

DLR's Contribution to the Helmholtz Virtual Institute Solar Syngas: Materials for solar-thermochemical fuels production

Stefan Brendelberger, Josua Vieten, Nicole Knobloch, Sebastian Richter, Johannes Grobbel, Brendan Bulfin, Martin Roeb, Christian Sattler

International Workshop on Solar Thermochemistry Jülich, Germany 13.09.2017

Knowledge for Tomorrow

Overview

- Material characterization
 - Thermodynamic properties
 - Thermal expansion
 - Degradation
- Material development
 - Tailored perovskites
- Meso scale particle production
 - Drip casting
- Particle characterization
 - Heat transfer in particle bed at high T low p

B. Bulfin

Ceria and Ceria Zirkonia: Statistical Thermodynamics

Material: Ce0.85Zr0.15O2 (porous granules)

Vacancy concentration $\delta,$ the oxygen partial pressure pO2 and the temperature profile for a typical TGA experiment

Ceria and Ceria Zirkonia: Statistical Thermodynamics – Thermodynamic Model

B. Bulfin

Redox tests of $SrMn_xFe_{1-x}O_{3-\delta}$ in a thermobalance

Thermal and chemical Expansion during reduction

under reduced atmosphere ($pO_2 = 2-7x10^{-9}$ atm)

Degradation of (Ce,Zr)O2 Redox Ceramics by selective sublimation

In a previous study on redox characteristics of ceria data suggest sublimation of ceria at high temperature above 1660K and low $pO_2 (2-7 \times 10-9 \text{ atm})^{[Knoblauch, N.; Simon, H.; Schmücker, M., Solid State Ionics 2017,301, 43-52, DOI10.1016/j.ssi.2017.01.003]}$

Characterisation by SEM *e.g. reduced Ce*_{0.85}*Zr*_{0.15}*O*₂(*1683K*(*pO2=2,96E-9 atm*)

cross section

top view

Measured length of spongy surface zone after reduction at 1683K for various length of time

	time [h]	length [µm]
1	2,5	2,99
2	5	3,87
3	15	6,44

N. Knoblauch et.al., Inorganics, Special Issue "Cerium-based Materials for Energy Conversion" coming soon

Characterisation by EDX and x-ray diffraction *e.g. reduced* $Ce_{0.85}Zr_{0.15}O_2(1683K(pO2=2,96E-9 atm))$

Development of new materials Perovskites for redox cycles

A²⁺M^{3+/4+}O_{3-δ}

Reduction from perovskite to brownmillerite: $4 \text{ AMO}_3 \stackrel{\Delta H}{\leftrightarrow} 4 \text{ AMO}_{2.5} + 0_2$

gradual reduction possible -> non-stoichiometry δ

Bulfin, B. et al. (2017). "Applications and Limitations of Two Step Metal Oxide Thermochemical Redox Cycles; A Review." Journal of Materials Chemistry A

Image: Eames et al.

Tailored thermodynamic properties Mn-Fe solid solutions

Vieten et al. (**2017**), Redox thermodynamics and phase composition in the system SrFeO3 – δ — SrMnO3 – δ. Solid State Ionics, 308, 149-155

¹Vieten et al. 2016, J. Mater. Chem. A

S. Richter

$SrFeO_{3-\delta}$ synthesis

- High temperature solid state reaction
- Precursors: SrCO₃ & Fe₃O₄
- Mesoscale synthesis
- Manual pestling of annealed material
- Ball milling

S. Richter

Granulation

- Drip casting
- Slurry dripped into cooled oil bath
- Separation from oil

S. Richter

Granulation – post treatment

- Washing
- Drying
- Sintering

J. Grobbel

Heat transfer properties of Ceria particles at low pressures

Fixed Bed Experiment with Ceria

Investigate effective conductivity as function of temperature and pressure $k_{\text{bed}}(p,T)$

212-500 µm

J. Grobbel

Comparison with Simulation

P. Zehner and E. U. Schlünder, *Chemie Ingenieur Technik*, vol. 44, pp. 1303-1308, 1972.
R. Bauer, Düsseldorf: VDI-Verl., 1977.

Grobbel et al., Solar Energy, coming soon

Summary

- Thermodynamic data from TGA measurements
- Reduction extent from dilatometry experiments
- Degradation by selective sublimation
- Tailored perovskites for oxygen pumping
- Production of spherical Strontium Iron Oxide particles
- Pressure dependence of effective thermal conductivity in particle bed
- Other topics of DLR within SolarSynGas
 - Indirect particle based concept
 - Particle-particle heat exchanger
 - Indirect particle reactor
 - Sweep gas demand
 - Vacuum pumping requirements
 - Thermo-chemical pumping
 - Air separation

- ...

Our work was co-funded by the Initiative and Networking Fund of the Helmholtz Association of German Research Centres, by the Federal State of Northrhine-Westfalia, by the European Commission, by the FCH-JU and by the US DOE (via subcontract).

