X) should behave
results. like a nearly isometric map and this requirement (5) is

The state of the art shows that CS is useful to save ener§gtisfied also for matrices that have low mutual coherence
and time for exploration purposes, but is still an activd’], [13], [14]. Mutual coherence is defined as a maximum
field of research. Therefore we propose a new exploratigiPrrelation between columns @(X): a small mutual co-
paradigm by means of an adaption of the CS's samplingerence will also imply RIP, which ensures that (4) recovers
matrix, which can involve CIRs of sensors, to generate way@ sparse solution.
points for exploration purposes. After a problem statenrent It can be seen from the model (2) that the properties
Section II, different optimization strategies of such staned ~ Of the sensing matrix@(X) are essentially determined by
matrices for exploration purposes are discussed in Sectiffte Ppositions of the agents, or, more specifically, by the
lIl. The efficiency of those strategies for reconstructioffrajectories of the mobile agents as they move through

and exploration is evaluated by Monte-Carlo simulations i€ exploration area. This permits us formulatingparse
Section IV. exploration paradigm. Specifically, as sparse exploration

we understand an algorithm that computes the movement
II. COMPRESSED SENSING trajectories of the agents so as to favor a sparse estimate of

. . . some (sparse) fielflin the exploration are& by optimizing
Consider now a swarm exploration problem withinde- the sensing matris® (X).

pendent mobile agents. The goal of the swarm is to coop-
eratively explore, i.e., sample, a spatially-distribufedd 1in a more general setting, we can assufi¢o be sparse in some
that is defined over some two-dimensional exploration areftionanyD, so thath = Df, With b being sparse. In this case we can
E C R2. In the following we will assume thak is divided Corme v (X) = ®(X)D, which will lead to model (2)y = ¥ (X)f + c.

; - -0 g ) . X In the following this case will not be considered as it doesingpact the
into NV grid cells, such thaf ¢ RY is an N-dimensional methodology we intend to demonstrate later.



1. SENSING MATRIX OPTIMIZATION

Sensing matrix optimization is a challenging topic and has
been extensively studied in the literature [5], [6], [8]].[B
our case the direct optimization @(X) is non-trivial due
to the combinatorial nature of the problem [7]: computing
the RIP or evaluating mutual coherence would require an
exhaustive search over all possible trajectories of alhtgye
Instead, here we propose to employ several heuristics that
optimize the spectral structure of the sensing matrix atste
of a direct optimization of the matrix coherence or RIP. In
the following the sensing matrix’s properties that are more
profitable for the estimation problem proposed are disaisse
in this paper.

First, we would prefer that each new measurement does
not decrease the rank of the sensing ma®#iX), which
is important for every Basic Pursuit technique [7]. Note
that initially, when only a few measurements are available,
the sensing matrix is rank-deficient. Thus, our hope is that
when the new measurements become available, they will be
“orthogonal” to the already available information.
Second, the singular values of the sensing maf®i¢X)
should preferably be all equal, or with small variance, to
mimic a matrix with low mutual coherence. With these
properties in mind we propose the following heuristics.

where in this cas@(X) is a(n.P +k x nP+ k)-matrix.
Expression (7) ensures that the volume of column space
spanned by the sensing matrix grows with each new
measurement.

o« maxMean, minVar: Another criterion that we pro-

pose consists in direct optimization of the eigenvalues,
specifically in minimizing their variance and maximiz-
ing their mean. Sincab(X) is quadratic and positive
definite, its eigenvalues are equal to its squared singu-
lar valueso2. Thus, ®’s singular values are optimized
to estimate the next location such as

nP+k

ZO o;(X)
X 1] = e 8
Xg[n + 1] arirgllEax Pk (8)

nP+k B

> (03(X) - 0)
X 1] = in 21— )
Xi[n + 1] arigl;n oy )

whereg is the mean of the singular values ®f Also,

the number of singular values has to increase after each
iteration, i.e.rank{®} = nP + k.

As mentioned before also both criteria can be jointly
optimized thatx,, fulfills (8) and (9).

« linearIndependence: The first heuristic that we propose A. Algorithm for Waypoint Estimation

optimizes the coverage of exploration area for e
agent as

In the following the implementation of the optimization
algorithm and, thus, of the way point generation is discdisse
The pseudo-code of the method is summarized in the Algo-
rithm 1. At each iteration of the algorithm a next waypoint
for the agent is determined based on the above discussed
criteria. Essentially, each iteration consists of two gart

First, a set of possible locations is determined, see Line 3.
This functionality is realized in théetermineNeighbors()

