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Abstract — A solution to the singularity problem of a
non–redundant robot is proposed by reformulating the in-
verse kinematic problem as a constraint optimization prob-
lem. The main idea is to allow a cartesian error in a cer-
tain subspace in the vicinity of a singuarity and to minimize
this error subject to operational constraints such as maxi-
mum motor speeds. As a result, in every sampling instant
a series of linear least squares problems with linear equal-
ity and inequality constraints have to be solved. This task
can be carried out on a Pentium processor within a few
milliseconds. The new method is demonstrated at hand of
some experiments with an industrial robot.

1 Introduction

While traveling along a cartesian trajectory within the
vicinity of a kinematic singularity, the manipulators Jaco-
bian matrix is ill–conditioned and looses rank at the singu-
lar point, resulting in joint speeds and accelerations which
exceed the physical limits of the corresponding manipula-
tor. This problem can be overcome by (a) staying exactly
on the desired trajectory and scaling the desired travelling
time such that the robot moves slower [3] or by (b) explic-
itly deviating from the desired trajectory. Both approaches
are meaningful for respective task problem classes.
Keeping exact cartesian position and orientation is use-

ful for applications, where the path has been preplanned
and to be kept explicitly, e.g. where collision safety has to
be guaranteed. On the other hand, e.g. for applications of
dispensing glue on a surface, it is important to keep a given
translational cartesian position and speed to avoid the glue
from clotting. However, it is not necessary to keep the de-
sired orientation exactly. The second approach is also ap-
propriate, if the desired trajectory is not known a priori and
given by some sensor information, e.g. while teachingwith
a 6D input device.
Various approaches tackle the problem by an appropri-

ate numerical treatment of a rank deficient Jacobian. Naka-
mura and Hanafusa [7] use a damped least squares algo-
rithm, which leads to a poor performance of the manipu-
lator near singularities. Senft, Hirzinger [12] and Nenchev

[8, 14, 15] tackle singularities by utilizing the adjoint Ja-
cobian matrix. Snell [13] uses a QR-decomposition to de-
termine the rank-deficient subspace of the Jacobian. Sicil-
iano [6] describes another algorithm, based on the Jacobian
transposed matrix JT , which has been enhanced in [11].
In this paper, a constraint optimization approach as uti-

lized for redundant robots [2, 9, 10], is used by reformu-
lating the non–redundant inverse kinematics problem as a
redundant problem. The latter idea was also sketched in
[5]. With the constraint optimization approach, speed, ac-
celeration and torque limits can be applied as inequality
constraints and the acceptable deviation from the desired
trajectory can be weighted for a certain cartesian subspace.
In chapter 2 the redundant optimization problem will be
formulated. In section 2.3, the approach will be improved
by introducing an additional time scaling as optimization
variable. In chapter 3 it is shown how the new method
can be combined with an analytic solution of the inverse
kinematic problem to enhance efficiency. Finally, chapter
4 shows some numerical results of the proposed algorithm.

2 Constraint optimization problem

2.1 Kinematic problem formulation

The forward kinematics of a robot manipulator is usu-
ally given by a set of nonlinear equations:

x � f�q� (1)

where x is the � dimensional vector of cartesian coordi-
nates, f is a � dimensional vector function mapping the n
dimensional joint vector q to end effector coordinates. In
the sequel, we are considering a non-redundant robot, i.e.,
n � � holds. Calculating the inverse of Equation (1)

q � f���x� (2)

leads to high joint speeds and accelerations in the vicinity
of a singularity. Below a numerical method is proposed to
keep these quantities in their allowed limits. Deriving (1)
leads to

dx � J�q�dq (3)
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where J�q� is the manipulators Jacobian matrix. In a sin-
gular configuration qs the Jacobian J�qs� looses rank and
(3) can no longer be inverted.

2.2 Reformulation as a redundant problem

The mentioned problem shall now be reformulated as a
redundant problem, which is solved by constraint optimiza-
tion The vector equation (1) shall be split into a part which
has to be fulfilled exactly (superscript ex) and a part which
need to be fulfilled only approximately (superscript ap):

xex � fex�q� (4)

xap � fap�q� (5)

dim�xex� � dim�xap� � � (6)

A good choice for splitting the two subspaces is the natural
separation of the cartesian space into translational part (to
be fulfilled exactly) and orientational part (to be fulfilled
approximiately). In the sequel, vector x will be considered
to be resorted, such that x � �xex

