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Department of Geoscience

Institute of Geography

Assessment of agricultural drought over Africa and

its relation to El Niño–Southern Oscillation using

remote sensing-based time series

Thesis

submitted in partial fulfilment of the degree requirements

Master of Science

Author:

Karina Winkler

Matriculation Nr. 3903638

Supervisors:

Prof. Dr. Volker Hochschild

Physical Geography/ Geoinformatics,
Department of Geoscience,

University of Tübingen
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Abstract

Ranked amongst the most destructive natural disasters of the world, droughts may have

severe impacts on ecosystems and society. Particularly in Africa, where water is a limiting

factor and countries strongly rely on rain-fed agriculture, droughts have constantly led to

widespread crop failure, food shortages and even humanitarian crises. In regions over eastern

and southern Africa, such dry conditions have been attributed to the effect of El Niño–

Southern Oscillation (ENSO). Given the recent El Niño episode of 2015/16 and the associated

severe droughts that occurred in many parts of Africa, this interconnection has once again

become an issue of importance. In this regard, remote sensing data and image analysis provide

new opportunities for generating substantial information on the evolution of droughts at large

spatial and temporal scales.

This thesis focusses on monitoring agricultural droughts over Africa during 2000-2016 and

their relation to ENSO by means of remote sensing time series. The used continental-scale

approach is based on drought indices. In particular, TRMM-based Standardized Precipitation

Index (SPI) and MODIS-derived Vegetation Condition Index (VCI) were used for analysing

the spatio-temporal patterns of agricultural droughts. All in all, a comprehensive insight into

the evolution of agricultural droughts in Africa was gained. The applicability of SPI and

VCI as indices for continental-scale drought monitoring was proven. Observed discrepancies

were linked with variabilities in sensitivity of vegetation to rainfall over Africa, which in turn

merits further research. Moreover, the relation between droughts and ENSO was examined

by applying a correlation analysis between time series of drought indices and Multivariate

ENSO Index (MEI). This complex relationship could be described in its fundamentals. Based

on revealed correlation patterns, droughts tend to occur during El Niño over large parts of

southern Africa. In contrast, a divided pattern was observed in eastern Africa, where areas

with bimodal annual rainfall cycles tend to be affected by droughts during La Niña and, in

zones of unimodal rainfall regimes, droughts tend to arise during the onset of El Niño. How-

ever, no universal El Niño- or La Niña-related response pattern of droughts could be deduced.

In this regard, multi-year atmospheric fluctuations and characteristics of ENSO variants were

discussed as possible influencing factors. Regional impacts of the drought episodes during El

Niño 2002/03 and La Niña 2010/11 were illuminated by comparing observed regional drought

patterns with statistics on national crop production. Focus is laid on each southern and east-

ern Africa, where decreases in production numbers were observed for major drought-affected

countries.



In order to achieve improvements in quality and reliability of the output, the incorporation of

more accurate cropland information, adaptions of the correlation analysis as well as an uncer-

tainty assessment and a validation are proposed. Using remote sensing data as a toolset for

drought monitoring, this thesis represents an attempt to contribute to a better understanding

of spatio-temporal patterns of agricultural droughts in Africa and their dependencies. Such

knowledge is essential as it forms the basis for implementing strategies of drought hazard

mitigation in the affected regions.
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Chapter 1

Introduction

1.1 Motivation and research questions

Droughts are amongst the most destructive natural hazards and can arise virtually everywhere

on the globe (Schubert et al., 2016). These periods of abnormally dry conditions can affect

both ecosystems and society in multiple ways. On the one hand, droughts are main drivers for

land degradation and desertification. On the other hand, socio-economic impacts of droughts

may involve deaths, crop failure, food shortages, famine, malnutrition and mass migration

(Masih et al., 2014). In regard to a growing population and the ongoing climate change, water

and food security are major challenges facing humanity (Hao et al., 2014).