(6) function; here also a check can be implemented to exclude
way points that are either obstacles, unreachable due to
wheren =0,...,M — 1l andk =1,..., P. Note that he motion constraints of the robot or fall outside of the
as the full coverage we understand such a measuremept_gefined search space. Of course, this is only possible
strategy under which the agents eventually cover witlh the map is whether estimated before or a-priori known.
their sensor footprints the whole exploration afa The search space, over which a list of possible waypoints
Optimization (6) ensures that the correlation betweep getermined, can be either local, when only locations in
sensor footprints at the existing measurement locatioRge vicinity of the agent are considered (mainly close to
and the next one is minimized. Thus, the row-rank ofhe sensor footprint's border), or global, when the whole
the matrix grows with each new measurement. As @nyironment is taken into account. In the following we will
side-effect, the agents will not take measurements gknote these scopes lscal and Global, respectively.
the same locations. Yet, neither the coherence nor the |, the second part of the algorithm in Line 5-7 a temporary
RIP of the sensing r_nat.rlx is optimized d|_rectly._ sensing matrix®,..,,, is constructed by augmenting(X)
maxDet: Another criterion that we consider aims atyith a new row that models a measurement at a new position
optimizing the singular values of the sensing matrix. ,4qqrow(). A possible new location is taken from the
Again, we do not do it directly, but instead maxi-neighbors-array, which ha@ < N elements depending on
mize the determinant of the matrix produ#(X) = he used scope - Local or Global.
®(X)®"(X), where we exploit the relationship be-Then, depending on the chosen optimization strat@gy,,
tween the singular values ob(X) and eigenvalues s analyzed and if the objective function for a tested positi
of @(X), which correspond to the RIP in (5) [12]. js improved, the position is accepted as the next movement
Formally, the optimization can be stated as follows  gint, The corresponding computations are implemented in
) the functionoptimizationStrategy() and realize equa-
tions (6), (7), (8), (9) or (8) and (9) together, depending on

Rk[n + 1] = arg max det ®(X),
xiEE



the chosen optimization strategy. Once the solution isdpunof the waypoint estimation strategies is applied and the

the sampling matriX@ is augmented with the correspondingagent samples at the estimated locations. Afterwards, the
row, and the new measurement location is stored. As thresulting measurements and the sensing matrix are used for
output of the Algorithm 1 we obtain a set of waypoints andhe environment's reconstruction with the corresponding

the corresponding sensing matdx constrained reconstruction problem using CVXGHBrary.
Subsequently the Normalized Mean Square Error (NMSE) is
Algorithm 1 findWaypoints(M) computed with the original dath and the estimated dafa
1: waypoints= () such as T R
2 for m=0,..., M do (f—f) (f—f)
3 neighbors= determineNeighbors() e = , (10)
4: nextPos= ) frf
5. | for neighbor = neighbof9,...,Q) do which is the optimization strategy’s measure of perfornganc
6: ®iemp = addRow(®P, sensorModel(neighboj) and later on shown in Fig. 2 and Fig. 5.
7 nextPos =optimizationStrategy(®Ptemp, nextPos) Equally, the mutual coherence is computed to see how the
8 ® = addRow(®, sensorModel(nextPog) Lo . .
9 waypoints— add(nextPos optimization strategies are affected by it.

return waypoints, & B. Smulation and Discussion of Results

As can be seen in Fig. 2 optimization stratelghaxDet
IV. SIMULATION (7) result in the lowest NMSE with increasing number of
A. Description of the smulation measurements.
If the number of samples is significantly smallaxMean
e(8) performs best. The reason for this is that this strategy
samples in smaller distances to previous samples and if an
. . ) ) ) .Fmpulse is in this sampled area, it can be easily reconstduct
spots, which have to be estlmgteq in Iocatlon_ and intensi heras theMinvar strategy (9) samples with a larger dis-
W'th a thermgl Sensor. For.5|m'pI|C|.ty, we will assume Rance to other samples. This leads to many samples close to
S'ngle agent,_ Le.p = 1, which is SImuIat_ed as an UAV the border ofE. It seems thaMaxDet is somehow a tradeoff
flying at a heights. Although the algorithm is proposed for between those two optimization strategies. Generallhyhef t

mu_ItipIe agents, t.he resuilt IC.)OkS similgr for one aggnthift number of samples is too small the reconstruction process
estimated waypoints are split and assigned to multlpletagerban not accurately estimate the position of each impulse

afterwards, assuming that each agent has the same sensor

The exploration are& can be considered as a square with fch leads to a higher NMSE.
30 x 30 cells, 50 that' — 900. Furthermore, to exclude The Randomwalk and Meander strategies are first per-

_ forming well, but with increasing number of measurements
%ey are outperformed bylaxDet. Also, due to the random
nature of the Randomwalk, it is not guaranteed that the whole
environment is sensed. Tihéeander strategy needs a higher
number of measurements to obtain a well distanced number
of measurements.

he strategy shown in (6) led to bad conditioned matrices
with the result that the reconstruction often fails and is
therefore not shown in Fig. 2.

