Transition Modeling Activities at AS-C²A²S²E (DLR)

Andreas Krumbein

German Aerospace Center (DLR) Institute of Aerodynamics and Flow Technology (*AS*) *C*²*A*²*S*²*E* - *Center for Computer Applications in AeroSpace Science and Engineering*

Knowledge for Tomorrow

CFD Transition Modeling Discussion Group Meeting 7 June 2017, Denver (CO) AIAA Aviation 2017

Overview

- \neg C²A²S²E Numerical Methods Branch \rightarrow CFD Code Development
 - → TAU code external aerodynamics, compressible → air vehicles
 - → THETA code internal/external flows, incompressible
 → combustion, wind turbines
 - - $\rightarrow 2^{nd}$ order FV branch + HO-DG-branch
 - \rightarrow massive hybrid parallelization
 - \rightarrow development currently ongoing
 - \rightarrow 1st release planned for 12/2019
- → Main Customers
 - Internal: Transport Aircraft, Helicopters (incl. Wind Turbines), High-Speed Configurations, Spacecraft
 - → External: Airbus Operations

Vision: The Digital Aircraft

Numerical Analysis of Full Flight Envelope

- **Today**, very reliable results for 7 design point applications.
- Tomorrow, same reliability needed for complete flight envelope.
 Strong non-linearities
 - \neg Strong non-linearities
 - Separated flow regions 7
 - Strong shocks 7
 - Shock/boundary-layer interaction 7
 - \neg Unsteady flows

- In general, all major physical phenomena must be captured with sufficient 7 accuracy.
 - -> Flow separation, BL representation, shock/BL interaction, ...
 - \neg Vortices, wakes, free shear layers, engine jets, ...
- CFD capabilities growing: discretization schemes, HPC capacities, grid $\overline{\mathbf{Z}}$ generation, higher resolution, geometrical complexity and details, ...
 - **Turbulence** and **transition models** are becoming weakest link in simulation chain.
 - → Reliable models are a key technology in CFD.

Fundamental Needs

Transition Prediction Capabilities in CFD Codes

- → Applicable to complex configurations
- High level of automation, usable within simulation chains and multi-disciplinary simulation frameworks
 - \checkmark No interference by code user
 - → As little *a priori* knowledge as possible
 - → Must be run in parallel on HPC clusters
- → Transition mechanisms
 - \neg Crossflow, Tollmien-Schlichting, separation-induced, by-pass transition
- → Accuracy of simulation results
 - \checkmark Point of transition onset, interaction with turbulence model
 - ✓ Impact on major flow quantities and properties: c_p, c_f, heat flux, separation/reattachment lines, size of separation, ...
- → Stability and robustness of implementation/procedure
- → User acceptance
- Zarge application range

Steady RANS, unsteady RANS, rotating systems, SRS

Fundamental Needs

Transition Prediction Capabilities in CFD Codes

- More than one method necessary to satisfy the wide range of requirements.
 - Streamline-based approaches using a simplified *two-N-factor* strategy+ by-pass criterion
 - → Different ways of BL computation
 - → Based on RANS solution and RANS grid
 - → Laminar BL code
 - \neg γ -Re_{θ} transport equation model + DLR crossflow (CF) extension
- Complementary use of the different approaches for different applications, e.g.
 - Laminar flow design and analysis using *two-N-factor* strategy
 - → Massively unsteady flows (e.g. with rotation) using γ -Re_{θ}-CF model

Streamline-based approaches & two-N-factor strategy

Coupling of TAU code with transition prediction module

Inviscid streamlines at BL-edge Spanwise sections for BL code

Streamline-based approaches & two-N-factor strategy

Internal structure of transition prediction module

Line-in-flight cuts (strip theory)

- → Accurate results for swept tapered wings.
- → Two sides (upper/lower) per cut, divided by stagnation/ attachment line point

Inviscid streamlines

- Necessary for fuselages, nacelles etc. 7
- Start at attachment line $\overline{}$
 - \rightarrow Attachment line must be determined too.
- Suggests separate treatment of upper and lower sides
- Execution of the stability code along these lines
 - One single transition point per cutside/line.
 - Transition line is a polygonal line on the surface. 7

Fully automated local, linear stability code \rightarrow frequency + wave length estimators for automation

external BL approach
 BL data from BL code
 line-in-flight cuts

Streamline-based approaches & *two-N-factor* strategy

→ Technical feasibility

✓ Wing-body configuration with 4-element high-lift wing

- $rac{-}{2}$ Re = 3.5x10⁶, Ma = 0.17, α = 14.0°, only T-S considered
 - → 138 cuts@slat 148 cuts@wing, 29/73 cuts@flap
 - → 388 cuts overall, 536 transition points (≈ 50 cuts usually used for these type of configuration)

- → 536 calls of BL code and stability code
- → 96 processes
- Computations stable and reliable on HPC clusters

