

A Fractionated Space Radar for Bistatic, Multistatic, and High-Resolution Wide-Swath SAR Imaging

G. Krieger, M. Zonno, M. Rodriguez-Cassola, P. Lopez-Dekker, J. Mittermayer, M. Younis, S. Huber, M. Villano, F. Queiroz de Almeida, P. Prats, A. Moreira

Microwaves and Radar Institute German Aerospace Center (DLR)

Knowledge for Tomorrow

GARSS

Potentials of Bistatic and Multistatic SAR Systems

DLR

MirrorSAR IGARSS 2017

Challenges of Companion Satellite Missions

Data Downlink Conflicts

Master/Slave Calibration Development&Operation Schedule Launch in Master Orbit Ionospheric Jumps (Scan/TOPS) Programmatic Aspects Master Availability / Redundancy

> MirrorSAR IGARSS 2017

MirrorSAR Concept

MirrorSAR: A New Concept for Multistatic SAR Systems

Pave the way for powerful and affordable multistatic SAR missions by

- □ Reducing weight, size and cost for each receiver satellite
 - > no wide-band communication system for downlink of payload data
 - > no full radar receiver, no on-board memory
 - > no dedicated synchronization link
 - > minimize overall power demands & simplify thermal design
- Mass and volume reduction enables launch of more receiver satellites
 - > new applications: multibaseline interferometry, single-pass tomography, ...
 - > opportunity for graceful degradation can further simplify Rx satellite design
- □ Use dedicated Tx-only satellite (if compared to companion mission)
 - highly efficient illuminatior (no TRMs, no circulators, TWTs, FMCW, ...)
 - continuous multistatic operation, free of operational conflicts
 - > optimized Tx/Rx design and performance with dedicated acquisition mode
 - combination of multiple Rx signals provides new opportunity for data reduction

The MirrorSAR System Concept

(from D. Miller, M. Stangl, R. Metzig, "On-Ground Testing of TerraSAR-X Instrument," EUSAR 2006, Dresden, Germany, May 16-18, 2006)

Commonalities with Trends in Mobile Communication

- Centralized RF signal generation and processing (headend)
- Multiple remote antenna units with minimum hardware effort
- RF signal distribution by Radio-over-Fibre (RoF)

RF in (Modulated)

RF out (Modulated)

Optical Space Link for MirrorSAR

- Wide bandwidth, no ITU restrictions
- Direct intensity modulation also for very high RF frequencies (up to Ka band)
- High SNR already for low laser power and very small telescope
- Less complex than space-to-ground link (relaxed pointing, no atmosphere)
- Will become very light, compact and low power (cf. CubeSat developments)

Proximity

Operations

<u>OCSD</u>

(NASA)

CubeSat (1.5 U)

MirrorSAR Synchronization / Baseline Estimation

- Radar echo forwarding causes time delay that depends on relative satellite position
- Relative satellite position varies smoothly
 - no high-frequency phase errors (in contrast to companion sat with separate Rx oscillator)
 - low-frequency phase errors can be corrected by knowledge of relative satellite position
- Relative satellite position can be estimated with high accuracy by double differential GPS measurements (TanDEM-X: ~ 1 mm)
- Dual-frequency GPS is anyway needed for accurate baseline determination
- Remaining phase errors are comparable to the effect of residual baseline errors in InSAR

/lirrorSAR

GARSS 2017

MirrorSAR Example: Cost-Efficient Acquisition of DEMs with Unprecedented Accuracy

MirrorSAR IGARSS 2017

Digital Elevation Models

		Spatial Resolution	Absolute Vertical Accuracy (90%, max. global offset)	Relative Vertical Accuracy (point-to-point in 1° cell, 90%)					
	DTED-1	90 m x 90 m	< 30 m	< 20 m					
	DTED-2	30 m x 30 m	< 18 m	< 12 m					
	TanDEM-X	12 m x 12 m	< 10 m	< 2 m					
	Level 4	6 m x 6 m	< 5 m	< 0.8 m					
Definition of 90% point-to-point errors: 1°									

Large Baseline DEM with TanDEM-X

- First TanDEM-X DEM (acquired before reaching 20 km formation)
- Large effective baseline (~ 2 km) from Earth rotation

October

revolution

Pisland

• *h_{amb}* ≈ 3.8 m !

converging

ground

tracks

DLR

ANDF

TanDEM-X DEMs with Different Baseline Lengths

Phase Unwrapping Errors

$$B_{eff} = 107.8 \text{ m}, h_{amb} = 49.2 \text{ m}$$

TanDEM-X Interferograms with Different Baseline Lengths

$$B_{eff} = 107.8 \text{ m}, h_{amb} = 49.2 \text{ m}$$

Mission Concept

- Simultaneous interferometric data acquisition with two interferometric baselines
- Small baseline (e.g. h_{amb} = 75 m):
 - avoid height ambiguities
 - high coherence for volume scatterers
- Large baseline (e.g. h_{amb} = 15 m):
 - excellent relative height accuracy (e.g. $\Delta h = 0.4$ m for $\Delta \phi = 10^{\circ}$)
 - excellent absolute height accuracy (e.g. $\Delta h = 0.5$ m for $\Delta B = 1$ mm in X band)
- No decorrelation and height changes between acquisition of two baselines (TanDEM-X)
- Phase unwrapping supported by radargrammetric evaluation of large baseline interferogram