In many regions, observed recurrent droughts are linked with the phenomenon of El Niño–

Southern Oscillation (ENSO) in the tropical Pacific, since the involved interplay of atmo-

spheric and oceanic circulation leads to regional precipitation and temperature anomalies

around the globe (Propastin et al., 2010). In this context, ENSO is related with regional

rainfall variability and associated droughts over large parts of the African continent.

In general, Africa is the hottest and most water-scarce continent on earth (Gan et al., 2016).

With rainfall as the limiting factor for farming and many countries strongly relying on rain-fed

agriculture, droughts affect not only natural ecosystems but also crop production and food

supply and, thus, may have severe socio-economic impacts (Rosenzweig and Hillel, 2008).

Droughts have become and are likely to remain an increasing threat to many African countries.

In total, drought events have caused more than 800,000 deaths and affected about 262 million

people in Africa during 1900-2013 (Guha-Sapir et al., 2016). Regarding the recent El Niño

episode of 2015/16, one of the strongest events of the recorded history, and its devastating

effects on agriculture and food security over large parts of Africa (FAO, 2016a), understanding

and monitoring the effects of ENSO on regional rainfall patterns and vegetation condition

are of major concern for implementing measures of early warning and adaption to drought

hazards. This has become more important than ever, especially when agricultural crop failure

threatens food security and may lead to famine and economic crises.

In this connection, remote sensing data and methods are critical tools for studying the spatio-

temporal evolution and the underlying drivers of droughts. In particular, earth observation
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Introduction

provides the unique opportunity to obtain continuous, consistent and timely information over

large areas where ground observations are unreliable. With recent advances in techniques and

an increased data availability, remote sensing-based time series analysis is highly relevant for

environmental monitoring (Eerens et al., 2014; Meroni et al., 2014).

This thesis focuses on the detection of agricultural droughts over Africa and the analysis

of the associated relation to ENSO by means of remote sensing time series for the period of

2000-2016. This continental-scale approach is based on drought indices derived from remotely

sensed data. In particular, Tropical Rainfall Measuring Mission (TRMM) precipitation es-

timates are used for calculating the Standardized Precipitation Index (SPI) as a first drought

index. Secondly, Moderate-resolution Imaging Spectroradiometer (MODIS) images of surface

reflectance are utilized to derive the Vegetation Condition Index (VCI). Both drought indices

are used in order to analyse the spatio-temporal pattern of agricultural droughts. Through

index-based time series analyses, the thesis at hand addresses the following research questions:

• When and where were agricultural areas in Africa mainly affected by droughts during

the growing seasons from 2000 to 2016?

• Where and how are observed agricultural droughts in Africa related to ENSO? Which

spatio-temporal patterns can be revealed from responses of rainfall- and vegetation-

related droughts to ENSO events?

• What is the impact of observed ENSO-related droughts on agricultural production in

the two particularly affected regions of eastern and southern Africa?

The thesis aims to give an insight into the spatio-temporal evolution of agricultural droughts

over Africa during the study period. It intends to contribute to a better understanding of the

interconnection between ENSO and regional drought patterns. This in turn can provide the

basis for implementing strategies and building capacities in order to cope with drought-related

challenges in the affected regions.

1.2 Thesis framework

Firstly, the underlying theory of this thesis is illuminated in chapter 2. This involves drought

in its concept and typology as well as the fundamentals of ENSO. Additionally, an overview

on state-of-the-art drought and ENSO indices is given. Recent remote sensing-based studies

of drought monitoring and research on the relation between ENSO and droughts in Africa are

reviewed. Following a brief description of the characteristics of the study area in chapter 3,

data and methods used in this thesis are described in chapter 4. Here, workflows are presented

for the derivation of indices, drought detection and correlation analysis. Subsequently, the

results of the thesis are shown in chapter 5, including the spatio-temporal pattern of droughts

in Africa, their relation to ENSO as well as the regional impacts of selected drought years

on agricultural production. The major findings are discussed in chapter 6, in which focus is

laid on the integration of the results in scientific research. Further, potential and limitations

of this work are outlined. Lastly, concluding remarks are given (see chapter 7).
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Chapter 2

