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Summary. The basic feature of the optimisation-based clearance approach is to
reformulate the clearance problems as equivalent minimum distance problems for
which ”anti”-optimisation is performed to determine the worst-case parameter com-
bination/flight condition leading to worst performance. The basic requirements for
the applicability of the optimisation-based approach are the availability of suitable
parametric models describing the overall nonlinear dynamics of the augmented
aircraft and of accompanying efficient and reliable trimming, linearisation and op-
timisation software tools. The optimisation-based approach has no limitations with
respect to clearance criteria, being able to address all kind of clearance requirements
which are expressible as mathematical criteria.

7.1 Classical Versus Optimisation-Based Approach

Let c(p, FC) be a given clearance criterion, depending on the uncertain pa-
rameters grouped in a q-dimensional vector p and flight condition vector FC
usually having up to three components (e.g., Mach-number M , altitude h,
angle of attack α). p is generally unknown, but it is assumed that all its com-
ponents lie in known intervals, defining a hyper-box P in the q-dimensional
Euclidean space. The variation of flight condition FC is determined by the
defined flight envelope where the aircraft is required to operate.

We can easily formulate the clearance problem for a given performance
criterion c(p, FC) as a distance minimisation problem. Let c0 be the limiting
acceptable value of c(p, FC), as defined in the clearance documents. Then,
the difference

d(p, FC) = c(p, FC)− c0 (7.1)

can be interpreted as a signed distance function to the limiting acceptable
performance c0. If for a fixed FC, d(p, FC) is positive for all parameter values
p ∈ P, then the clearance requirement is fulfilled in FC and the point FC is
cleared. The minimum distance

d(FC) = min d(p, FC)
p∈P

can be interpreted as the robustness measure of how far the system is from
the limiting acceptable performance c0. A negative value of d(FC) can be
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interpreted as a measure of the lack of robustness and the corresponding
point FC is not cleared.

The current industrial clearance approach relies on an exhaustive search
on a grid for both flight conditions and uncertain parameters. Typically, one
chooses N flight conditions FCi, i = 1, . . . , N and in each flight condition
FCi, c(p, FCi) is evaluated only in ν(P), the set of vertex points of the
q-dimensional hyper-box P. Thus,

d̃(FCi) := min d(p, FC) ≥ d(FCi)
p∈ν(P)

and d̃(FCi) is only an approximation (upper bound) of the true minimum
distance d(FCi). The value of d̃(FCi) is used to decide if FCi is cleared or
not. Clearing N flight conditions, each in 2q vertex points, requires N · 2q

evaluations of c(p, FC). Thus, the required computation time increases expo-
nentially with the dimension q. To have a feeling what exponential computa-
tional complexity means, assume that 1 second is necessary for one function
evaluation. Then for q = 5, 9 and 15, the time needed to check only one
flight condition in the 2q vertices is 32 seconds, 512 seconds, and 9.1 hours,
respectively. Note that typical values of N are of order 50001.

Two main difficulties of the classical approach are evident. First, there are
tremendous costs involved when simultaneously checking the robustness for
many uncertain parameters. Since the evaluation of each robustness measure
increases exponentially with the number of parameters q, obviously the com-
putational costs for large problems are too high to be affordable in industrial
practice. Second, there is no guarantee that the ”cleared” flight conditions
should have been cleared, since for each parameter only the extreme points
(maximum and minimum) are checked. Thus, if the minimum occurs in an
intermediate point which is not cleared, then the clearance results could be
false. The same applies when considering the finite set of flight conditions
{FC1, . . . , FCN} which certainly can not cover all points of the physical
flight envelope.

The optimisation-based approach offers immediate improvements for both
of these aspects. The first improvement is a reasonable computational cost
of clearance in case of many parameters. This occurs because the number
of function evaluations necessary to compute the worst-case parameter com-
bination is usually much lower than that corresponding to evaluating the
function in all vertex points, even in the case when only two values for each
parameter are used. The second improvement is achieved by allowing a con-
tinuous variation of parameters within the given parameter space P. In this
way, the clearance results cover all points of P and therefore are more reliable.