- internal BL approach
- BL data from RANS
- inviscid streamlines

Streamline-based approaches & *two-N-factor* strategy

→ Validation

 \neg Inclined prolate 6:1 spheroid: Re = 6.5x10⁶, Ma = 0.13, α = 15.0°

Streamline-based approaches & *two-N-factor* strategy

- → Impact on CFD results
 - → DLRA320 D-ATRA high-lift landing configuration
 - \neg Re = 17x10⁶, Ma = 0.2

Streamline-based approaches & *two-N-factor* strategy

- → Impact on CFD results
 - → DLRA320 D-ATRA high-lift landing configuration
 - → Re = 17x10⁶, Ma = 0.2
 - → Two different grids

Crossflow extension of γ -Re_{θ} model

- Published 06/2016 in conjunction with Menter SST k-ω
- → Based on helicity Re number $Re_{He} = y^2 / v He / ||u||$
- \neg $Re_{\delta 2c}(H)$ and $Re_{He}(H)$ qualitatively very similar
- → Calibration of $Re_{He,tr}(H)$ using ISW standard cases
- \neg Find empirical fully-local correlation function for shape factor *H*

Sickle-shaped wing (Petzold and Radespiel, 2015)

- → Well documented, pressure distributions & transition locations
- Surface roughness and turbulence intensity given
- \neg Re_c= 2.75 x 10⁶, α = -2.6, M = 0.16

Coupling to SSG/LRR-\omega DRSM \rightarrow PhD thesis just finalized

- \neg γ -Re_{θ} + γ -Re_{θ}-CF models: model functions newly calibrated
- → 2 publications underway
- → **MBB VA-2 airfoil:** M = 0.2, Re = 2.0×10^6 , α = 3.5° and 7.5°

→ Improvement: Good results for the two angles of attack for γ -Re_θ-RSM using consistent setting of FSTI (identical values) in contrast to γ -Re_θ-SST (different values necessary)

Open Issues & Future Plans

Streamline-based approaches & *two-N-factor* strategy

- ✓ Intermittency function to be implemented
 - → Currently only 'point-transition' at point of transition onset
 - → Probably, for every turbulence model an individual calibration necessary
- → Linear PSE + compressible analysis + curvature: ???
 - → Instead of, currently, incompressible analysis using LST
 - → Is it possible/reasonable/reliable for more than infinite swept wing?
 - → Currently under discussion
- → Programming of a 'new' python-based version of the transition module
 - \neg Currently available for TAU and THETA, via library
 - Coupling of the new module the multi-disciplinary simulation environment FlowSimulator
 - Couples new transition module to TAU, THETA, *Flucs* (and potentially other CFD codes)
 - → Couples CFD to CSM and Flight Mechanics
 - → This will be a major effort!

Open Issues & Future Plans

γ -Re_{θ}-CF Model

- → Improvement of CF extension
- \neg Rotor applications \rightarrow modifications for rotating systems
- \neg Galilei invariance \rightarrow focus on helicity-based CF extension
- ✓ Improvement of the stream-wise criterion for high Reynolds numbers

both approaches

- → Extension for Hybrid-laminar Flow Control (HLFC)
 - \neg Started for streamline-based approaches \rightarrow validation of suction BCs
 - \neg For γ -Re_{θ}-CF: fully open!
- → Incorporation of surface roughness, steps and gaps, waviness
- Coupling, verification, validation, application with scale-resolving simulation methods (HRLM, SAS)

7 ...

CFD Transition Modeling Discussion Group Meeting

Some thoughts

- ✓ Verification of implemented models/approaches necessary
 - Along the lines of Turbulence Modeling Resource (TMR) Website (NASA-LaRC): <u>https://turbmodels.larc.nasa.gov</u>
 - → For transport equation approaches: concept could be adopted as is
 - \neg γ -Re_{θ}(-CF), AFT, γ (-CF), laminar kinetic energy, ...
 - → Documentation of approaches would be necessary.
 - \neg For approaches using a point of transition onset:
 - Numerical treatment of laminar and transitional points in the computational grid must be verified
 - → Fixed/prescribed transition

. . .

7

- \neg e^N methods, empirical criteria, ...
- → Point transition vs. intermittency functions

CFD Transition Modeling Discussion Group Meeting

Some thoughts

- Before all this: Verification of the turbulence model used in conjunction with any transition model MUST be verified!
- → Test Cases
 - Need for cases with sufficient and reliable measurement data relevant for transition
 - → Point of transition, transition region, end of transition region
 - \neg c_f-distribution
 - Wind tunnel turbulence intensities including variations in test section
 - → Measurement uncertainties, error bars
 - → Definition of the 'transition point'
 - **7** ...
 - → More 3D cases
 - → JAXAJSM
 - → HL-CRM
 - → NLF-CRM