Theoretical background

2.1 Drought

2.1.1 Concept and influencing factors

Perceived as a natural disaster, droughts are characterized as an extreme climate feature

triggered by below-normal precipitation during a period of several months to years. They

are defined as dry temporal aberrations in relation to the normal local condition. Droughts

are featured by a slow onset, while associated effects may accumulate over a considerable

time span and affect various economic sectors depending on water. In particular, no single,

universally accepted definition of drought exists, which constrains the identification of key

characteristics like duration, severity, and spatial extent (Dai, 2011; Hayes et al., 2012; Mishra

and Singh, 2010; Wilhite et al., 2007).

Generally, conceptual and operational drought definitions are found in literature. Concep-

tual definitions are stated in relative terms in order to form an overall understanding for

implementing drought policies, whereas operational concepts identify criteria for onset, end

and severity of drought for particular applications. The latter are used to specify frequency,

strength and duration of drought events for given periods (Mishra and Singh, 2010; Zargar

et al., 2011).

As an example of a conceptual definition, drought is specified as an “extended period, a

season, a year, or several years of deficient rainfall relative to the statistical multi-year mean

for a region” according to the Encyclopedia of Climate and Weather (Schneider et al., 2011).

Further, the UNCCD (1994) defines drought as the “naturally occurring phenomenon that

exists when precipitation has been significantly below normal recorded levels, causing serious

hydrological imbalances that adversely affect land resource production systems”.

Since the deficiency of water arises from regional variabilities in the global water cycle,

droughts are strongly related to climatic circulation patterns and therefore not confined

to a specific climate zone (AghaKouchak et al., 2015; Van Loon, 2015). The exclusive focus

on precipitation, however, is not sufficient for describing the phenomenon of drought, as the

importance of soil moisture losses like evaporation and transpiration as well as the role of

additional water sources from lateral inflows is neglected. Further, temporal aspects of precip-

3
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itation deficits are not considered. In respect to the local water balance, a universal drought

concept needs reference to water supply, demand and management. Thus, its quantification is

difficult (Lloyd-Hughes, 2014). Likewise, drought impacts vary significantly from one region

to another and can be seen as a result of the interaction between drought as a natural event

and the demand society assigns to water supply (National Drought Mitigation Center, 2016).

As a result, both the quantity of water shortage and the susceptibility on ground conditions

are decisive factors of drought impacts, since a drought event manifests itself through defi-

cient water availability for humans, plants and animals. Differences in hydro-meteorological

parameters, socio-economic aspects and the stochastic nature of water demand in various

regions around the globe have become a barrier to precisely and universally define drought

(Mishra and Singh, 2010; Smakhtin and Schipper, 2008; Zargar et al., 2011).

2.1.2 Types of drought

Regarding the operational drought definition, three main types of physical drought and one

associated with human activity were established (Wilhite and Buchanan-Smith, 2005; Zargar

et al., 2011). An overview of drought types and their order of occurrence is displayed in Figure

2.1, showing respective main driving factors and effects.

Figure 2.1: Physically based types of drought, effects and interconnections (adapted from Hayes et al., 2012)

Meteorological drought is characterized by precipitation deficiency and a possible elevated

potential evapotranspiration, occurring over large areas and prevailing through a consider-

able time span. Hence, it is defined as a temporary period of abnormal dryness and can be

measured according to its intensity (level of dryness compared to normal amount) and dur-

ation (Smakhtin and Schipper, 2008; Van Loon, 2015; Wilhite, 2000). Agricultural drought

4
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is triggered by a deficit of soil moisture, which occurs mostly in the root zone and, as a

consequence, leads to the reduction of water supply to vegetation. In this case, precipita-

tion shortage is sufficient to cause reduced plant growth and crop production. Hence, soil

moisture content can be seen as the main indicator for agricultural drought. However, the

relationship between precipitation and infiltration is controlled by multiple parameters such

as antecedent soil moisture conditions, slope, soil type (esp. water holding capacity) and the

intensity of precipitation events (Dai, 2011; Van Loon, 2015; Wilhite and Buchanan-Smith,

2005). Hydrological drought is related to a below-average water content in surface and sub-

surface water such as streams, reservoirs, groundwater aquifers, lakes and soil. Usually, there

exists a larger time lag between an event of meteorological drought and the occurrence of

hydrological drought. Likewise, recovery of these water cycle components is slow due to long

recharge periods (Smakhtin and Schipper, 2008; Van Loon, 2015; Wilhite, 2000; Wilhite and

Buchanan-Smith, 2005).

