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ABSTRACT:

Power line corridor inspection is a time consuming task that is performed mostly manually. As the development of UAVs made

huge progress in recent years, and photogrammetric computer vision systems became well established, it is time to further automate

inspection tasks. In this paper we present an automated processing pipeline to inspect vegetation undercuts of power line corridors.

For this, the area of inspection is reconstructed, geo-referenced, semantically segmented and inter class distance measurements are

calculated. The presented pipeline performs an automated selection of the proper 3D reconstruction method for on the one hand wiry

(power line), and on the other hand solid objects (surrounding). The automated selection is realized by performing pixel-wise semantic

segmentation of the input images using a Fully Convolutional Neural Network. Due to the geo-referenced semantic 3D reconstructions

a documentation of areas where maintenance work has to be performed is inherently included in the distance measurements and can

be extracted easily. We evaluate the influence of the semantic segmentation according to the 3D reconstruction and show that the

automated semantic separation in wiry and dense objects of the 3D reconstruction routine improves the quality of the vegetation

undercut inspection. We show the generalization of the semantic segmentation to datasets acquired using different acquisition routines

and to varied seasons in time.

1. INTRODUCTION

Power line corridors have to be inspected on a regular basis ac-

cording to vegetation growing too close to the power line. In

industry this inspection task is known as vegetation undercut de-

tection or clearance distance inspection. Up to now these inspec-

tions are done manually. On the one hand a person is walking by

the power line corridor and estimates the distances between vege-

tation and power line. This leads to coarse results and most of the

time hardly traceable documentation. On the other hand these in-

spections can be done using aerial images acquired using manned

systems. Acquisition hardware of aerial images typically has very

high resolution. The restrictions on minimum flight height and

thus having large distance to the scene, aerial images result in

ground sampling distances (GSD), like for the UltraCamEagle

Mark21, of 27 mm at a flight height of 1000 m. But the usage

of aerial images is quite expensive as there is an enormous de-

mand of resources. Compared to aerial images, images taken by

an Unmanned Aerial Vehicles (UAV) also provide high GSD be-

cause of the close distance UAVs can be operated to the scene.

Next to nadir views as delivered by aerial images it is easily pos-

sible to add slightly slanted views using UAVs which improves

the reconstruct-ability of power lines and the side views of the

surroundings (vegetation). Due to the development of UAVs in

recent years we are now able to acquire high quality UAV images

at low cost. The diversity in design of UAVs provides the ability

to hover and perform very precise maneuvers at close distance

to an object using multi-rotor UAVs, or survey large areas using

fixed-wing UAVs.

Nowadays UAV images are used for different purposes: 3D re-

construction, inspection and measuring. There are commercial

products available for 3D reconstruction like Pix4D2 or Agisoft

1http://www.vexcel-imaging.com/products/ultracam-eagle
2https://pix4d.com/

PhotoScan3. A similar system is the one by (Tscharf et al., 2015).

They present a fully automated approach to generate precise, met-

ric and geo-accurate 3D reconstructions using UAV images and

terrestrial ones. High resolution UAV imagery is also used in

(Jóźków et al., 2015) to model the geometry of transmission lines

in 3D. Their experiment showed that having properly acquired

images and using a dense matching algorithm provides similar

results as using LiDAR acquired point clouds. It is convenient to

use UAVs as investigation tool to acquire images for inspection

tasks of otherwise hard to reach positions. One example is the

inspection of roofs according to the thermal insulation. This was

presented by (Zhang et al., 2015) where they propose automatic

thermal anomaly detection in 2D, based on thermal images ac-

quired using UAVs. A further application UAVs are used for is

the inspection of wetlands according to the vegetation growing

there. In (Marcaccio et al., 2015) they demonstrate the usability

of UAV imagery for classifying the wetland vegetation at differ-

ent seasons to be able to map the seasonal changes in habitat.

The previously mentioned publications do either 3D reconstruc-

tion or inspection or measuring. But we present an approach that

does combine these tasks. We want to perform analysis. In addi-

tion to pure 3D reconstruction we relate objects present in the 3D

reconstruction to each other to measure interpretable distances.

