elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars?

Plesa, A.-C. und Tosi, Nicola und Breuer, D. (2014) Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars? Earth and Planetary Science Letters, 403, Seiten 225-235. Elsevier. doi: 10.1016/j.epsl.2014.06.034. ISSN 0012-821X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://www.sciencedirect.com/science/article/pii/S0012821X14004191

Kurzfassung

The impact heat accumulated during the late stage of planetary accretion can melt a significant part or even the entire mantle of a terrestrial body, giving rise to a global magma ocean. The subsequent cooling of the interior causes the magma ocean to freeze from the core-mantle boundary (CMB) to the surface due to the steeper slope of the mantle adiabat compared to the slope of the solidus. Assuming fractional crystallization of the magma ocean, dense cumulates are produced close to the surface, largely due to iron enrichment in the evolving magma ocean liquid. A gravitationally unstable mantle thus forms, which is prone to overturn. We investigate the cumulate overturn and its influence on the thermal evolution of Mars using mantle convection simulations in 2D cylindrical geometry. We present a suite of simulations using different initial conditions and a strongly temperature-dependent viscosity. We assume that all radiogenic heat sources have been enriched during the freezing-phase of the magma ocean in the uppermost 50 km and that the initial steam-atmosphere created by the degassing of the freezing magma ocean was rapidly lost, implying that the surface temperature is set to present-day values. In this case, a stagnant lid quickly forms on top of the convective interior preventing the uppermost dense cumulates to sink, even when allowing for a plastic yielding mechanism. Below this dense stagnant lid, the mantle chemical gradient settles to a stable configuration. The convection pattern is dominated by small-scale structures, which are difficult to reconcile with the large-scale volcanic features observed over Mars' surface and partial melting ceases in less than 900 Ma. Assuming that the stagnant lid can break because of additional mechanisms and allowing the uppermost dense layer to overturn, a stable density gradient is obtained, with the densest material and the entire amount of heat sources lying above the CMB. This stratification leads to a strong overheating of the lowermost mantle, whose temperature increases to values that exceed the liquidus. The iron-rich melt would most likely remain trapped in the lower part of the mantle. The upper mantle in that scenario cools rapidly and only shows partial melting during the first billion year of evolution. Therefore a fractionated global and deep magma ocean is difficult to reconcile with observations. Different scenarios assuming, for instance, a hemispherical or shallow magma ocean, or a crystallization sequence resulting in a lower density gradient than that implied by pure fractional crystallization will have to be considered.

elib-URL des Eintrags:https://elib.dlr.de/114232/
Dokumentart:Zeitschriftenbeitrag
Titel:Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars?
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Plesa, A.-C.ana.plesa (at) dlr.dehttps://orcid.org/0000-0003-3366-7621NICHT SPEZIFIZIERT
Tosi, Nicolanicola.tosi (at) dlr.dehttps://orcid.org/0000-0002-4912-2848NICHT SPEZIFIZIERT
Breuer, D.doris.breuer (at) dlr.dehttps://orcid.org/0000-0001-9019-5304NICHT SPEZIFIZIERT
Datum:1 Oktober 2014
Erschienen in:Earth and Planetary Science Letters
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:403
DOI:10.1016/j.epsl.2014.06.034
Seitenbereich:Seiten 225-235
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Sotin, C.Jet Propulsion Laboratory M/S 321-625 4800 Oak Grove Drive Pasadena, CA 91109NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:Elsevier
ISSN:0012-821X
Status:veröffentlicht
Stichwörter:Mars,magma ocean, mantle reservoirs, mantle overturn, chemical gradient, thermo-chemical convection
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Exploration des Sonnensystems
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung
Institut für Planetenforschung > Planetenphysik
Hinterlegt von: Rückriemen, Tina
Hinterlegt am:20 Sep 2017 10:31
Letzte Änderung:29 Nov 2023 08:52

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.