All in all, these types of drought represent different stages of the same naturally indicated

process. A drought event is mainly driven by the deficiency of rainfall and/or an increased

evapotranspiration (Seneviratne et al., 2012). The more spatially and temporally extensive

this period of precipitation deficiency, the more likely other drought types will occur as a

consequence. Finally, it can propagate through economic sectors and society. In this regard,

socio-economic drought links the supply and demand of some economic commodity or ser-

vice with components of physical drought. Accordingly, a drought event occurs when the

demand of an economic good like water or hydroelectric power exceeds supply, resulting from

weather-related shortfall. Hence, this concept demonstrates the strong symbiosis between

physical drought and human activity. The frequency of droughts can increase on account

of an alteration of physical parameters as well as a varying societal vulnerability to water

shortages (Smakhtin and Schipper, 2008; Wilhite, 2000).

2.2 El Niño–Southern Oscillation (ENSO)

2.2.1 Definition and driving forces

Representing the most important year-to-year climate variation on the planet, El Niño-

Southern Oscillation (ENSO) describes the irregularly periodical fluctuation between ab-

normally warm (El Niño) and cold (La Niña) Sea Surface Temperatures (SST) in the tropical

Pacific, coupled with a variation in air pressure of the overlaying atmosphere (Southern

Oscillation). Recurring in the range of 2-7 years, this phenomenon arises from large-scale

interactions between ocean and atmosphere (Allan, 2000; McPhaden et al., 2006).

The Southern Oscillation refers to changes in the atmospheric pressure pattern connecting

the Indian and Pacific Oceans and represents the atmospheric component of the combined

oceanic-atmospheric ENSO phenomenon. This in turn is closely tied to the strength of Pacific

trade winds. In this regard, the positive feedback between trade wind intensity and zonal SST

is recognized as the Bjerknes feedback (Bjerknes, 1969) and considered a core feature of ocean-
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atmosphere interaction (McPhaden et al., 2006). ENSO exhibits three phases: warm SST in

the equatorial Pacific (El Niño), cold SST in the equatorial Pacific (La Niña), and near-

neutral conditions (Hanley et al., 2003). Under normal conditions, the easterly trade winds

pile up warm surface water in the western equatorial Pacific, whereas colder subsurface water

wells up in the east along the equator and off the west coast of South America. With the

overburden of warm water decreased in the eastern Pacific, the thermocline tilts upward

towards the coast of South America (see Figure 2.2, left). The east-west contrast of surface

temperatures hereupon increases the difference in pressure and again drives the trade winds

(Cai et al., 2015; McPhaden et al., 2006; Rosenzweig and Hillel, 2008).

Figure 2.2: Schematics of normal (left) and El Niño (right) conditions in the equatorial Pacific Ocean and
atmosphere to illustrate the Bjerknes feedback in the course of ENSO (modified after Rojas et al.,
2014; Rosenzweig and Hillel, 2008)

El Niño (literally “the little boy”) refers to “the Christ child”. Peruvian and Ecuadorian

fishermen gave this name to the occasional presence of warm ocean currents around Christmas

time, displacing the normal cool coastal surface water and leading to a decreased amount of

fish (Rosenzweig and Hillel, 2008). El Niño is also known as the warm phase of ENSO. This

warming of the eastern Pacific is a result of the relaxation of westward trade winds, which

respond to the falling air pressure in the eastern compared to rising pressure in the western

Pacific (McPhaden et al., 2006). If the trades are weaker than normal, less warm surface

water is piled up in the west and the thermocline is not as tilted (see Figure 2.2, right).

