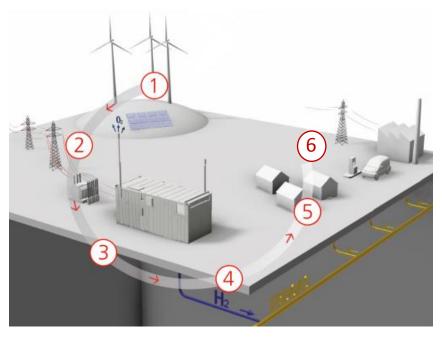
Cost Effective and Highly Active Catalysts for Anodes of Proton Exchange Membrane Electrolysis

Aldo Gago¹, Li Wang¹, Philipp Lettenmeier¹, Andreas Friedrich^{1,2}

¹Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring 38-40, Stuttgart, 70569, Germany

²Institute of Energy Storage, University of Stuttgart, Stuttgart, 70550,

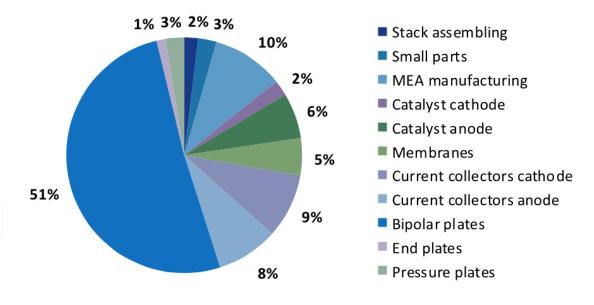
Germany


Knowledge for Tomorrow

Contents

- Hydrogen as energy vector
- Cost and availability of iridium catalyst
- DLR activities in PEM Electrolysis
- Synthesis of IrO_x-Ir, Ir/SnO₂:Sb-aerogel, Ir_{0.7}Ru_{0.3}O₂ catalysts
- OER activity and stability
- Summary

- High percentage of renewable energy in energy supply chain need long-term storage facilities
- Intermittend oversupply of RE will increase significantly (in 2050 ~25 TWh will be available for hydrogen production in Germany


- 1 Intermittent oversupply of RE from wind and sun
- (2) Feeding in electrical grid
- Hydrogen production via electrolysis (3000-4000 hours per year)
- Hydrogen can be distributed via the natural gas grid
- Hydrogen can be used in industry and for heat production
- 6 Mobilily for fuel cell-driven vehicles

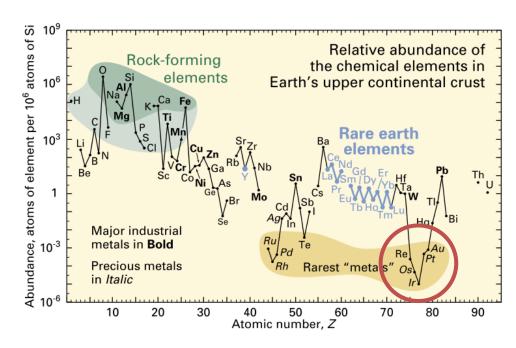
PEM electrolysis: Working principle and cost break

down Membran Kat Η, PTL **BPP** O_2 2H++2e- → H2 H₂O → H_2 1/202+2H++2e-Kathode H_2O MEA Anode

$$E_{cell} = 2 \text{ V, pH} = 0, 80 \text{ }^{\circ}\text{C}$$

Study on development of water electrolysis in the EU. Final Report. E4tech Fuel Cells and Hydrogen Joint Undertaking; 2014

- Bipolar plates are the most expensive component (51%) of the stack
- Currently the cost cost of the PMG catalyst (Ir and Pt) comprise only 8%
- The real obstacle for industrial PEM electrolyzers are the lack of business cases and unsuitable H₂ regulations



Cost and availability of PEM electrolyzer catalysts

- Global iridium production of less than 9 t yr⁻¹. 90% comes from South Africa.
- Current MEA specifications:

Anode: 2-3 mg_{iridium} cm⁻² Cathode: < 1 mg_{platinum} cm⁻²

- 7530 tons of Ir are required for PEM electrolyzers operating at E_{cell} = 1.65 V. It is equivalent to 836 times the annual production
- Chemical, metal and refinery industries require hundreds of TW of H₂

Haxel *er al.* Mineral, O. U. R. United States Geol. Surv. Fact Sheet 2002, 87, 4.

PEM electrolysis technology is not scalable to the TW level!

