

15th International Symposium on Solid Oxide Fuel <u>Cells</u>

HOLLYWOOD, FLORIDA, USA 🔅 July 23-28, 2017

Evaluation of performance and degradation profiles of a metal supported solid oxide fuel cell under electrolysis operation

<u>Aziz Nechache</u>^a, Feng Han^a, Robert Semerad^b, Günter Schiller^a, Rémi Costa^a aziz.nechache@dlr.de

^a Institute of Engineering Thermodynamics, German Aerospace Center (DLR) ^b Ceraco Ceramic Coating GmbH

Outline

I. Metal-supported cell presentation

II. Performance study

III. Degradation study

IV. Conclusions - Prospects

2

Outline

I. Metal-supported cell presentation

II. Performance study

III. Degradation study

IV. Conclusions - Prospects

3

I. Metal-supported cell presentation

> Advantages of Metal Supported Cells

Metal supported Cell (MSC):

- High robustness
- High resistance against thermal and redox cycling
- Good integration into interconnects (bipolar plates) via brazing or welding
- Low cost of metal support and cell materials (thin layers)
- High electronic and thermal conductivity
- Fast start-up, etc.

> Objectives

- Development of metal supported SOCs for HTE application
- Optimization of electrodes and functional layers for SOEC operation
- Improving cells' power density and durability
- Characterization and testing of metal supported SOECs

I. Metal-supported cell presentation

> Architecture of Metal Supported Cells

Outline

I. Metal-supported cell presentation

II. Performance study

III. Degradation study

IV. Conclusions - Prospects

7

➤ i-U curves

- FC mode \rightarrow OCV_{ASC} = 1074 mV while OCV_{MSC} = 953 mV
- EL mode \rightarrow OCV_{ASC} = 890 mV while OCV_{MSC} = 840 mV
- co-EL mode \rightarrow OCV_{ASC} = 846 mV while OCV_{MSC} = 753 mV

► leakage issues with MSC → Pinhole defects

➤ i-U curves

- FC mode : **no activation part observed for the MSC** → the MSC works directly at a minimum resistance
 - no mass transport limitation observed for the MSC
- EL and co-EL modes : activation part at lower currents observed for the MSC, <u>especially in co-EL mode</u>

- no mass transport limitation observed for the MSC

➢ i-U curves

	FC mode	EL mode (0.75 A/cm^2)	co-EL mode
	(0.7 v)	(-0.73 A/CIII)	(-0.73 A/CIII)
P_{ASC} (W/cm ²)	1.085	-0.815	-0.807
P_{MSC} (W/cm ²)	0.448	-0.863	-0.901

≻ EIS - ASC

➢ EIS - MSC

Outline

I. Metal-supported cell presentation

II. Performance study

III. Degradation study

IV. Conclusions - Prospects

13

> Experimentals

- Cell 1 : CeramCell ASC-LSCF (Ceramtec, Germany) → ASC
- Cell 2 : MSC (DLR, Germany) \rightarrow MSC
- Active area $S = 16 \text{ cm}^2$
- $T = 750^{\circ}C$
- air (O_2 electrode), O_2 electrode flow rate = 2.0 SL/min/cell
- H_2 electrode flow rate = 2.0 SL/min/cell

	H ₂ electrode gas composition	current applied	duration
Experiment 1	80% H ₂ O + 20% H ₂	-0.25 A/cm ²	120 h
Experiment 2	80% H ₂ O + 12.5% CO ₂ + 7.5% H ₂	-0.25 A/cm ²	480 h
Experiment 3	90% H ₂ O + 10% H ₂	-0.25 A/cm ²	456 h
Experiment 4	90% H ₂ O + 10% H ₂	-0.5 A/cm ²	1176 h

- Total degradation test duration of **2232 hours** (~13 weeks)

permeable anode side compression effort i anode electrode gas vande sealing vande vande varent collectors vsz electrodyte vsz electrodyte

airtight cathode side

≻ U vs time

	H ₂ electrode gas composition	current applied	duration
Experiment 1	80% H ₂ O + 20% H ₂	-0.25 A/cm ²	120 h
Experiment 2	80% H ₂ O + 12.5% CO ₂ + 7.5% H ₂	-0.25 A/cm ²	480 h
Experiment 3	90% H ₂ O + 10% H ₂	-0.25 A/cm ²	456 h
Experiment 4	90% H ₂ O + 10% H ₂	-0.5 A/cm ²	1176 h

	Exp. 1		Exp. 2		Exp. 3		Exp. 4	
	ASC	MSC	ASC	MSC	ASC	MSC	ASC	MSC
$\Delta V (mV/1000 h)$	40	120	6.3	290	11	21.9	43.4	26.4
%/1000 h	4.2	11.4	0.7	30.2	1.2	2.0	4.3	2.0

≻ U vs time

	H ₂ electrode gas composition	current applied	duration
Experiment 1	80% H ₂ O + 20% H ₂	-0.25 A/cm ²	120 h
Experiment 2	80% H ₂ O + 12.5% CO ₂ + 7.5% H ₂	-0.25 A/cm ²	480 h
Experiment 3	90% H ₂ O + 10% H ₂	-0.25 A/cm ²	456 h
Experiment 4	90% H ₂ O + 10% H ₂	-0.5 A/cm ²	1176 h