T

xap
T

�T holds.
The cartesian error e is defined as

e �

�
eex

eap

�
� x� xd (7)

where x is the current end effector position, defined by (1)
and xd is the desired cartesian position. The goal is that the
error term eex vanishes and that the remaining part of the
error term is as small as possible, i.e.,

min
q

jeapj� subject to eex � � (8)

and subject to operational constraints, such as motor speed
limits.
In figure 1 the most important symbols for the derivation

below are explained. In particular, qi � q�ti� are the un-
known joint coordinates at sample instant ti, which have to
be determined, qi�� � q�ti��� are the known joint coor-

dinates from the last sample instant ti��, q
�j�
i are the joint

coordinates of the j-th iteration in order to determine qi,
�q

�j�
i is the vector from the last sample instant to the j-th

iteration point and �q�j�i is the vector from the last iteration
point j � � to the actual iteration point j.
The kinematic equations (1) are linearized around the

last iterative solution vector q�j���i , i.e.,

x
�j�
i � f�q

�j���
i � � J�q

�j���
i � � �q

�j�
i (9)

with �q
�j�
i � q

�j�
i � q

�j���
i and q���i � qi��. Since the

constraints of the optimization problem are most naturally
expressed as functions of�q�j�i , and not of �q�j�i , the rela-
tionship

�q
�j�
i � qi�� ��q

�j�
i � q

�j���
i (10)

q�i-2�

q�i-1�

q�i�

Δq�i�(j)�

δq�i�(j)�

q�i�(j)�

q�i�(j-1)�

Figure �� De�nition of symbols for optimization problem

is used to express (9) as function of �q�j�i leading to the
following linear approximation of the cartesian error in the
j-th iteration:

e
�j�
i � J�q

�j���
i ��q

�j�
i � b

�j�
i � xd�i (11)

with

b
�j�
i � f�q

�j���
i � � J�q

�j���
i ��qi�� � q

�j���
i � (12)

The most important operational constraints, such as con-
straints on position, velocity and acceleration of the joint
coordinates can be expressed as

�qi�min � �q
�j�
i � �qi�max (13)

with appropriately chosen minimal and maximal values
�qi�min and �qi�max, respectively. For example, limits
on the joint speeds

�qmin � �q�t� � �qmax (14)

can be discretized

�q
�j�
i �

q
�j�
i � qi��

ti � ti��
�

�q
�j�
i

�ti
(15)

leading to the following structure of (13)

�ti � �qmin � �q
�j�
i � �ti � �qmax (16)

We are now in the position to formulate the first version of
the optimization problem in a formal manner, by splitting
(11) according to the previous definitions and by utilizing
(13):

min
�q�j�

i

���eap��j�i

���� subject to (17)

e
ex��j�
i � �� �qi�min � �q

�j�
i � �qi�max (18)

This is a linear least squares problem with linear equality
and inequality constraints. If the Jacobian J�q�j���i � has
full rank, a unique solution to this optimization problem
exists. If the Jacobian is rank deficient, i.e., the manipula-
tor is in a singular configuration, there is an infinite number



of solutions. The solution can be made unique by requir-
ing that j�q�j�i j is minimized additionally in this situation,
i.e., the changes of the joint coordinates with respect to the
last sample instant shall be as small as possible. Standard
numerical algorithms exist to solve this special convex op-
timization problem in a finite number of steps in a reliable
way, see e.g. [4, 1] for details.
By successive linearizations around the last solution

point, several of these optimization problems are stated and
solved until the solution of the original nonlinear optimiza-
tion problem (8) is approximated sufficiently enough.
In a well conditioned configuration, this formulation

leads to the same result as the analytic solution (2), since
effectively the nonlinear equations (2) are solved. In ill–
conditioned areas, only the requested exact equations are
fulfilled and the others are approximated as a secondary
subtask, in order to fulfill the operational constraints.
It turns out that the solution of the discussed optimiza-

tion problem for successive points often leads to undesired
oscillations in the joint coordinates. By requiring that also
the time derivative of the cartesian error, i.e., �eap, shall be
minimized, these oscillations can be effectively removed.
With

�e � �x� �xd (19)

� J�q� �q � �xd (20)

the derivative of the cartesian error �e�j�i in the j-th iteration
at the i-th time instant can be approximated by

�e
�j�
i � J�q

�j���
i �

�q
�j�
i

�ti
�

�xd�i
�ti

(21)

with

�ti � ti � ti�� (22)

�xd�i � xd�ti�� xd�ti��� (23)

The two criterias are weighted with respect to each other
with weighting matrices���ti�, respectively, i.e., the fol-
lowing criteria is minimized:

min
�q�j�

i

����eap��j�i

���� � ����ti� �e
ap��j�
i

���� (24)

Collecting all formulas together, finally leads to the follow-
ing linear least squares problem formulation: Find a solu-
tion vector�q�j�i such that the criteria

min
�q�j�

i

�����
�
�Jap�q

�j���
i �

�Jap�q
�j���
i �

�
�q

�j�
i �

�
��xapd�i � b

ap��j�
i �

��xapd�i

������
�

(25)
is minimized subject to the linear equality constraints
which have to be fulfilled exactly