A straightforward way of enhancing the classical approach is to perform,
in each of the selected N points FCi, i = 1, . . . , N of the flight envelope,
an optimisation-driven worst-case search to determine the minimum distance
1 U. Korte, Private communication
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d(p, FCi). This approach can be seen as a combination of the gridding-based
classical search in a discrete set of flight conditions with the optimisation-
based continuous search for worst-case parameter combinations in the com-
plete parameter space. Note that this approach can be very effective, even
when discontinuities of derivatives are present in the mathematical model
due to the use of linear interpolation formulas to evaluate aerodynamic co-
efficients defined by look-up tables. By ”freezing” the flight condition during
optimisation, the variations within these tables no longer play any role, and
therefore, optimisation methods based on gradient search techniques can be
readily employed to locate worst-case parameter combinations in a very ef-
fective way. The mathematical optimisation problems to be solved belong
to the class of nonlinear programming problems (NLPs) with simple bound
constraints on variables for which both gradient-based and gradient-free tech-
niques can be employed (see Section 7.3).

An enhancement of this approach can be achieved by explicitly address-
ing the continuous variation for the flight condition. A possible approach
is to define a coarse set of flight conditions FC = {FC1, . . . , FCK}, where
K ¿ N , and associate to each flight condition FCi a box FCi ±∆FCi cen-
tered around FCi. The sizes of these boxes are chosen such that their union
covers the whole physical flight envelope. Then, by including FC among the
optimisation variables, solve for all FCi, i = 1, . . . , K the distance minimisa-
tion problems

d(FCi) = min d(p, FC)
p∈P

FC∈FCi±∆FCi

If d(FCi) > 0, then each flight condition in the hyperbox around FCi is
cleared. Otherwise, a locally finer grid can be considered if necessary and
the clearance can be repeated on this finer grid. The main advantage of this
approach is the complete and continuous coverage of both the flight envelope
and the parameter space, and thus a higher confidence in the clearance results.
Another advantage is the potentially lower total costs, by using a reduced set
of only K ¿ N flight conditions. The mathematical optimisation problems to
be solved is a NLP with only simple bounds on variables and linear constraints
(see Section 7.3).

It is important to note that robustness analysis problems are essentially
global optimisation problems. When qualifying flight conditions as cleared
or not cleared on basis of a local search, only the not cleared points are
guaranteed. For a rigourous analysis, only the computationally very expen-
sive global search approaches with guaranteed convergence are able to assess
cleared points. Often, a restricted preliminary sensitivity analysis with only
a few parameters can indicate the probable lack of multiple local minima. In
such cases, the cheaper and more efficient local search methods can be used
for solving clearance problems practically without any loss of reliability of
the results.
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7.2 Description of the Analysis Cycle

Let c(p, FC) be a given clearance criterion depending on the uncertain pa-
rameters grouped in a parameter vector p and the flight condition vector
FC. The analysis cycle used for the clearance of a control configuration for
the given clearance criterion c(p, FC) is illustrated by the flow diagram in
Figure 7.1. Here we assume that a continuous search is performed only in the
parameter space P for a finite set of flight conditions FCi, i = 1, . . . , N .
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Fig. 7.1. Optimisation-based clearance analysis cycle
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According to the flow diagram in Fig. 7.1, the following main steps have
to be performed in an optimization-based clearance procedure:

Step 0 is the initialisation step for the optimisation-based clearance proce-
dure and usually involves choosing the flight conditions FCi, i = 1, . . . , N
where the worst-case parameter combinations are to be determined, the
definition of vector p (e.g., most relevant or full set, longitudinal or lat-
eral), setting of appropriate options for trimming, setting the values of
criterion specific variables (e.g., frequency-grid, time-grid), or choice of
optimisation method (see Section 7.3) and corresponding options (e.g.,
stopping tolerances, maximum number of iterations etc.)

Step 1 is necessary to eliminate from the analysis those points where the
clearance requirements are not fulfilled for the nominal values of param-
eters. Furthermore, here we can also check if the normal acceleration nz

is within an allowed range of values (e.g., −3 g ≤ nz ≤ 7 g for HIRM+)
or the control surface deflection saturation limits for δTS , δTD, and δR

are reached. Points where such violations occur are not cleared and are
automatically eliminated from the analysis. The neat effect of this check
is a reduction of the overall computational effort.

Step 2 is the basic optimisation step performed for each selected flight con-
dition FCi. The results of this step are the worst-case parameter combi-
nation pworst

i and the corresponding criterion value c(pworst
i , FCi). The

performed number of function evaluations is an indication of the effi-
ciency of the optimisation-based search in comparison with the classical
grid-based approach.