Consequently, upwelling in the east brings warmer water to the surface than under normal

conditions. Since the eastern Pacific becomes less cold, the precipitation pattern changes so

that persistent rainfall located over the warmer sea surface expands eastward into the central

Pacific (Sarachnik and Cane, 2010). This change in atmospheric conditions goes along with a

lowered air pressure in the eastern Pacific. Hence, the Bjerknes feedback now runs reversely

with weakened trade winds and SST warming trends reinforcing each other in the course of

a developing El Niño (McPhaden et al., 2006). Figure 2.2 demonstrates the outlined ENSO

mechanisms in the equatorial Pacific under both normal and El Niño conditions.
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La Niña (literally “the little girl”) describes the cool phase of ENSO and is characterized by

abnormally cold SST in the eastern equatorial Pacific. Here, the positive feedback mechanisms

of normal ENSO conditions are enhanced. Thus, a stronger than normal zonal asymmetry

in SST, precipitation and thermocline exists in the tropical Pacific (Vecchi and Wittenberg,

2010). Accordingly, an unusually strong flow of cold water moves up on the west coast of

South America. Due to strong upwelling, more cold water is transported to the sea surface

and carried in a western direction (Strahler, 2011).

2.2.2 Global effects

Cold and warm ENSO events affect not only the seasonal weather of adjacent regions in

the equatorial Pacific but have also an impact on precipitation and temperature variability

around the world.

Figure 2.3: Regions of significant changes from normal weather related to El Niño (top) and La Niña (bottom)
during December to February (NOAA, 2014)

ENSO influences large-scale circulations including the Hadley and Ferrel cell as well as the jet

streams. These teleconnections have been studied by analysing climatic historical record and,

more recently, by using satellite data. In a series of publications, Ropelewski and Halpert

(1987, 1989, 1996) investigated and documented large-scale patterns of precipitation and

surface temperatures associated with both the warm and the cold phase of ENSO around

the globe. Revealed significant teleconnections were presented in a schematic map, which
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is frequently used to arrange the current understanding of ENSO relations with seasonal

weather variables (Yang and DelSole, 2012). These maps have been revised and reviewed by

means of remotely sensed time series analyses (e.g. Kogan, 2000; Kuenzer et al., 2009). Figure

2.3 displays maps of the typical global pattern of precipitation and temperature anomalies in

relation to El Niño and La Niña, respectively. The registered weather anomalies are induced

by a shift in the global jet stream caused by ENSO.

Regarding Africa, per trend drier effects can be identified over south-eastern Africa during

El Niño and over the southern part of eastern Africa during La Niña events for the period

between December and February. During these months, ENSO dynamics generally reach its

minimum or maximum. Since ENSO-related drought stands in the focal point of this thesis,

southern and eastern Africa are selected as core regions of the presented analysis.

2.3 State of the art

2.3.1 Drought indices

Drought indicators or indices, typically based on meteorological, pedological, hydrological

and vegetation-related parameters, are used in order to characterize strength, duration, and

spatial extent of drought (Steinemann et al., 2005). With the aim of drought identification

and the given constrains of a slow onset, gradual recovery as well as the existence of different

drought categories and several influenced sectors, multiple indices have been developed. How-

ever, according to the scientific consensus, no leading indicator exists. Every type of index

addresses another part of the hydrological cycle and has therefore its benefits for distinct

specific applications. Thus, the multitude of indices itself resembles the diversity of drought

impacts (Van Loon, 2015).

Prevalently, drought indices are classified depending on the type of associated impact or the

variables they relate to. As a result, three popular categories are meteorological, soil moisture

(agricultural) and hydrological drought indices (Zargar et al., 2011). Table 2.1 gives an over-

view of the most prominent drought indices including their types and main characteristics.