Vesborg et al. RSC Adv. **2012**, 2 (21), 7933. Paoli, E. A. et al. Chem. Sci. **2015**, 6 (1), 190.

Catalysts

DLR activities in PEM Electrolysis: from Fundamentals to **Megawatt Systems**

Coatings

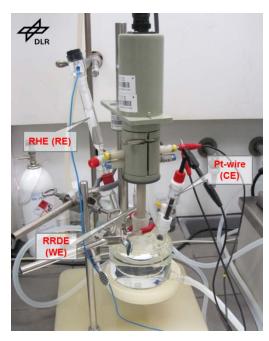
MW PEM Electrolyzer

Stack components

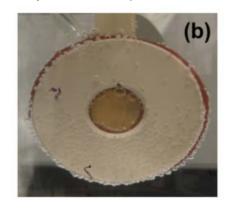
Analytics and in-situ diagnostics

Laboratory

test stations


ss bipolar plate

Evaluation of catalysts and coatings


HYDROG(E)NICS

Advanced Hydrogen Solutions

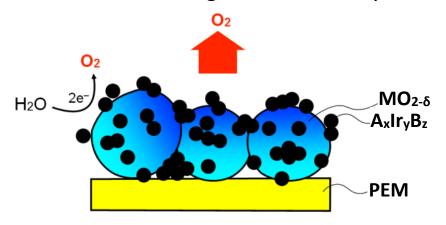
Rotating ring disc electrode (RRDE)

Sample holder for corrosion measurements (1 cm² exposed area)

4 Cell - 25 cm² - stack

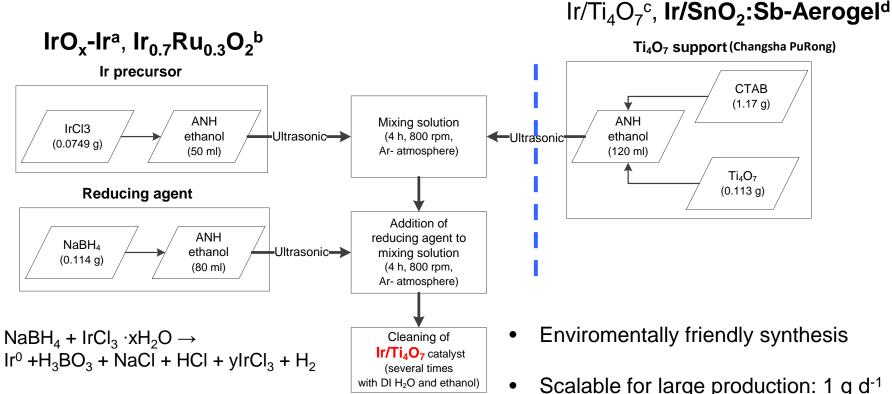
6 Cell - 120 cm² – stack (E92 model)

0.75 - 2.5 Nm³ H₂ h⁻¹ "Hylyzer" PEM electrolyzer unit, 8 bar



Designing a cost effective, active and durable electrocatalyst for OER

- Ir as <u>active</u> and stable metal center for OER
- Enhancement of <u>activity</u> of Ir by adding A. Reduction of Ir content
- Enhancement of <u>durability</u> of Ir by adding **B** (PMG metal) / HOR (less H₂ crossover)
- Increase of electrochemical <u>surface</u> <u>area (ECSA)</u>, <u>activity</u> and <u>durability</u> by using an electro-ceramic support MO_{2-δ}. Cost reduction


Challenge: Develop a highly active and stable OER catalyst than can be mass-produced at a reduced cost

Target material: A_xIr_yB_z/MO_{2-δ}

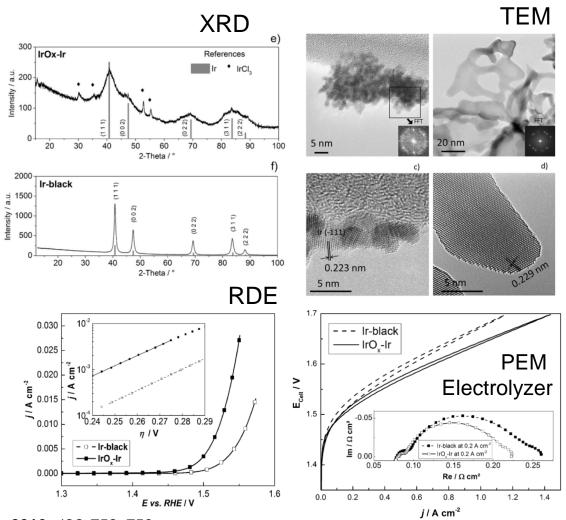
Synthesis of oxygen evolution reaction (OER) catalysts

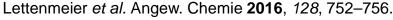
^aLettenmeier *et al.* Angew. Chemie **2016**, *128*, 752–756.