≻ U vs time

	H ₂ electrode gas composition	current applied	duration
Experiment 1	80% H ₂ O + 20% H ₂	-0.25 A/cm ²	120 h
Experiment 2	80% H ₂ O + 12.5% CO ₂ + 7.5% H ₂	-0.25 A/cm ²	480 h
Experiment 3	90% H ₂ O + 10% H ₂	-0.25 A/cm ²	456 h
Experiment 4	90% H ₂ O + 10% H ₂	-0.5 A/cm ²	1176 h

ASC and MSC

- OCV stable over time

- effect of degradation over time not visible at lower i applied

visible at higher i applied

Exp.2 (80% H₂O + 12.5% CO₂ + 7.5% H₂)

- $ASC \rightarrow OCV$ stable over time
 - almost no degradation over time
- MSC → OCV increase over time (leakage + defects)
 - effect of degradation over time visible from lower i applied

> EIS vs time – EL mode 80%H₂O + 20%H₂ (i = -0.25 A/cm²)

→ electrode/electrolyte interface behavior changing with i ?!

➢ EIS vs time – EL mode 80%H₂O + 20%H₂ (i = -0.25 A/cm²)

MSC [10⁵ Hz – 10³ Hz] → frequency shift + R_{pol} / over time whatever i applied
 → H₂ electrode charge transfer related phenomena [1-3] affected over time from lower i applied

¹ A. Leonide, V. Sonn, A. Weber, E. Ivers-Tiffée, J. Electrochem. Soc., 155 (2008) B36-B41
 ² A. Nechache, B.A. Boukamp, M. Cassir, A. Ringuedé, Electrochim. Acta 210 (2016) 596-605
 ³ A. Hauch, K. Brodersen, M. Chen, M.B. Mogensen, Solid State Ionics 293 (2016) 27-36

> EIS vs time – EL mode 80%H₂O + 20%H₂ (i = -0.25 A/cm²)

MSC [10³ Hz – 0.5 Hz] \rightarrow H₂ electrode charge transfer ([10³ Hz – 10² Hz]) and H₂ electrode diffusion + conversion ([10 Hz – 0.5 Hz]) affected [1-3] over time from lower i applied

¹ A. Leonide, V. Sonn, A. Weber, E. Ivers-Tiffée, J. Electrochem. Soc., 155 (2008) B36-B41
 ² A. Nechache, B.A. Boukamp, M. Cassir, A. Ringuedé, Electrochim. Acta 210 (2016) 596-605
 ³ A. Hauch, K. Brodersen, M. Chen, M.B. Mogensen, Solid State Ionics 293 (2016) 27-36

MSC R_{ohm} when i \uparrow \rightarrow not stable

→ electrode/electrolyte interface behavior changing with i ?!

MSC [10⁵ Hz − 10³ Hz] → frequency shift + R_{pol} / over time whatever i applied
→ H₂ electrode charge transfer related phenomena [1-3] affected over time from lower i applied

¹ A. Leonide, V. Sonn, A. Weber, E. Ivers-Tiffée, J. Electrochem. Soc., 155 (2008) B36-B41
 ² A. Nechache, B.A. Boukamp, M. Cassir, A. Ringuedé, Electrochim. Acta 210 (2016) 596-605
 ³ A. Hauch, K. Brodersen, M. Chen, M.B. Mogensen, Solid State Ionics 293 (2016) 27-36

MSC [10³ Hz − 1 Hz] → significant R_{pol} / for [10³ Hz − 10² Hz] and [10 Hz − 1 Hz] at lower i applied
→ no significant freq. shift + R_{pol} increase at higher i applied

→ effect of co-EL work not clear yet...

> SEM cross section of tested MSC

Anode supported cell

DLIMetal supported cell

Metal supported cell, no Ni infiltration / no current load

- No Ni depletion / significant Ni coarsening in AFL
- Electrolyte with good mechanical stability
- Pores are rarely found in the thin-film electrolyte layer after SOEC operation
 - Delamination of LSCF Air electrode

 \triangleright

> Defects in thin film electrolyte

Chromia scale and nickel particle in MSC

Outline

I. Metal-supported cell presentation

II. Performance study

III. Degradation study

IV. Conclusions - Prospects

29

Conclusions

- over 2500 h performance + degradation study of MSC
- promising performances shown in FC, EL and co-EL modes
- huge MSC degradation over time during electrolysis work, especially in co-EL mode
- H₂ electrode charge transfer and H₂ electrode diffusion + conversion affected
- influence of i applied not clear yet

> Prospects

- thorough parametric study in FC, EL and co-EL modes
- perform more degradation studies (\neq i and gas comp.) in EL and co-EL modes
- better understanding of reaction mechanisms influencing perf. + deg.

Acknowledgements

Part of this work was supported by the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n°303429.

Thank you for your attention! Questions/Comments?

