

Knowledge for Tomorrow

Exergetic analysis of renewable Fischer-Tropsch fuels production from biomass, CO2 and electricity

Friedemann G. Albrecht, Ralph-Uwe Dietrich

German Aerospace Center (DLR e.V.) Institute of Engineering Thermodynamics Stuttgart

ELCAS-5 09-11.07.2017, Nisyros, Greece

2

5th International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS-5) 9 - 11 July, 2017, NISYROS - GREECE

ELTAS

5th International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS-5) 9 - 11 July, 2017, NISYROS - GREECE

Applied methodology for fuel evaluation Technical evaluation - focus on: / thermosonic evaluation Technical life assessment (LCA) evaluation Ecological evaluation – focus on: CO₂-footprint of produced fuels CO₂-abatement costs Alternative fuels ech Economic evaluation – focus on: Economic **Ecological** Production costs (CAPEX, OPEX, NPC) evaluation evaluation Sensitivity analysis Identification of cost reduction potentials (exergoeconomic evaluation) economic-ecological evaluation

Methodology – exergy analysis

- Includes all important equipment such as pumps/HEX/Reactors
- Physical exergy E_{χ}^{Ph} available in Aspen Plus for every material stream

Exergy Analysis

- Direct link between Aspen and TEPET
- Calculation of chemical exergy E_x^{Ch}
- Automated exergy analysis
- (planned) exergoeconomic optimization

5th International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS-5) 9 - 11 July, 2017, NISYROS - GREECE

Multiple options for FT-fuels from biomass, power and CO₂

FT-fuel from Biomass – Biomass-to-Liquid (BtL)

5th International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS-5) 9 - 11 July, 2017, NISYROS - GREECE

Multiple options for FT-fuels from biomass, power and CO₂

FT-fuel from Power and CO₂ – Power-to-Liquid (PtL)

5th International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS-5) 9 - 11 July, 2017, NISYROS - GREECE

Multiple options for FT-fuels from biomass, power and CO₂

FT-fuel from Power and Biomass – Power&Biomass-to-Liquid (PBtL)

5th International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS-5) 9 - 11 July, 2017, NISYROS - GREECE

Multiple options for FT-fuels from biomass, power and CO₂

FT-fuel from Power and Biomass – Power&Biomass-to-Liquid (PBtL)

Exergy flows - Biomass-to-Liquid

DLR.de • Chart 11 • Exergetic analysis of renewable Fischer-Tropsch fuels production from biomass, CO2 and electricity • Friedemann G. Albrecht

ELTA

5th International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS-5) 9 - 11 July, 2017, NISYROS - GREECE

Exergy flows - Biomass-to-Liquid

Detailed exergy analysis of gasification section

DLR.de • Chart 13 • Exergetic analysis of renewable Fischer-Tropsch fuels production from biomass, CO2 and electricity • Friedemann G. Albrecht

Model	BtL	PtL	PBtL
E _{fuel}	37.8 %	53.7 %	53.1 %
ε_{total}	63.5 %	61.2 %	60.4 %
Source of highest exergy destruction	gasification	electrolysis	electrolysis

Conclusion

- High demand of alternative fuels in order to fulfill CO₂-reduction targets
 -> especially with regard to the aviation sector
- DLR has developed a methodology to evaluate fuel production pathways
- Results of the presented case study:
 - > Exergy efficiency of fuel production in the range of 37-54 %
 - Most exergy destruction occurs during syngas production -> Technology shift may increase system efficiency significantly

Promising options: BtL- Hot gas cleaning

PtL- High temperature electrolysis (SOEC)

5th International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS-5)

9 - 11 July, 2017, NISYROS - GREECE

Outlook

- Applying fuel evaluation methodology on other renewable fuel production concepts
 - Butanol
 - Methanol-to-Gasoline
 - HEFA
 - Solar-Fuels
 - etc.
- Economic optimization (Exergoeconomic analysis/optimization)
- Lifecycle assessment
 - CO₂-footprint
 - CO₂-abatement cost
- Application of exergy and exergoeconomic analysis on other thermo-chemical processes
 - DLR-Project IsEN (Isentropic energy storage)

Other options for "green" aviation? Gossamer Albatross?

Crossing of the English Channel between Folkestone and Cap Gris-Nez by Bryan Allen on 12. June 1979

- Distance: 35.8 km
- Travel time: 2:49 hours

This corresponds to:

Flight from Stuttgart (STR) → Kos (KGS): 1.970 km Calculated flight time: **155 hours (6.5 days)**

Source: https://de.wikipedia.org/wiki/Gossamer_Albatross

THANK YOU FOR YOUR ATTENTION!

German Aerospace Center (DLR) Institute of Engineering Thermodynamics, Stuttgart Research Area: Alternative Fuels

friedemann.albrecht@dlr.de http://www.dlr.de/tt/en

Knowledge for Tomorrow

Example: Process simulation Flowsheet (PtL)