^bSaveleva et al. J. Phys. Chem. Lett. **2016**, *7*, 3240–3245.

°Wang et al. Phys. Chem. Chem. Phys. 2016, 18, 4487–4495.

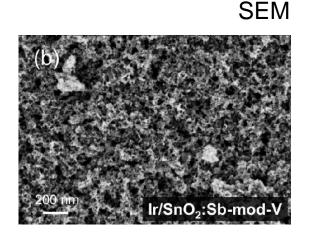
dWang et al. J. Mater. Chem. A, 2017, in press.

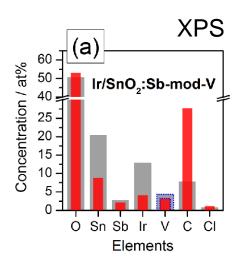

- Scalable for large production: 1 g d⁻¹
- Estimated cost < 100 € g⁻¹

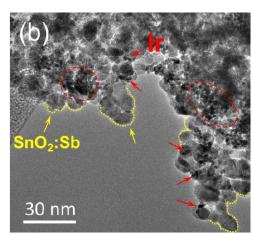

Patent DE 102015101249 A1

Electrochemically oxidized IrO_x-Ir nanoparticles

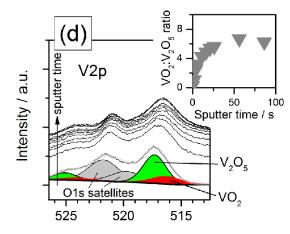
- Metallic Ir nanoparticles (agglomerated) with large numer of defects
- Almost identical structure, morphology and surface properties than Ir-black
- 5-fold higher OER activity than Ir-black
- Negligible E_{cell} increase after more than 100 h in PEM electrolyzer at 2 A cm⁻², 80°C



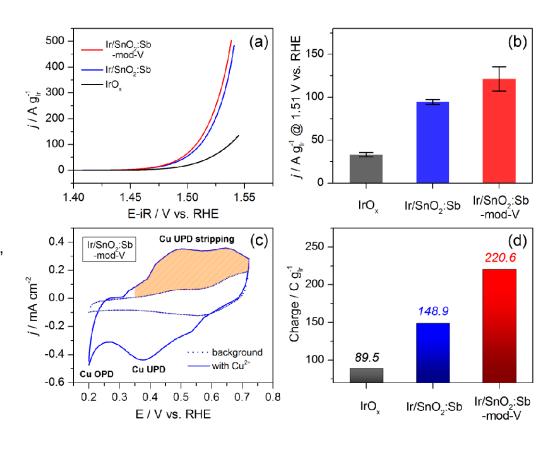



Ir/SnO₂:Sb-Aerogel: Morphology and surface properties

- Metallic Ir deposited on three-dimensional (3D) aerogel SnO₂:Sb (ARMINES)
- NH₄VO₃ added to IrCl₃ solution: Ir/SnO₂:Sb-mod-V
- Cl impurities are 5 times higher in the case of Ir/SnO₂:Sb
- VO₂ or V₂O₅ allows retaining the aerogel structure under atmospheric drying


Wang et al. J. Mater. Chem, A, 2017, in press.

 TEM


Ir/SnO₂:Sb-Aerogel: Electrochemical activity

- OER activities: Ir/SnO₂:Sb (94.6 A g⁻¹) and Ir/SnO₂:Sb-mod-V (121.5 A g⁻¹)
- The slight difference in Tafel slopes attributed to the influence from MMOSI:

H. S. Oh *et al.* P. Strasser, *J. Am. Chem. Soc.*, **2016**, 138, 12552-12563.

- Ir/SnO₂:Sb-mod-V allows decreasing of more than 70 wt.% for precious metal
- Cu-UPD enables the calculation of ECSA

dWang et al. J. Mater. Chem. A, 2017, in press.

Does V addition play an active role in electrocatalysis?