Therefore, we first perform semantic segmentation and recon-

struct the scene. The quality of reconstruction is enhanced as we

interpret the object to be reconstructed according to the seman-

tics and automatically select a proper reconstruction routine. By

transferring the semantics to the scene we gain the ability to not

only perform 3D measurements, but are able to interpret them.

Our approach is demonstrated on the task of inspecting power

line corridors according to vegetation undercuts.

3http://www.agisoft.com/



Figure 1. Overview of the automated vegetation undercut inspection pipeline: Based on UAV-based images we automatically

reconstruct the area, add semantics to the 3D model and finally measure distances between power lines and trees. The core part of the

framework, the semantic segmentation, enables to interpret the object to be reconstructed according to the semantics and to

automatically select the proper reconstruction routine. This means we will reconstruct the surrounding with semantically filtered

power lines using a dense approach and the power lines using the line-based approach.

2. PIPELINE

In this section we describe our highly automated pipeline to get

semantically labeled 3D reconstructions containing a dense rep-

resentation of the environment and preserving wiry objects like

power lines. This semantically labeled 3D reconstruction is fur-

ther simplified for the reason of efficiently performing inspection

tasks within semantic classes. The pipeline is depicted in Figure 1

and consists of the following main parts:

• Geo-referenced Structure-from-Motion and Line-based Re-

construction

• Semantic Segmentation

• Dense Image Matching

• Depth Map Fusion with Semantic Filtering

• Obtaining Memory Efficiency

• 3D Fusion of Semantics

• Distance Evaluation

2.1 Geo-referenced Structure-from-Motion and Line-based

Reconstruction

The task of a Structure-from-Motion (SfM) pipeline is to recon-

struct 3D points and simultaneously calculate the camera poses

according to the reconstructed sparse point cloud. The presented

approach is highly automated and is capable to deal with un-

ordered, non-sequential image sets. In our pipeline we follow

(Irschara et al., 2012) to get the sparse point cloud with ori-

ented cameras. We assume pre-calibrated input images and we

achieve this by exploiting the method of (Daftry et al., 2013).

The first step of the SfM pipeline is the extraction of features.

As features, Scale-invariant Feature Transform (SIFT) presented

by Lowe (Lowe, 2004) is used, as they are robust against illu-

mination, rotation and view point changes. Next the extracted

features are matched to create inter image correspondences. This

process is speeded up by using a vocabulary tree matching (Nis-

ter and Stewenius, 2006). Using the corresponding features be-

tween image pairs the relative motion between these two cameras

is estimated and geometrically verified using a robust version to

the five-point algorithm (Nistér, 2004). Based on an initial im-

age pair, further images are added using the three-point algorithm

(Haralick et al., 1991). The SfM is finalized by simultaneously

refining the 3D points (also called sparse point cloud) and the

camera poses by a bundle adjustment step (Triggs et al., 2000).

As we aim to use the reconstruction for inspection tasks, it is im-

portant to know the reconstruction’s absolute position and orien-

tation in a specific geographic context. This can be done by geo-

referencing. We apply the approach of (Rumpler et al., 2014).

There, the metric scale and the pose of the reconstruction are de-

termined robustly by exploiting the GPS coordinates acquired to-

gether with the images.

According to the task of power line corridor inspection, the sparse

point cloud does not provide enough information about the power

line itself. Therefore, we add line features to the sparse point

cloud. We follow (Hofer et al., 2016) and based on pre-aligned

cameras we detect 2D line segments and match them in 3D using

geometric constraints. The matching hypotheses are then verified

using a multi-view approach and result in an accurate 3D recon-

struction of wiry and line-based structures.