2.3.1.1 Meteorological drought indices

Meteorological drought indices are related to climatological parameters such as precipitation,

temperature, and evapotranspiration. Here, precipitation is regarded the most important

variable (Dai, 2011; Steinemann et al., 2005). Examples for common meteorological drought

indices and their main characteristics, benefits and limitations are given in Table 2.1.

The most widely applied meteorological index is the Standardized Precipitation Index (SPI)

(McKee et al., 1993), which is utilized in this thesis. It comprises fitting and transforming a

long-term rainfall time series into a normal distribution with zero mean and unit standard

deviation. Further, the SPI compares actual precipitation with its multi-year average and can

be computed for different time scales and, thus, indirectly considers the impact of accumu-

lated precipitation deficits from an agricultural and hydrological perspective. The SPI can
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Table 2.1: Selection of prominent drought indices listed by drought type (M: Meteorological, A: Agricultural,
H: Hydrological)

Index Publication Type Description

Rainfall Anomaly
Index (RAI)

Van Rooy
(1965)

M Average precipitation ranked to long-term record:
Relative drought (Wanders et al., 2010)

Palmer Drought
Severity Index
(PDSI)

Palmer (1965) M
(A)

Departure of moisture balance from normal conditions,
concept of water supply and demand, based on a
bucket-type soil model

⊕ Comprehensive index: precipitation and air
temperature; More complete understanding of water
balance

	 Fixed temporal scale; Tested for the U.S., limited
application in other regions

(Seneviratne et al., 2012; Vicente-Serrano et al., 2012;
Wanders et al., 2010; Zargar et al., 2011)

Standardized
Precipitation Index
(SPI)

McKee et al.
(1993)

M
(A,H)

Normalization, comparison of actual precipitation with
multi-year average

⊕ Simplicity: independence from soil moisture,
seasonality and topography; Application on different
time scales → drought dynamics: M, A, H;
Comparability across regions due to normalization

	 Neglecting evapotranspiration; Dependence on
theoretical probability distribution

(Lloyd-Hughes and Saunders, 2002; Val Loon, 2015; WMO,
2012; Zargar et al., 2011)

Effective Drought
Index (EDI)

Byun and
Wilhite (1999)

M Standardized deviation of effective precipitation (Zargar
et al., 2011)

Reconnaissance
Drought Index
(RDI)

Tsakiris and
Vangelis (2005)

M Extension of SPI, relation of precipitation to potential
evapotranspiration (physically based approach)
(Niemeyer, 2008; Zargar et al., 2011)

Standardized
Precipitation
Evapotranspiration
Index (SPEI)

Vicente-
Serrano et al.
(2010)

M Combination of simplicity and multi-temporal quality of
SPI with sensitivity of PDSI to evaporation
(Vicente-Serrano et al., 2012; WMO, 2012)

Palmer Moisture
Anomaly Index
(Z-index)

Palmer (1965) A Deduction from PDSI calculation, Moisture anomaly of
current month in Palmer model without consideration
antecedent conditions (Keyantash and Dracup, 2002)

Crop Moisture Index
(CMI)

Palmer (1968) A Sum of an evapotranspiration deficit based on
precipitation and soil moisture infiltration, computed
with PDSI parameters (Keyantash and Dracup, 2002;
Wanders et al., 2010)

Crop Specific
Drought Index
(CSDI)

Meyer et al.
(1993)

A Estimated soil water availability based on climatological
data, soil and crop phenology information (Zargar et al.,
2011)

Soil Moisture Deficit
Index (SMDI)

Narasimhan
and Srinivasan
(2005)

A Weekly soil moisture deficits at varying depths within
modelled soil profile based on simulated or observed soil
moisture content (Wanders et al., 2010)

Palmer Hydrological
Drought Index
(PHDI)

Palmer (1965) H Computed with PDSI model, more stringent criterion of
drought termination (Dai, 2011)

Drought severity
(S)/ Total water
deficit

Dracup et al.
(1980)

H Duration of below-normal discharge and average
departure from long-term mean (Zargar et al., 2011)

Surface Water
Supply Index
(SWSI)

Shafer and
Dezman (1982)