Step 3 is similar to Step 1 and the performed check is necessary because
the worst-case parameter combination can lead to the same possible vi-
olations of some conditions as those occurring in the nominal case (e.g.,
violation of condition −3 g ≤ nz ≤ 7 g or of the deflection saturation
limits). Note however, that such points are found only incidentally by
the optimiser, and may exist in a particular flight condition FCi even
in the case when the determined worst-case parameter combination does
not violate the above conditions.

Step 4 is the outputting of computed data to a database. For each flight
condition FCi, the stored information contains typically the computed
worst-case parameter combination pworst

i , the corresponding minimum
distance d(pworst

i , FCi), the number of performed function evaluations,
cleared/not cleared status information, etc.

Step 5 performs the graphical evaluation of obtained results by producing
plots necessary for assessing and documenting the clearance results.
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7.3 Optimisation Algorithms Suitable for Clearance

Each clearance analysis problem defined in Chapter 10 can be formulated as
a standard nonlinear programming problem (NLP) of the form

min f(x)
subject to cj(x) ≥ 0, j = 1, . . . ,m

li ≤ xi ≤ ui, i = 1, . . . , n
(7.2)

to be solved for x ∈ IRn. Here the components of x includes, in general, vari-
ables defining the flight condition (e.g., M , h, and/or α) and components of
the vector p representing the uncertain parameters of the model. Each com-
ponent xi of x must lie between the corresponding lower bound li and upper
bound ui. The lower and upper bounds are defined by restricting the flight
conditions to lie within the admissible region defined by the flight envelope,
while the bounds on uncertain parameters are defined on basis of their phys-
ical significance. The scalar constraints cj(x) may correspond, for example,
to restricting the search to a typical polygonal region, whose boundary is
defined by several line segments. Thus, in the most general case, the NLP
(7.2) corresponding to a particular clearance problem is still a particular NLP
subject only to simple bounds on variables and linear constraints. If the flight
condition (i.e., M , h and α) is not part of x, then the clearance problem can
be formulated as an even simpler NLP with only simple bounds on variables.

The NLPs arising in clearance problems have several particular features:

Low order. Since the optimisation variables are the uncertain parameters
and possibly some components of the flight condition vector, the dimen-
sion of the optimisation problem is relatively small, satisfying n ≤ 25.

Multiple local minima. The functions expressing clearance criteria ex-
hibit very complex dependencies of parameters. It follows, that we can
always expect that these functions have several local minima.

Expensive function evaluation. The evaluation of criteria based on lin-
earised models, involves trimming, linearisation and frequency response
or eigenvalue computation of relatively high order systems (up to 60 state
vector components). The evaluation of criteria based on nonlinear mod-
els usually involves simulations, preceded by trimming. Thus typically,
the evaluation of clearance criteria is very time consuming. Fast and
reliable trimming (e.g. via inverse models) is a prerequisite to increase
the efficiency of function evaluations. Model reduction techniques can
be efficiently used to reduce the order of linear models used to evaluate
frequency-response based criteria.

Discontinuous derivatives. Discontinuities in derivatives of functions arise
from several sources. Naive implementation of criteria by defining dis-
tance functions to regions with polygonal boundaries will certainly lead
to functions with discontinuous derivatives. By approximating boundaries
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by polynomials (e.g., spline functions) we can get rid of such discontinu-
ities, but the clearance problem can be falsified by such an approximation.
Other sources of discontinuities can lie in the model itself, if table-driven
linear interpolations are present. Finally, failures to accurately evaluate
the function (e.g., because of inaccurate trimming) lead to discontinuities
even in the functions themselves. Handling trim failures, for example by
setting the function values to a very large number, can rise severe prob-
lems for certain solvers.

Noisy function. Noise in function values originates from various truncation
errors made in intermediary computations such as trimming, linearisa-
tion, order reduction, numerical evaluation of gradients, simulation, as
well as from the round-off errors associated with difficult numerical com-
putations like eigenvalue computation. To handle such functions, the us-
age of more robust, derivative-free optimisation methods could be neces-
sary (e.g., pattern search) or enhancements of gradient-search techniques
are necessary (e.g., usage of central difference approximation of gradients,
usage of gradually increased accuracy in gradient computations, etc.). For
additional aspects of optimisation with noisy function see [1].