10% of th : t which Nkl ‘ OUtA smaller mutual coherence @ does lead to improve-
o O the environment, which mea MEASUreMen'S \,ants in the reconstruction procedure, as can be seen with

cover the environment completely. However, the SenSOFfOOMaxDet However. in the case dtandormW\alk andMeander

print is circular and the environment rectangular and, thug, e e congtruction is still good compared to the other algo-
overlapping of footprints is unavoidable but requiredpals rithms, although their sampling matrix has a larger mutual
As references we consider a simple random walk of th oherénce

agent through the exploration area, and a regular mean s an example Fig. 4 shows one sampling grid with 40

patterp. Whereas, the meander counts the numt')e.r of gﬂqeasurement locations estimated by tlexDet strategy.
cells in the square environmerit and takes equidistant This strategy aims for sampling positions (rectangle) drat

:srz;\]mples SﬁCh tdh_at as mu<f:h as podssmle of the;rea 'Z COVeIE mehow located on the border of each footprint (circles).
e sampling distance of theeander strategy depends on With increasing number of measurements new sampling

the applied number O.f mgasurgments. L . positions are located in between. This is also the reason why
Each waypoint estimation with reconstruction is appliefe mutual coherence decreases

500 times.in theGIobaJ—.case and0 times in thelocal-case. _If the view of the optimization strategy is changed to
The location and amplitude of the four non-zero elements Nocal sampling positions near the current positions are
E and the starting position of the agent is always changed
randomly in the beginning of each simulation. Then one 2nttp : //cvxzopt.org/

In this section we will empirically analyze the performanc
of the sensing matrix optimization strategies discussed@ab

we will assume noise-free measurements, ke= 0. The
sensor’s footprint is modeled as an indicator function an th
interior of the circle with a radius = h sin(«), where
the sensor has a conical opening withas opening angle.
Furthermore, the interior is weighted by a Gaussian kern
with the width w. This results in the sensor’s CIR. For all
measurements considered here const andw = const. In
this scenario the sensor footprint has a coverage of ab
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—— MinVar 1
—e— MaxMeanAndMinVar
—&— RandomWalk

Meander

considered only. The NMSE of the optimization strategies
MaxDet, RandomWalk with local-view are shown in Fig. 5.
Since the local-view does not offer every positionHnit is
inferior to the global-view strategies, but less compotei
complex. The exploration paradigm is constrained by the
agent’s position and, thus, makes some bad decisions. This

w O NN results in a larger NMSE, but still the reconstruction is
2 solved.
06k e NI N e
04} 1.4
—A— MaxDet
—fe— MaxMeanAndMinVar,
0.2F N T TR R e e o 12} e RandomWalk
0 T TN N
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number of generated measurementpoints : : : :
08k e AR e PR e d
Fig. 2. NMSE dependent on the number of measurements with algloba | : : : :
view. This NMSE is averaged over 500 independent runs, willeee 2 : : : : :
impulses positions and the initial positon of the agent aseh randomly. o6r : : A A A
The NMSE is computed as mentioned in (10). : : : :
0.4} NN R N
1,001 02_ ............. ...... .........................
1| Attt 0 :
: : 0 20 40 60 80 100 120
: number of generated measurementpoints
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Fig. 5.  NMSE dependent on the number of measurements with local-
] R view. This NMSE is averaged over 50 independent runs, wiherénpulses
~ positions and the initial positon of the agent are chosedawanty. Due to
G 0997 the local-view and its constraints the algorithm sometimes emak bad
decision.
0996_‘ ...............................................................
—A— MaxDet
0.995F| —s— MaxMean
—— MinVar ) V. CONCLUSION AND OUTLOOK
0.994H —h— zlaxglleaw\r:ngnVar
$— Rendomia A A A In this paper we have shown an exploration paradigm
0.993 = = = % ™ 20 for sparse environments that is based on CS and generates
number of generated measurementpoints points of interest by optimization of the sampling matrix

Fig. 3. If the mutual coherence(®) decreases, the performance of the(I)' Although the optimization of such a matrix is non-

reconstruction increases (compare Fig. 2. The mutual coberdepends on trivial, some empiric strategies have been proposed and
the sampling positons and the overlap of the sensor fooprint

ylm]

evaluated. This paper shows, also, how to directly use the
sensor’s footprint in the sampling matrix, which should mak
CS more practical for mobile sensing in robotics. These
strategies have been tested against each other and this resul
show that some give good results with respect to the NMSE.
Also, due to sparsity and the CS-strategy less tha of
all possible measurement points are needed to estimate the
whole environment, which in the end saves time and energy.
Our group is looking forward to further investigate such
sparse-driven exploration strategies. Therefore, theates
gies should be implemented on multiple agertsX 1), i.e.
UAVSs, to show the performance in reality. Also, these strate
gies should be enhanced by taking sparsification by means of
a dictionary into account. A dictionary should enable these
strategies to perform even in non-sparse environments.
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