H Weighted averages of standardized anomalies in surface
water component, extension of PHDI, inclusion of snow
accumulation (Keyantash and Dracup, 2002; Zargar et al.,
2011)

Regional Streamflow
Deficiency Index
(RSDI)

Stahl (2001) H Clustering deficiency values of discharge compared with
historic measurements (Wanders et al., 2010)
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be computed on seasonal scales and, thus, used in order to quantify agricultural drought. Its

value equals the number of standard deviations the cumulative precipitation deficit deviates

from the normalized average (Seneviratne et al., 2012; Zargar et al., 2011). Other meteor-

ological drought indices additionally incorporate surface air temperature to account for the

effect of actual or potential evapotranspiration. In this regard, the Palmer Drought Severity

Index (PDSI) introduced by Palmer (1965) is to mention as an early landmark in the devel-

opment of drought indices. This index is founded on the concept of water supply and demand

instead of precipitation anomaly and is based on a generic two-layer bucket-type soil model

(Seneviratne et al., 2012; Vicente-Serrano et al., 2012; Wanders et al., 2010). One of the more

recent developments in the field of meteorological indices is the Reconnaissance Drought In-

dex (RDI) proposed by Tsakiris and Vangelis (2005). Another recent SPI-related index is the

Standardized Precipitation Evapotranspiration Index (SPEI) developed by Vicente-Serrano

et al. (2010). This index intents to combine the sensitivity of PDSI with the simplicity and

multi-temporal quality of SPI (Vicente-Serrano et al., 2012; WMO, 2012).

2.3.1.2 Soil moisture (agricultural) drought indices

With the PDSI and focus directed on soil moisture and actual evapotranspiration, explicit

agricultural drought indices were established (Niemeyer, 2008). These are also known as soil

moisture indices, since soil moisture content is used as the indicating variable for agricultural

drought. Thus, drought situations are detected on the basis of water amount stored in the

unsaturated zone. Values of soil water balance can either originate from observed data (e.g. in-

situ measurements, remote sensing-based data) or can be simulated by means of soil moisture

models (Keyantash and Dracup, 2002; Zargar et al., 2011). These indicators aim to quantify

agricultural drought by means of soil moisture. Again, the most frequently used drought

indices based on soil moisture are summarized in Table 2.1. However, monitoring agricultural

drought is not only restricted to indices relying on soil moisture. Likewise, agricultural drought

can be analysed based on seasonally accumulated rainfall anomalies or vegetative stress, which

is presented in this thesis.

2.3.1.3 Hydrological drought indices

Indices for hydrological drought are based on parameters describing the bulk water supply

such as water levels in streams and lakes, reservoir storage, groundwater levels and snowpack.

They aim to provide a comprehensive picture of delayed hydrological drought impacts. Gen-

erally, discharge or streamflow is the most prominent variable for indicating hydrological

drought (Keyantash and Dracup, 2002; Zargar et al., 2011). Commonly used hydrological

drought indices are listed in Table 2.1.
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2.3.1.4 Remote sensing-based drought indices

The development of earth observation satellites with new sensors and algorithms has con-

stantly led to the incorporation of additional remotely sensed information to drought as-

sessment. Remote sensing opens up new possibilities for drought detection and monitoring

(Niemeyer, 2008; Zargar et al., 2011). Amongst others, the advantages of remote sensing

methods lie in the availability of consistent data at high repetition rates, allowing the deriv-

ation of information at large spatial scales (Niemeyer, 2008).