In the following paragraphs we present brief information on several opti-
misation algorithms which are suitable for solving the NLPs appearing in the
clearance problems. For most algorithms software implementations are freely
available on the Internet [2].

7.3.1 Gradient-based local search methods

Gradient-based minimisation methods use local information on the function
through its gradient to achieve fast convergence rates. This is why, when ap-
plicable, many gradient-based search methods allow highest computational
performance in solving general or particular NLPs. For the usage of most
gradient-based techniques a basic requirement is the continuity of gradient
with respect to the optimisation variables. Furthermore, for a satisfactory
performance, the availability of an analytic expression of gradient is highly
desirable. However, for complex functions like those typically arising in clear-
ance problems, usually no analytic gradients are available. Therefore, numer-
ical approximations of gradients have to be computed resultsing in a slower
and less reliable execution, especially when function evaluations are noisy.

The sequential quadratic programming (SQP) method to solve the
general NLP with equality and inequality constraints can be used to solve the
particular NLP of the form (7.2) which arises in clearance problems. The SQP
method can be seen as a generalisation of Newton’s method for unconstrained
optimisation in that it finds a step away from the current point by minimising
a quadratic approximation of the problem function f(x). Under mild condi-
tions this method has a fast, so-called superlinear convergence [3]. An alterna-
tive approach for problems with only simple bounds constraints on the vari-
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ables is the limited memory BFGS with bound constraints (L-BFGS-
B) described in [4] together with accompanying Fortran 77 software. This
approach extends the standard Broyden-Fletcher-Goldfarb-Shanno (BFGS)
quasi-Newton method to handle NLPs with simple bounds, by using a gradi-
ent projection approach. The algorithm has a superlinear convergence and no
violations of bound constraints on variables occur during optimisation. For a
more detailed discussion of both approaches see [3].

7.3.2 Gradient-free local search methods

Derivative-free methods using only function evaluations are a real alternative
to gradient-based methods, especially when function evaluations are noisy
and/or discontinuities in the gradient are present. Two classes of derivative-
free methods are known: direct-search methods which include the popular
simplex and pattern search methods, and trust-region methods relying on
linear or quadratic interpolation models. Derivative-free methods are useful
when the function f(x) is not smooth (e.g., ”noisy” function) or when ac-
curate derivatives are difficult to determine numerically. For more details on
derivative-free methods see [5] and for performance comparisons see [6].

Pattern search (PS) algorithms are a class of direct search methods ini-
tially proposed for unconstrained minimisation which has a rigourous global
convergence theory. The PS techniques has been recently extended to solve
NLPs with simple bounds [7]. PS methods use a simple decrease criterion to
accept a step as opposed to the sufficient decrease criterion used by gradient-
based search. This is why, PS methods usually have a slower convergence rate
than a gradient-based search. On the other hand, PS methods are often nu-
merically more robust than gradient-based methods in avoiding local minima
as well as tackling with noisy functions. PS methods may require a relatively
large number of function evaluations, hence they tend to be effective primarily
for problems of relatively small dimensions and low accuracy situations.

Model-based trust region methods exploit the smoothness of the objec-
tive function and attempt to preserve the convergence properties of their
gradient-based counterparts. The constrained optimisation by linear ap-
proximations (COBYLA) approach employs linear approximations to the
objective and constraint functions [8]. The approximations are formed by lin-
ear interpolation at n + 1 points in the space of the variables (regarded as
vertices of a simplex) and the size of the simplex is reduced as the optimisa-
tion advances. The main advantage of COBYLA over many of its competi-
tors, is that it treats each constraint individually when calculating a change
to the variables, instead of lumping the constraints together into a single
penalty function. Therefore, COBYLA usually has better convergence than
the pattern search method. One disadvantage of the COBYLA software, is
that it does not address simple bounds explicitly and these must be trans-
formed to 2n general constraints in the NLP (7.2) of the form cj = xj − uj ,
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cj+n = lj−xj , for i = 1, . . . , n. Unfortunately, this leads to frequent violations
of bound constraints during the computation.