Ir/SnO₂:Sb-Aerogel: Electrochemical stability

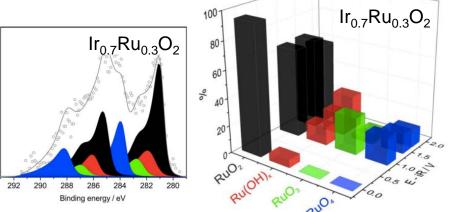
뿚

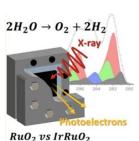
2.0

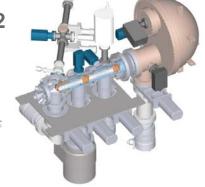
- RDE stability tests based on a protocol developed by P. Strasser and co-workers: Nong, H. N. et al. Angew. Chemie 2015, 54 (10), 2975.
- After test V wt% decreases one order of magnitude
- Sb and Ir pratically remained unchanged
 - Ir dissolution?
 - Decrease of electronic conductivity of SnO₂:Sb?

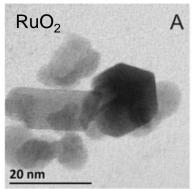
 $mA~cm^{-2}$ Ir/SnO_a:Sb 1.9 Ir/SnO_a:Sb 1.65 -mod-⊤V 1.8 1.60 1.7 @ 1 mA cm⁻² **(g)** 1.55 1.6 ш 1.45 10 Ir/SnO2:Sb-mod-V: fresh electrode \mathbf{C} / Analyzed O/F/Na / C1/ Sn / Sb/ Au/ wt.% wt.% wt.% wt.% wt.% wt.% wt.% wt.% Areas wt.% wt.% **A**1 6.83 9.8 7.16 1.19 0.39 3.15 29.68 3.81 17.74 20.26 A2 6.84 9.95 6.1 0.96 0.34 2.74 27.8 3.66 17.34 24.27 A3 7.3 10.14 6.08 1.14 0.39 2.71 28.13 3.51 17.4 23.21 Ir/SnO2:Sb-mod-V: operated electrode \mathbf{C} O/F/Na / C1/ \mathbf{V} / Sb/ Au/ Analyzed Sn / Ir/ wt.% Areas A1 7.07 13.32 5.95 N/A 0.39 29.82 21.12 0.33 3.2 18.79 **A2** 2.95 7.36 13.68 6.93 N/A 0.28 0.23 28.43 17.14 23 **A3** 27.73 22.47 7.52 13.51 6.18 N/A 0.4 0.32 3.3 18.57

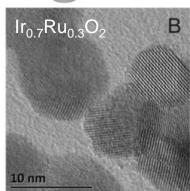
(e)

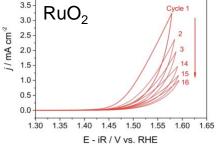

1.70

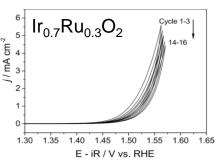

dWang et al. J. Mater. Chem. A, 2017, in press.




Stabilization mechanism of Ru in Ir_{0.7}Ru_{0.3}O₂


- Near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) allows monitoring of the surface state of MEAs swith RuO₂ and Ir_{0.7}Ru_{0.3}O₂ during OER
- Ir protects Ru from the formation unstable hydrous Ru^{IV} oxide
- OER occurs through a surface Ru^{VIII} intermediate





Saveleva et al. J. Phys. Chem. Lett., 2016, 7, 3240–3245

Summary

- Cost-effective and environmentally friendly synthesis of anode catalysts for PEM electrolyzers
- 5-fold higher activity of IrO_x-Ir vs. Ir-black. The enhancement is attributed to the ligand effect and low coordinate sites
- The use of **SnO₂:Sb-Aerogel** allows decreasing more than 70 wt.% of Ir in the catalyst layer and improves stability
- New mechanisms of stability and OER for Ir_{0.7}Ru_{0.3}O₂ uncovered by near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS)
- In operado advanced spectroscopy techniques are necessary to understand the reaction and degradation mechnism of PEM electrolyzer catalysts

Acknowledgements

Pawel Gazdzicki Ina Plock Oliver Freitag Schwan Hosseiny

Christian Beauger Guillaume Ozouf

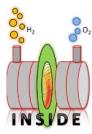
Ute Golla-Schindler

Tobias Morawietz Michael Handl Renate Hiesgen

Hochschule Esslingen
University of Applied Sciences

Viktoriia Saveleva Elena Savinova Spyridon Zafeiratos

Rainey Wang Ramy Abouatallah



Project No. 0325440A.

Grant No. 621237

Thank you for your attention