Jex�q
�j���
i ��q

�j�
i � b

ex��j�
i � xexd�i � � (26)

and subject to the linear inequality constraints

�q
�j�
i � �qi�max�qmax� �qmax� �qmax� (27)

�q
�j�
i � �qi�min�qmin� �qmin� �qmin� (28)

The main advantage of the proposed algorithm is, that the
optimizer selects x � xd, if this is possible. As soon as the
desired trajectory exceeds the physical limits of the manip-
ulator, a cartesian error in a specified subspace occurs. This
error is made as small as possible under the constraint that
the physical limits are not exceeded.
In other words: The proposed algorithm describes a re-

dundant manipulator with mex degrees of freedom. The
primary subtask is to fulfill the respective constraints ex-
actly, the secondary subtask is to fulfill themap error equa-
tions and themap derivative error equations approximately.
The optimization problem can be further improved by

adding additional criterias, e.g., (a) the maximum cartesian
error can be introduced as additional inequality constraint
to guarantee that the cartesian error is limited, (b) the max-
imum acceleration constraint can be replaced by maximum
torque limits of the motors. Via the dynamic equations of
the robot, these torque limits can be transformed into a set
of linear inequality constraints.

2.3 Generalizing the constraint optimization ap-
proach by time scaling

The proposed structure of the optimization problem (25)
can be generalized by including a time scaling of the de-
sired trajectory to reduce the cartesian speed in the vicinity
of a singularity. With this time parameterization, the same
handling of singularities is possible, than in [3]. The tra-
jectory shall be a function of time

xd � g�t� (29)

So the problem may be linearized similarily as in the pre-
vious chapter around the last time step i� �.

ti � ti�� ��ti (30)

xd�i � g�ti��� �
d

dt
g�ti����ti (31)

where �ti is the sample instant. In order that the phys-
ical limits can be easier fulfilled, the desired trajectory is
modified in such a way that the robot moves more slowely
along the desired geometric path. This behaviour can be
reached by scaling the time parameter of the desired trajec-
tory, leading to a modified desired trajectory x�d�t� with

x�d�i � g�ti��� �
d

dt
g�ti������ ���ti (32)

� xd�i�� ��xd�i � ��� �� (33)



where � � 	 characterizes the desired trajectory, 	 � � �
� characterizes a slower desired trajectory and � � � leads
to a complete stop. � is used as additional unknown vari-
able which is determined in the optimization process. Since
the desired trajectory should be reached, an additional cri-
teria with weighting factor � has to be introduced which
minimizes j��j� in order that � is as close to zero as possi-
ble. Incorporating this criteria into (25), replacing xd�i by
x�d�i and utilizing (33) leads to the following criteria which
has to be minimized:

min

�������
�
�� �Jap�q

�j���
i � ��xapd�i

�Jap�q
�j���
i � �

� �

	

�
�
�q

�j�
i

�

�
�

�
� ��xapd�i � b

ap��j�
i �

��xapd�i
	

	
�
������
� (34)

The augmented problem in (34) leads to the same problem
than (25) by fixing � � 	. Choosing � � 
	� �� andmap �
	, one will end up with a constraint optimization problem,
which solves the problem of untimed trajectories in [3].
The new introduced optimization variable � can be in-

terpreted as task dependent dexterity measure, which com-
plies to the given limits.

3 Considerations about switching inverse
kinematic algorithms

For most industrial robots, the inverse kinematic prob-
lem (2) outside of a singularity can be solved analytically.
Such an analytic solution is about 10–20 times faster as
the solution of the optimization problem (25). The analytic
solution only lacks the treatment of the singularity prob-
lem, or more precisely, the prevention and prediction of
exceeding physical limits of the manipulator. So, to solve
the singularity problem, one should think about combining
the algorithms: Using the efficient analytic algorithm un-
der all feasible circumstances and the new constraint opti-
mization approach only when necessary. Such an approach
requires appropriate switching conditions between the two
algorithms.
One possibility could be to detect a rank deficiency of

the manipulators Jacobian in equation (3), since this char-
acterizes the singular positions of the manipulator. How-
ever, the physical limits of the manipulator are already vio-
lated when the Jacobian is still regular, but ill-conditioned.
So the switching conditions have to be formulated along

the physical limits, formulated in equation (13). If the re-
sult qai of the analytic solution does not comply with the
inequality constraints of (13), the iterative solution is used.