2.2 Semantic Segmentation

The semantic segmentation is a core element of our reconstruc-

tion approach as it influences the individual parts of the 3D re-

construction and adds the ability to analyze the final reconstruc-

tion automatically (see Figure 1). Therefore, we require pixel-

wise semantically labeled images. We follow the approach of

(Long et al., 2014) and use a Fully Convolutional Neural Network

(FCN) to get pixel-wise segmentations. The network presented

in (Long et al., 2014) is adjusted to represent the number of out-

puts required for our task. As we are dealing with wiry objects

in our input images, and thus the receptive field of the FCN of

32 px is too big, we extend the network by adding a Conditional

Random Field represented as Recurrent Neural Network (CRFas-

RNN) as presented in (Zheng et al., 2015). The Conditional Ran-

dom Field exploits the probabilities of the FCN and refines them

by taking binary constraints into account. This enhances label

changes being aligned with intensity changes (edges) in the im-

age. To further improve the results of the CRFasRNN we added

an RGBtoLAB conversion to the input images of the CRFasRNN

part of the network. The final network structure is depicted in

Figure 2.

2.3 Dense Image Matching

Based on the results of the SfM we calculate stereo image pairs

and perform rectification according to the epipolar geometry.

Next, depth images are generated using the Discrete-Continuous

Dense Image Matching approach of (Shekhovtsov et al., 2016).



Figure 2. Schematic overview of the Neural Network: The network consists of (fully) convolutional, pooling and deconvolutional

layers. Further, the option of early exit exists, which results in coarse semantic segmentations (FCN-XXs). The pixel accurate

segmentation (SEM. SEG.) is attained by adding an RGB to LAB color space conversion (RGBtoLAB) and a conditional random field

represented as recurrent neural network (CRFasRNN).

First a discrete optimization problem is solved to get rough depth

measurements. As this discrete optimization problem is con-

strained to a maximum of 128 depth steps and we are dealing

with rectified stereo pairs of different baselines, we added an au-

tomatic adjustment of the step size to maximally exploit the depth

range of the scene. This is done, by taking the SfM reconstruction

into account. The step size is adjusted to represent the distance

between the minimum and maximum depth of the sparse point

cloud visible in the corresponding stereo pair within 100 depth

steps. Finally, the coarse result of the discrete optimization is re-

fined solving a continuous optimization problem exploiting the

same cost function as in the discrete optimization problem.

2.4 Depth Map Fusion with Semantic Filtering

Based on the individual depth maps, we want to generate a dense

3D reconstruction. As it is known that wiry objects are not well

represented in depth maps according to the regularization con-

straint of preserving smooth surfaces, power lines are not suited

to be reconstructed using this approach. Thus, the depth maps

are filtered according to the semantic segmentation. Before this

filtering can be applied, the depth maps have to be transformed

from the coordinate system of the rectified camera to the coor-

dinate system of the original camera of the SfM. The required

transformations have been calculated while rectification.

For the depth map fusion we use the approach presented by

(Kähler et al., 2015). This approach is highly optimized for real

time processing on a GPU. They model the world using a volu-

metrically represented signed distance function and perform ray-

casting for visualization. We exploit the hashing of (Nießner et

al., 2013) to be unconstrained in size of the scene. To be able

to use our aligned depth maps, we extended the framework of

(Kähler et al., 2015) to take camera poses as input for the depth

maps positioning and not to perform any tracking.

As a result we get a 3D mesh reconstruction of the surroundings.

This means that the model does not contain any power lines.

2.5 Obtaining Memory Efficiency

Due to the high resolution of the dense mesh, the 3D reconstruc-

tion requires lots of memory and further processing would be

time demanding. Thus, we rasterize the model according to a

required resolution into a voxel grid and store the reconstruction

in an Octomap (Hornung et al., 2013). To do so, the octree under-

lying the Octomap has been extended to store in addition to the

occupied voxels the color, the semantic label, its color represen-

tation and the distance measurement. The usage of the extended

Octomap enables to have a single model representing all visual-

ization methods and measurements and thus save the overhead of

storing the structure several times.

