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Introduction: Although orbital VNIR spectrosco-

py of Venus is hampered by the presence of its thick, 
CO2-rich atmosphere, recent experience shows that 
observations are possible through transparent windows 
in the CO2 spectrum near 1 µm (Figure 1). Ground 
observers have successfully used these windows dur-
ing the flyby of the Galileo mission at Jupiter [2]. The 
VIRTIS instrument on the ESA mission Venus Express 
(VEX) was the first instrument to routinely map the 
surface of Venus using the near-infrared windows from 
orbit [3-6]. The Venus Emissivity Mapper (VEM) was 
developed for the VERITAS mission to study the sur-
face of Venus through six different windows at 0.86, 
0.91, 0.99, 1.02, 1.11, and 1.18 µm. This project ex-
plores the rich scientific insights that can be gained 
using those six windows. Two specific issues are ad-
dressed here: the ability of VEM-window data to dis-
tinguish among key rock types on Venus, and the ca-
pability of VEM-window data to evaluate redox state 
and transition metal contents of Venus surface rocks. 

Data: This project uses VNIR data collected in the 
Planetary Spectroscopy Laboratory (PSL) at the Ger-
man Aerospace Center DLR in Berlin under the direc-
tion of Jörn Helbert [8-13]. Samples studied include a 
basalt from Lanzarote Island, Spain; a weathered bas-
alt/basaltic andesite from Holyoke, Massachusetts; an 
amphibolite sample from Labrador (Canada); a trachy-
basalt from PEL collections (locality unknown); rhyo-
lites from Lofoten Islands, Norway, and Seiser Alm, 
Italy; and rhyolitic glass from Newberry Volcano in 
Oregon (USA). Compositions were determined by x-

ray fluorescence (XRF) as described in [14] or by 
EMPA using standard methods. Fe3+/Fe2+ ratios were 
measured using Mössbauer spectroscopy in the Miner-
al Spectroscopy Laboratory at Mount Holyoke College 
[15] using standard methods. 

Assessing redox state and transition metal con-
tents: The region of the visible spectrum where the 
CO2 windows occur conveniently lies in a critical 
spectral region between most Fe3+ and Fe2+ features in 
silicates. Mössbauer data on the samples studied were 
used to convert the total Fe contents into wt% Fe3+ and 
wt% Fe2+. These values are shown with the laboratory 
data in Figure 2 below. Two trends are apparent. First, 
emissivities measured at the higher bands at 0.99, 1.02, 
1.11, and 1.18 µm are indicative of the transition metal 
contents of the rocks, except for the amphibolite. This 
stems from the presence of Fe2+ and other transition 
metal absorptions near this spectral region.  Further 
analysis of these data is needed to incorporate all the 
transition metals that may contribute to this spectral 
region. 

Second, the wavelength region below 0.91 µm is 
related to the oxidation state of Fe in the rocks. The Fe 
oxide, magnetite, which is 67% Fe3+, has the largest 
negative slope of any sample measured. Oxidized bas-
alt/basaltic andesite and all the felsic rocks also have 
negative slopes, while the fresh basalts can be clearly 
distinguished on the basis of their positive slopes. 

 
Figure 1. Highlands (red) and lowlands (blue) surface 
radiance spectra of Venus, with VEM filter locations su-
perimposed [1]. 

 
Figure 2. Emissivity data from PEL with wt. Fe2+ and wt.% 
Fe3+ indicated as determined by combining Mössbauer and 
EMPA data. 
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Based on these initial laboratory data, an oxidation 
state metric can easily be developed to distinguish 
among various Venus rock types. 

Discriminating among rock types: Beyond simp-
ly determining chemical characteristics as discussed 
above, a key capability needed for understanding Ve-
nus is distinguishing between basalt plains on Venus 

and other various igneous rock types (specifically ba-
saltic andesite, andesite, dacite, and high SiO2 rock 
types such as rhyolites and granites). To assess this 
issue, we used averages of our lab data (from Figure 2) 
and interpolated between them using FeO contents to 
obtain the model spectra for basaltic andesite, andesite, 
and dacite shown in Figure 3. We repeated these 
analyses using two different levels of error: the 4% 
VERITAS requirement and the currrent best estimates 
of errors following Phase A analyses. The values used 
for the latter were 0.7%, 0.7%, 0.4%, 0.3%, 0.7%, and 
1.2% for the 0.86, 0.91, 0.99, 1.02, 1.11, and 1.18 µm 
bands, respectively. In each case, we then created 100 
synthetic spectra within a random distribution of those 
errors. 

For the 4% error spectra, we also parameterized 
each of the spectra by calculating the slope between 
each pair of band (15 combinations) as well as the 
band ratios between each pair of bands (again, 15 pos-
sibilities). This provided a total of 36 associated with 
each 4% error model (Figure 4). This full parameteri-
zation step was not necessary for the CBE spectra be-
cause 100% accuracy in classification was achieved 
using only the six channels of emissivity data (Table 
1). 

Next, we created a binary classifier to assess how 
accurately each of intermediate rock type could be 
distinguished from the basaltic plains of Venus. We 
used a regularized maximum entropy classifier, begin-
ning by randomly holding out 20% of the data while 
the other 80% were used to train the model. The model 
was then used to predict the classification of the re-
maining 20%. We repeated 100 randomized trials for 
each model, with results shown in Table 1. 

Table 1. Accuracy of Binary Classifier Trained to  
Distinguish between Rock Types 

 n  Basalt 
/ felsic 

Basalt 
/dacite 

Basalt / 
andesite 

Basalt 
/ BA 

CBE 
errors 6 �̅�𝑥 100.0 100.0 100.0 100.0 

s2 0.0 0.0 0.0 0.0 

4% 
errors 

36 �̅�𝑥 94.6 88.5 80.4 65.4 
s2 0.6 0.9 1 1.2 

6 �̅�𝑥 93.7 86.4 80.2 60.1 
s2 0.6 0.9 0.9 1.3 

n = number of components in model, �̅�𝑥 = mean and             
s2 = standard deviation of 100 trials. CBE errors as given in 
text. 

 This analysis shows that the highest accuracy in 
discriminating binary rock types is found 
(unsurprisingly) between mafic and felsic rocks. The 
most difficult distinction is between baslt and its 
closest compositional neighbor, basaltic andesite. 
However, basalt spectra can easily be distinguished 
from basaltic andesite at CBE error levels. 
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Figure 4. Parameterization of the information in the six 
emissivity bands collected by VEM into 36 values that con-
tain predictive information, of which 21 are independent. 
The 36 values are then used in models to discriminate 
among rock types. 

Figure 3. Spectra of synthetic rock types given as dashed 
lines between real average lab data, representing intermedi-
ate igneous rock types including basaltic andesite (6.71 
wt.% FeO), andesite (4.47 wt.% FeO), and dacite (2.24 
wt.% FeO). These FeO values were interpolated between 
the real average rock FeO compositions of samples run in 
the laboratory at DLR. 
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