The derivative-free optimisation (DFO) trust-region method uses a
quadratic approximation of the objective function (see [6] and references
therein). The quadratic model approximates the function well within a cer-
tain ”trust”-region of a given radius and serves to determine new points by
minimising the current approximation instead of the function itself. The new
points generated by the algorithm are used both to advance the optimisa-
tion and to update the approximation. Since the DFO algorithm needs only
a relatively few function evaluations, this method is well-suited to minimise
expensive functions which depend on few (some hundred at most) variables.

7.3.3 Global search methods

For functions with many minima, the use of global optimisation techniques
is the only alternative for successful computations. In this section we dis-
cuss three global optimisation approaches which can be employed for solving
optimisation-based clearance problems with simple bounds on the parame-
ters. Typically, these methods require a very large number of function eval-
uations and therefore they are primarily intended either to determine good
starting points for local search based methods, or to address difficult clear-
ance problems with many local minima.

The simulated annealing (SA) algorithm is essentially an iterative ran-
dom search procedure with adaptive moves along the coordinate directions
[9]. It permits uphill moves under the control of a probabilistic criterion, thus
tending to avoid the first local minima encountered. It has been proved that
the sequence of points sampled by the SA algorithm form a Boltzmann dis-
tribution and converges to a global minimum with a probability of one as the
annealing ”temperature” goes to zero.

The genetic algorithm (GA) is a global optimisation approach based on
evolution strategies which guarantee the survival of the fittest individual in
each population [10]. The GA can easily handle problems with simple bounds
on the variables, and even general constraints by using penalty function tech-
niques. There are several selection schemes which can be combined with a
shuffling technique for choosing random pairs for mating. The GAs based
on binary coding, use mutations (e.g., jump or creep mutations), crossover
(single-point, uniform, etc.), niching and various other strategies to produce
successive populations. The use of GA for function optimisation is quite costly
in terms of the required number of function evaluations, but usually its cost
can be predicted in advance by choosing the population size and the number
of successive generations. To find the global extremum with high accuracy,
this method typically requires a very large number of function evaluations.

The global optimisation using multilevel coordinate search (MCS)
attempts to find the global minimiser of the bound constrained optimisation
problem using function values only, based on a multilevel coordinate search
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that balances global and local search [11]. The local search is done via SQP.
The search is not exhaustive, so occasionally the global minimum may be
missed. However, a comparison to other global optimisation algorithms shows
excellent performance of the MCS method in many cases, especially in low
dimensions.

7.4 Conclusions

The main benefits of the optimisation-based search are the lower costs in
the case of many simultaneous parameters and an increased reliability of the
results because of the continuous exploration of parameter space. Prereq-
uisites for the applicability of this approach are appropriate parameterised
models, fast and reliable trimming and linearisation procedures (necessary
for efficient function evaluation) and robust optimisation software capable of
addressing the challenge of solving NLP problems with possibly non-smooth,
expensive to evaluate and noisy functions. Taking into account all these as-
pects, the best suited approach appears to be the trust-region DFO method.
For functions with only a few variables, DFO typically requires relatively few
evaluations of the problem function. For more difficult problems with many
local minima, the MCS method combining local and global search appears
to be a viable alternative to more expensive GA and SA methods.

The acceptance of the optimisation-based clearance approach by the in-
dustry depends on several aspects. Since the optimisation-based clearance
can be seen just as a straightforward (more powerful) extension of the clas-
sical approach, the effort to learn this method is almost negligible. In fact,
the classical gridding-based approach can always be used as a standard op-
tion even in an optimisation-based clearance methodology. This is why, the
first time setting up of the method is not much different than for the grid
based approach. However, the usage of sophisticated optimisation tools re-
quires special care when defining suitable smooth distance functions on basis
of standard clearance criteria. Further, the implementation of fast and reli-
able procedures to evaluate these functions is of crucial importance for the
success of the optimisation-based worst-case search.

The reusability of software to cope with new aircraft models and control
laws can be enforced by performing the optimisation-based clearance within
a dedicated software environment which supports the interchange of differ-
ent models and criteria. Within such an environment, the effort for a new
analysis setup with different models and control laws is expected to be eas-
ily affordable. For maximum flexibility, such an environment has to provide
additional facilities for experimenting with various optimisation techniques,
different parameter sets, different criteria, different optimisation options etc.
A clearance software environment satisfying all above requirements will be
implemented as an add-on to the optimization based design environment
MOPS of DLR (Multi-Objective Parameter Synthesis) [12].
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