2.6 3D Fusion of Semantics

The fusion of the semantics to 3D will enrich the 3D reconstruc-

tions by semantics. This is required to be able to perform auto-

mated inspection or analysis in 3D. To get robust semantics into

the 3D reconstruction, as the 2D semantic segmentations may

contain classification errors, we perform a histogram based vot-

ing. Based on the Octomap resulting from Section 2.5 we deter-

mine for each voxel the cameras the voxel is visible in. Then the

voxel center is back-projected to these cameras and the resulting

image coordinates are used to determine the label of the corre-

sponding semantic 2D segmentation. Using histogram based vot-

ing the most likely label is determined and added as label to the

according voxel in the Octomap.

In addition to semantically labelling the Octomap, the line recon-

struction generated in Section 2.1 is filtered according to the la-

bel power line, as they have been filtered in the 3D reconstruction

previously. The same histogram based voting as for the voxels is

applied for each reconstructed line segment.

2.7 Distance Evaluation

The final step in our approach is to add the distance between

power lines and trees to the 3D reconstruction of the surround-

ings represented as Octomap. As power lines are represented by

line segments in our reconstruction, we evaluate the distance in

3D between a point and a line segment. For each voxel center P

labeled as tree we calculate the point to line segment distance d

to each line segment labeled as power line and being defined by

a starting point V and an end point W using:

f(n) =











‖P − V‖2 if t0 ≤ 0

‖P − (V + t0 (W − V)) ‖2 if 0 < t0 < 1

‖P − W‖2 if t0 ≥ 1

(1)

where

t0 =
(W − V) · (P − V)

(W − V) · (W − V)
(2)

The minimum distance is saved in the corresponding voxel in the

Octomap.

3. DATA ACQUISITION AND NETWORK

INITIALIZATION

In this section we will describe the hardware of the two UAVs

used for image acquisition. Next, we will go into details of the

acquisition itself. And finally, we will provide details on the train-

ing routine of our semantic segmentation network.



3.1 Hardware

When performing power line corridor clearance distance inspec-

tion it is likely to use different acquisition platforms constrained

by the surrounding area. A multi-rotor will be used in areas where

power lines follow steep slopes. The use of a fixed wing UAV

would be suited for power line corridors that span over large and

flat areas. These constraints to the acquisition platform motivated

us to use two different UAVs, a Falcon8 and an eBee to record our

test sets.

The Falcon8 has been developed by Ascending Technologies

GmbH4 . It is an octo-rotor equipped with a Sony NEX-5n com-

pact camera and a 24 mm lens. The camera has an image resolu-

tion of 16 Mpx. The flight time of the Falcon8 is stated with 15

minutes.

The second UAV, the eBee, has been developed by SenseFly5 and

is a fixed-wing UAV. It is designed to perform pre-planned reg-

ular flight patterns completely autonomous and acquires the im-

ages at fixed distance to achieve the required overlap and ground

sampling distance. Its flight time is given with 40 minutes and

it is able to continue the planned mission after battery swapping.

This makes the eBee suitable to survey large areas. The eBee is

equipped with a 12 Mpx Canon S110.

Details on the hardware specification of the two UAVs depicted

in Figure 3 are summarized in Table 1.

Acquisition Platform Falcon8 eBee

Producer Asctec SenseFly

Type Octo-Rotor Fixed Wing

Flight time [min] 15 40

Camera Sony NEX-5n Canon S110

Table 1. Hardware details of the two UAVs used for data

acquisition.

Figure 3. Image acquisition platforms used. The left UAV is the

Falcon8 from Ascending Technologies GmbH and the right one

the eBee from SenseFly.

3.2 Dataset Acquisition

To show the generalization of our presented pipeline we acquired

two test sets using the previously described acquisition platforms.

In Figure 4 the locations of the two data sets are depicted. The

overview image further gives an impression of the dimensions of

the areas capable to be acquired using the different UAVs.

Set1 was acquired in summer using the Falcon8. We performed a

GPS assisted manual flight along the power line at a flight height

of about 40 m above ground which results in a ground sampling

distance of 12 mm/px. We recorded 387 images whereas auto-

matic triggering of the camera was set to two seconds. A subset

of the acquired images is depicted in Figure 5 left.

4www.asctec.de
5www.sensefly.com

Figure 4. Overview of the test sets area: Image has been taken

from Google Earth.

