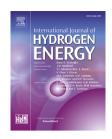
ARTICLE IN PRESS


INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2017) 1-11

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Process simulation and techno-economic assessment of SER steam gasification for hydrogen production

Daniel Schweitzer ^{a,*}, Friedemann Georg Albrecht ^{b,**}, Max Schmid ^a, Marcel Beirow ^a, Reinhold Spörl ^a, Ralph-Uwe Dietrich ^b, Antje Seitz ^b

ARTICLE INFO

Article history: Received 4 May 2017 Received in revised form 29 October 2017 Accepted 1 November 2017 Available online xxx

Keywords:
SER gasification
Steam gasification
Pilot scale demonstration
Hydrogen production
Techno-economic assessment
Hydrogen production costs

ABSTRACT

In the SER (sorption enhanced reforming) gasification process a nitrogen-free, high calorific product gas can be produced. In addition, due to low gasification temperatures of 600 $-750\,^{\circ}\text{C}$ and the use of limestone as bed material, in-situ CO₂ capture is possible, leading to a hydrogen-rich and carbon-lean product gas. In this paper, results from a bubbling fluidised bed gasification model are compared to results of process demonstration tests in a 200 kW_{th} pilot plant.

Based upon that, a concept for the hydrogen production via biomass SER gasification is studied in terms of efficiency and feasibility. Capital and operational expenditures as well as hydrogen production costs are calculated in a techno-economic assessment study. Furthermore, market framework conditions are discussed under which an economic hydrogen production via SER gasification is possible.

© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Ambitious targets for reducing the release of greenhouse gases, as defined in different global emission treaties such as the Kyoto Protocol and the Paris Agreement [1,2], require an extensive reduction of greenhouse gas (GHG) emissions globally. While the share of CO₂ free electrical energy (by

increasing the share or renewable energy or by introducing CCS & CCU technologies) is increasing, the share of renewable energy in other energy intensive applications such as transport, heating or chemical industry is still low [3].

A hydrogen based economy could be a way for reducing the CO_2 emissions from sectors other than power production since hydrogen can be used as a transport fuel (e.g. in fuel cells) and as a raw product for the chemical industry.

E-mail addresses: Daniel.Schweitzer@ifk.uni-stuttgart.de (D. Schweitzer), Friedemann.Albrecht@dlr.de (F.G. Albrecht). https://doi.org/10.1016/j.ijhydene.2017.11.001

0360-3199/© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Schweitzer D, et al., Process simulation and techno-economic assessment of SER steam gasification for hydrogen production, International Journal of Hydrogen Energy (2017), https://doi.org/10.1016/j.ijhydene.2017.11.001

^a IFK (Institute of Combustion and Power Plant Technology), University of Stuttgart, Pfaffenwaldring 23, 70569 Stuttgart, Germany

^b TT (Institut für Technische Thermodynamik), Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany

^{*} Corresponding author.

^{**} Corresponding author.