X-Band Performance Example

- Design goal: minimize weight, costs, stowed volume and hardware effort
- 20 km swath can provide two global coverages (asc. & desc.) in 4.4 months

Parameter		Value			
Resolution	1.5 m x 1.5 m				
Incident Ar	40°				
Swath Wid	lth (no DBF)	20 km			
Orbit Heigh	nt	~ 500 km			
Tx Antenna	a (Reflector)	3 m arnothing			
Rx Antenna	a (Reflector)	3 m arnothing			
Center Fre	quency	9.65 GHz			
Bandwidth		150 MHz			
Avg. Tx	w/o Rx DBF	500 W			
Power	(with Rx DBF)	(167 W)			
Noise Figure / Losses		5 dB			

X-Band Performance Example

MirrorSAR global DEM (~ 5 months)

- Constant incident angle: 40°
 - good compromise between sensitivity, layover & shadow
- Two interferometric baselines:
 - > B_{\perp} = 870 m (h_{amb} = 15 m, 5% of $B_{\perp,crit}$)
 - > B_{\perp} = 174 m (h_{amb} = 75 m, 1% of $B_{\perp,crit}$)
- 20 km swath can provide total global coverage in less than 5 months
 - > two coverages (asc. & desc.) possible
 - Full coverage for Φ_{lat} > 60° could be achieved already after 2 months
- Frequency selection
 - > TanDEM-X: good results with X band
 - Ku/Ka band could be an alternative to reduce penetration for volume scatterers (cf. SIGNAL proposal)
 - MirrorSAR with reflector antennas is well suited for multi-frequency DEMs

TanDEM-X global DEM (~ 3 years)

MirrorSAR: Cost and Reliability Considerations

Reliability (2 B_{\perp})

DLR

		3 Tx/Rx	1 Tx/Rx + 3 Rx	1 Tx + 3 Rx	2 Tx + 4 Rx	2 Tx + 5 Rx
		\$\$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$	\$\$\$ \$\$\$\$\$\$ \$\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	\$\$ \$\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$ \$\$\$\$ \$\$\$ \$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Costs		14 \$	13 \$	8\$	12 \$	13 \$
Reliability (2 B_{\perp})	p=0.95	0.86	0.81	0.81	0.98	0.996
	p=0.90	0.73	0.66	0.66	0.94	0.982
	p=0.85	0.61	0.52	0.52	0.87	0.951
	p=0.80	0.51	0.41	0.41	0.79	0.904
			International Antonio and a second	Star 10		

Opportunities with Additional Receivers and Transmitters

- Additional receivers can be used to
 - > improve DEM (triple-baseline interferometry with $h_{amb} = 4$ m enables $\Delta h = 0.2$ m @ 6 m)
 - resolve layover (enables DEM generation with steep incident angles in canyons, cities, ...)
 - demonstrate 3-D imaging (single-pass tomography for cities and semi-transparent scatterers)
- Additional transmitters can be used to
 - > demonstrate new MIMO-SAR modes
 - increase number of virtual phase centers

 $n=n_{Tx}\cdot n_{Rx}$

- > separate single-, double- and multiple-bounce scattering by MIMO-SAR tomography
- MIMO-SAR demonstrations require waveform separation that can be achieved by
 - > choosing steeper incident angle (satellite roll)
 - > adding a switchable feed network in transmitter and/or receiver to narrow beamwidth

virtual phase centers

STSO

waveforms

ARAN

MirrorSAR for High-Resolution Ultra-Wide Swath SAR Imaging

MirrorSAR IGARSS 2017

High-Resolution Ultra-Wide-Swath SAR Imaging

- Simultaneous imaging of multiple swaths in stripmap mode
- No blind ranges due to separate Tx and Rx satellites
- Advanced range ambiguity suppression with CEBRAS enables compact Rx antenna (if compared to staggered SAR)
- Advanced suppression of direct signal and nadir echo by Doppler filter and waveform diversity
- Unique potential for imaging of ultrawide swaths with very high resolution (even up to 500 km @ 1 m with 6 m² Rx antenna in X band (2 m² in Ka band) using FMCW illumination by Klystron)

MirrorSAR

IGARSS 2017

Multichannel Mirror-SAR Transponder

- wide-swath imaging requires digital beamforming with multiple Rx beams
- phase integrity can, e.g., be preserved by
 - coherent demodulation
 - baseband DBF
 - coherent remodulation
- radar echoes from multiple
 Rx beams are simultaneously transferred to master satellite
 - □ use of different carriers
 - multichannel encoding

Conclusions

- MirrorSAR is a new approach for the cost-efficient implementation of future multistatic SAR systems and missions
 - > low-cost Rx satellites (no RFE, no DCE, no sync, no memory, no downlink, ...)
 - > highly efficient Tx satellites (no TRMs, no circulators, TWT, FMCW, ...)
 - > new opportunities for multistatic on-baord data reduction before downlink
 - > distributed redundancy concepts support further simplification of hardware
- □ MirrorSAR paves the way for new Earth observation products
 - > decimeter-level DEMs and DEM time-series by multibaseline interferometry
 - > 3-D structure maps by single-pass SIMO and MIMO tomography
 - > 4-D structure change maps by differential tomography and holography
 - > quasi-continuous Earth monitoring by new high-resolution wide-swath modes
 - > multiangular images for better segmentation, classification and identification
 - resolution enhancement, measurement of object movements, ...