Set2 was acquired in autumn using the eBee. The eBee was pro-

grammed to fly two regular grids above the ground. The first one

was set to a distance to ground of 85 m and the second to 100 m.

The ground sampling distances are 30 mm/px and 35 mm/px re-

spectively. In total 505 images were acquired and a subset is

depicted in Figure 5 right.

Details of the acquired test sets are summarized in Table 2.

Figure 5. Comparison of acquired image sets. The differences in

resolution (see power pylon) and the changes in season are

visible.

Test Set Name Set1 Set2

Acquisition Platform Falcon8 eBee

Flight Height [m] 40 85-100

Flight Area [m2] 9,000 44,500

Flight Mode Manual Flight Autonomous Raster

Season Summer Autumn

Number of Images 387 505

Resolution 4912× 3264 4000× 3000

Table 2. Acquisition details of the test sets

3.3 Training the Semantic Segmentation Network

Before any image can be segmented automatically the fully con-

volutional network used has to be trained. We manually anno-

tated 25 images of Set1 according to the classes summarized in

Table 3 and further augmented them by rotation and mirroring.

A final cropping to patches of 256 × 256 px with an overlap

of 32 px generated the training database. The cropping was re-

quired to facilitate training on the GPU. The network described

in Section 2.2 has been trained in stages as described in (Shel-

hamer et al., 2017). First, the network was initialized using the



weights of the fcn-32s-pascalcontext6. Next the FCN was trained

for 32s, 16s and 8s for 160,000 iterations respectively and finally

in the last stage the CRFasRNN was added to the network and

the whole network was fine-tuned end-to-end for 160,000 itera-

tions. The parameters used for the individual training stages are

summarized in Table 4.

Class Name Color Class Name Color

Pylon dark gray Building red

Tree dark green Street light gray

Grass light green Clutter magenta

Field light brown Power Line cyan

Table 3. Semantic classes and the according color coding.

Network FCN-32s FCN-16s FCN-8s CRF

Learning Rate 1e-10 1e-12 1e-14 1e-14

Policy fixed fixed fixed fixed

Momentum 0.99 0.99 0.99 0.99

Weight Decay 0.0005 0.0005 0.0005 0.0005

Iterations 160,000 160,000 160,000 160,000

Table 4. Summary of the parameters used for the individual

training stages.

4. RESULTS

In this section we present the results of our automated power line

corridor inspection task according to vegetation undercut detec-

tion. First, we give results of the semantic segmentation, followed

by intermediate results of the 3D reconstruction pipeline and fi-

nally the semantically enriched 3D reconstruction including color

coded distance measurements between trees and power line.

4.1 Semantic Segmentation Results

As presented in Section 2.2 we first generate 2D semantic seg-

mentations of the input images as semantics is required for the

3D reconstruction routine. An example RGB image (Figure 6a)

is visualized next to the final semantic segmented image (Fig-

ure 6c). To highlight the benefit of the CRFasRNN we addition-

ally show the intermediate result of the FCN 8s (Figure 6b). It is

clearly visible that the pairwise potentials of the CRF improve the

boundaries of the objects, especially power lines, and the detailed

structure of the pylon is segmented accurately.

4.2 Semantic 3D Reconstruction Results

Before we are showing the semantically enriched 3D reconstruc-

tion we depict the sparse reconstructions (Figure 7 and 8). In

addition to the point cloud the reconstructed camera poses are vi-

sualized, to give an impression of the acquisition pattern. It is

clearly visible, that grass is reconstructed in detail, and power

lines, pylon and trees are almost missing. Thus, just a sparse re-

construction is not suited for our distance measuring task.

To enrich the reconstruction according to power lines, we use the

line-based reconstruction approach of (Hofer et al., 2016) and ex-

ploit the previously aligned cameras of the sparse reconstruction.

The line-based reconstruction is depicted in top- and side-view

in Figure 9. Filtering the reconstructed lines according to their

semantics, we are able to reconstruct just power lines.