�qai � qai � qai�� �� 
�qi�min��qi�max� (35)

Similarily, a switching from the constraint optimization ap-
proach to the analytic solution can take place, if the solu-
tion of the optimization problem is no longer on the border
of the inequality constraints (= no active inequality con-
straints).

4 Numerical Results

The proposed algorithm of (25) has been tested with a
KUKA industrial robot (see figure 2). The robot can be
teached with a sensor-device, and driven through singu-
larities. Figures 3 to 18 show two experiments, how the

Figure �� KUKA standard industry robot

proposed iterative algorithm overrides the analytic solution
while traveling through the typical axis 5 singularity. The
cartesian positions have been chosen to be fulfilled exactly
(mex � �), and the orientations approximately (map � �).
As shortly discussed at the end of chapter 2.2, an up-

per limit for the cartesian error has been introduced. This
leads to an implicit feasibility test of the trajectory. In some
practical experiments it turned out that accepting about 3
degrees of deviation is enough for the teaching application,
commanded by a 6D input device. The optimization prob-
lem with 2 iterations for one sampling instant was solved
in about 3 milliseconds on a Pentium 100 MHZ machine.
Some performance improvements are possible, taking the
special structure of the formulated problem into account.
Example 1 (figures 3, 5-11) shows a motion in the vicin-

ity of the axis five singularity. The start and goal configu-
ration is shown by figure3, the motion travels from start
to goal configuration, and back again. The plots of fig-
ures 5-10 show the motion of a single axis, in the first row,
numerical and analytical solution is plotted, in the second
row, the difference between analytic and numeric solution
is shown, in the third row, the speed of analytic and nu-
meric and in the forth the accelerations are plotted. In fig-
ure 5, it is important to observe the orientational deviation
is executed by a motion of the first axis, which would be in
rest by the analytic solution. Axis 4 and Axis 6 (figures 8
and 10) show the motion beyond the limits close to the sin-
gularity. The analytic solution exceeds the limits, and the
numeric solutions sticks on the limits of acceleration and



speed. The cartesian error development during the trajec-
tory shows 11. In the upper plot the rotational error is dis-
played (eap), which is growing due to the physical limits
of the manipulator and in the lower plot, the time derivative
of the error�eap is displayed.
Example 2 (figures 4, 12-18) shows a motion perpendic-

ular to the singulating axis 5. The analytic solution steps in
the first step of the trajectory by 90 Degree (��
 rad) in
axis 4 and axis 6 (figures 8 and 10).
This example shows the performance of the approach,

which allows intuitive guidance of the manipulator with
sensor devices. The user is allowed to command even in-
feasible trajectories and the manipulator follows with an
accepted deviation.

Figure �� Start and goal con�guration of the �rst example�

traveling in the vicinity of the axis � singularity� the motion

is from start to goal con�guration and back again�

Figure 	� Start and goal con�guration of second example�

The manipulator is commanded a trajectory perpendicular

to the axis � singularity�

5 Conclusions

The usage of constraint optimization algorithms turns
out to be very useful when solving the singularity problem
of non–redundant robots. The main advantage of this for-
mulation lies in the explicit consideration of physical limits
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The upper plot shows the error development of the approx


imate error e
ap
i �rotational� and the lower plot shows the

development of the error derivative �eapi
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Figure ��� Axis � of second example

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5

0

0.5

1
x 10

−3 Deviation between numeric and analytic, joint 2
0 50 100 150 200 250 300 350 400 450 500

−1.6

−1.55

−1.5
 Numeric and Analytic solution, joint 2

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3
x 10

−4 Speed Numeric and Analytic in comparison, joint 2

0 50 100 150 200 250 300 350 400 450 500
−5

0

5
x 10

−5 Acceleration  Numeric and Analytic in comparison, joint 2

Figure ��� Axis � of second example
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Figure �	� Axis � of second example
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Figure ��� Cartesian error of example �� The upper plot

shows the error development of the approximate error e
ap
i

�rotational� and the lower plot shows the development of

the error derivative �eapi

within the optimization problem. This is a key to the solu-
tion of the problem, since cartesian trajectory tracking can
now be executed close to the physical possibilities of the
mechanism.
This kind of solution to the singularity problem solves

one class of singularity problems. It can be applied es-
pecially for teaching with sensor-devices, like the “DLR–
SpaceMouse” and for tracking of a priori known trajecto-
ries, where it is more important to track cartesian speed
than to follow exactly the trajectory orientation, e.g. for
applications like dispensing glue with a robot. The algo-
rithm has been generalized by augmenting with an addi-



tional timing parameter �, which solves either the problem
of exact traveling on trajectories by slowing down or by
combination of both algorithms. The presented algorithm
has been shown to work on a KUKA industrial robot, and
will be applied to redundant systems, like the 7–dof “DLR-
Lightweight-Robot”.
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