6http://dl.caffe.berkeleyvision.org/pascalcontext-fcn32s-

heavy.caffemodel

(a)

(b)

(c)

Figure 6. Example semantic segmentation result of a test image

of Set1: On the top there is the reference RGB image, in the

middle the intermediate result of the FCN and on the last row the

final result including the CRFasRNN.

Figure 7. Sparse reconstruction result of Set1 showing the sparse

point cloud and the camera poses.

An accurate reconstruction of trees is still missing. Therefore, we

exploit our dense reconstruction pipeline described in Section 2.3

and 2.4. As a result we achieve a dense 3D reconstruction of the

surrounding without wiry structures (power lines) as depicted in

Figure 10.

Putting everything together by simplifying the reconstruction and

adding the semantics and distance measurements to the 3D recon-



Figure 8. Sparse reconstruction result of Set2 showing the sparse

point cloud and the camera poses.

Figure 9. Reconstructed lines of Set1 depicted from top- and

side-view: It can be seen, that the power lines as well as the

pylon are reconstructed accurately.

Figure 10. Dense reconstruction of Set1: It can be seen, that the

vegetation is reconstructed accurately and the semantically

filtered power lines are not reconstructed.

struction we get the final representation of the fully automated

vegetation undercut detection as depicted in Figure 11 and 12.

Due to the rasterization of the reconstruction of Set1 in voxels of

50 cm we gain a memory reduction by a factor of 85.

5. EVALUATION

In this section we will confirm the decisions we made while set-

ting up the automated semantic 3D reconstruction pipeline for

vegetation undercut detection.

Figure 11. Color coded 3D result of Set2: The objects are color

coded by their semantics according to Table 3. The dense

reconstruction has been rasterized using a voxel size of 2 m.

Figure 12. Color coded 3D result of Set1: The objects are color

coded by their semantics according to Table 3. In addition the

distance of trees to power line is color coded from red to dark

green and truncated at a distance of 10 m.

5.1 Reconstruct-ability of Vegetation

To be able to perform measurements between power line and

trees the vegetation has to be represented in the 3D reconstruc-

tion in detail. A typical approach to densify a sparse point cloud

is to use the PMVS approach of (Furukawa and Ponce, 2010).

There, a densification is achieved by local region growing based

on sparse seed points. Figure 13 left shows the result of that

method. Whereas this approach is well suited for man-made

structures, it is clearly visible that the approach is not eligible

for densification of vegetation due to the high structure and non-

planarity of vegetation. The same scene has been reconstructed

using our dense reconstruction approach based on the Discrete-

Continuous Dense Image Matching of (Shekhovtsov et al., 2016)

and depth map fusion of (Kähler et al., 2015). We gain well re-

constructed vegetation (see Figure 13 right) suitable for further

inspection tasks. It is clearly visible that the trees next to the

power line are completely missed by PMVS but are represented

in detail using our dense reconstruction pipeline. Further, it is

visible that in the dense approach the power lines are not recon-

structed. The reason for that is the intentional filtering of the

depth maps according to power line as they are hard to recon-

struct due to the constraints of the regularization to favor smooth

surfaces. This drawback is solved in our pipeline by our two lane

approach of semantically separating the scene in wiry and solid

objects and fusing the reconstructions in the end.



Figure 13. Comparison of 3D reconstruction methods. The left

image shows a semi dense point cloud created using PMVS. It is

clearly visible that the local region growing approach does not

give good results for vegetation. On the right our dense 3D

reconstruction pipeline provides detailed reconstruction for

vegetation and thus enables further inspection tasks. Note that

the power lines are not reconstructed due to the semantic

filtering of the depth maps.

5.2 Influence of Semantic on 3D Reconstruction

In this experiment we are going to investigate the influence of

the semantic filtering on depth maps. To be able to measure dis-

tances we require an accurate reconstruction. As we are dealing

with dense reconstructions, we get a measurement for each pixel

and due to the regularization constraint of smooth surfaces big

discontinuities in depth are problematic. These discontinuities

occur in the area of power lines as they are wiry objects and rep-

resented by just a few pixels (4-8 px) in the images. Figure 14

depicts such an erroneous depth map that is not able to represent

the big disparity discontinuity in the vicinity of power lines. As

we are dealing with a multi view reconstruction approach the area

beneath the power line is depicted in different views without the

disturbance and thus enables us to mask them out. This is done

automatically by taking the semantic segmentation into account

and masking the segmented power lines and a close area around

them in the depth maps (see Figure 14 right). The fusion of the

depth maps will lead to accurate 3D reconstructions whereas the

power lines are not included any more. A comparison of a 3D

reconstruction with and without filtering of the semantically seg-

mented power lines in the depth maps is depicted in Figure 15. It

is clearly visible that the filtering of power lines removes recon-

struction artefacts like spikes growing toward the power line. If

these artefacts are too big they would cause false alarms in the

inspection task.

Figure 14. Generated depth maps: The left image shows the

reference input image, the middle one the erroneous depth map

that contains wrong depth measurements in the vicinity of power

lines and the right one the filtered depth map used for fusion.

5.3 Generalization of Semantic Segmentation

Pixel-wise annotation of training data is a time consuming task,

thus it is important that the semantic segmentation approach gen-

eralizes to different acquisition methods.

Figure 15. Comparison of 3D reconstruction: The left image

shows the reconstruction without filtering the power lines and

the right image the reconstruction with filtered power lines. It is

clearly visible that filtering the power lines removes

reconstruction artifacts like spikes toward the power line

(marked by red ellipses).

To show the generalization of the semantic segmentation we ac-

quired two data sets as presented in Section 3.2. Images taken

from Set1 are used to train the semantic segmentation network.

The trained network is then deployed on Set2. Compared to Set2,

Set1 contains high resolution imagery at close distance to the

power line acquired in summer. Whereas Set2 was captured in

autumn using a lower resolution camera (see Figure 5 and Ta-

ble 2). To demonstrate the generalization we show probability

maps of the most challenging classes, power line and pylon and

the reference RGB images for easy interpretation of the probabil-

ity maps. Figure 16 shows in the first row the probability maps

for an example taken form Set 1. The following rows give ex-

amples of Set2. As the probability maps of Set2 result in similar

probability values for the same objects it is shown that the se-

mantic segmentation generalizes to similar scenes even acquired

using different hardware and time consuming labelling, retraining

or fine-tuning of the network is not required.
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Figure 16. Generalization of semantic segmentation: The first

row shows an example of a test image taken from Set1 where the

network has been trained on. The further rows show test images

from Set2. From left to right we start with the reference RGB

image, the probability image for the class power line and the

probability image for the class pylon. The warmer the color in

the probability images the more likely the pixel belongs to that

class. It can be seen that the probability distributions are similar

and thus the semantic segmentation generalizes to Set2.



6. CONCLUSION

In this paper we presented an automated pipeline to inspect veg-

etation undercuts of power line corridors which automatically

results in a GPS-based documentation of undercut occurrences.

The presented pipeline performs an automated selection of the

3D reconstruction method for wiry (power line) and solid objects

(surrounding) using semantic segmentation based on Fully Con-

volutional Neural Networks. Further, an octree based data sim-

plification routine enables to perform the inspection task and any

further post-processing efficiently. Exploiting the semantically

enriched 3D reconstruction an automated inspection of the vege-

tation undercuts of power line corridors is performed. Due to the

geo-referenced semantic 3D reconstructions a documentation of

areas where maintenance work has to be performed is automati-

cally included in the measurements and can be extracted easily.

We evaluated the influence of the semantic segmentation accord-

ing to the 3D reconstruction and showed that the automated se-

mantic separation in wiry and dense objects of the 3D reconstruc-

tion routine improved the quality of the vegetation undercut in-

spection. We showed that the semantic segmentation generalizes

to datasets acquired using different acquisition routines and to

varied seasons in time. As we described a general reconstruction

and semantic segmentation approach the presented work-flow can

be easily transferred to other inspection or measurement tasks.
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