Table 2.2: Selection of prominent remote sensing-based (RS) drought indices

Index Publication Type Description

Normalized
Difference
Vegetation Index
(NDVI)

Tucker (1979) RS Normalized difference between maximum absorption of
radiation of RED and NIR

⊕ Simplicity; Applicable over large areas (depending
on spatial resolution of satellite imagery);
Distinction between vegetation and other surfaces;
Measurement rather than interpolation

	 Sensitivity to soil moisture; Saturation tendency
with large biomass, Non-linear behaviour, scaling
influences

(Zargar et al., 2011)

Soil-Adjusted
Vegetation Index
(SAVI)

Huete (1988) RS Ratio based on RED and NIR, additional soil
adjustment factor

Vegetation
Condition Index
(VCI)

Kogan (1990) RS Relative normalization to absolute maximum and
minimum NDVI in data record for given period

⊕ See NDVI; Suitability to monitor drought impact on
vegetation (agricultural drought)

	 See NDVI; Limited application to northern
hemisphere; Indirect measure of moisture conditions
(vegetation stress due to insects, lack of nutrients,
diseases)

(Domenikiotis et al., 2004; Du et al., 2013; Kogan et al.,
2005)

Temperature
Condition Index
(TCI)

Kogan (1995) RS VCI approach applied on surface temperature

Vegetation Health
Index (VHI)

Kogan (1995) RS Combination of VCI and TCI

Normalized
Difference Water
Index (NDWI)

Gao (1996) RS Ratio of NIR and SWIR

Enhanced
Vegetation Index
(EVI)

Huete et al.
(2002)

RS NDVI with feedback loops to minimize atmospheric and
soil bias (Zargar et al., 2011)

Perpendicular
Drought Index
(PDI)

Ghulam et al.
(2007)

RS Ratio based on RED and NIR with perpendicular
geometrical construction on reflectance space (Niemeyer,
2008)

On the one hand, remote sensing data has been used to monitor drought-related variables from

a climatological and hydrological point of view by using multispectral data with optical/near-

infrared and/or thermal wavelengths or radar sensors. Retrieved variables include precipit-

ation, soil moisture or evapotranspiration. On the other hand, satellite observations can be
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used to quantify drought impacts from an ecosystem perspective, which comprises vegetation

health and growth. Since drought can lead to reduced photosynthetic capacity and variations

in absorption of solar radiation at photosynthetically active wavelengths by plants, many

remote sensing-based drought indices are focused on vegetation (AghaKouchak et al., 2015).

Table 2.2 presents a list of selected remote sensing-based drought indices.

Most of these vegetation-related drought indices rely on the difference between the absorption

of radiation in the visible red (RED) spectral domain, indicating chlorophyll density, and the

reflectance in the near infrared (NIR) electromagnetic spectrum, which results from scatter-

ing effects within the canopy and, thus, is sensitive to green leaf structure. As a consequence,

this difference can be utilized to estimate the intercepted fraction of photosynthetically active

radiation (Anyamba and Tucker, 2012; Karnieli et al., 2010; Tucker and Choudhury, 1987).

Figure 2.4 shows the typical spectral signature of vegetation and the spectral domains of

bands from commonly used earth observation sensors for large-scale vegetation monitoring,

the Advanced Very-High-Resolution Radiometer (AVHRR) and Moderate-resolution Imaging

Spectroradiometer (MODIS). The first bands cover the visible magnetic spectrum with 0.58

to 0.68 µm for AVHRR and 0.62 to 0.67 µm for MODIS, whereas the second bands show re-

flectance in the NIR domain with 0.73 to 1.10 µm and 0.84 to 0.87 µm, respectively (Anyamba

and Tucker, 2012; NASA, 2016a).

Figure 2.4: Spectral signature of vegetation based on deciduous forest from ASTER spectral library 2.0
(Baldridge et al., 2009) with the RSR of AVHRR bands 1 and 2 (STAR, 2008) and MODIS
Terra bands 1 and 2 (NASA, 2016b)

The Normalized Difference Vegetation Index (NDVI), which was first applied by Rouse et al.

(1973) and further developed by Tucker (1979), makes use of the spectral signature of veget-

ation, showing a low reflectance in the visible domain and high values in the NIR spectrum
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(see Figure 2.4. It is described as the most prominent remote sensing-based vegetation index,

which subsequently has given rise to numerous NDVI-based and refined indices for drought

monitoring (Niemeyer, 2008). The NDVI is defined as follows:

NDVI =
(ρNIR − ρRED)

(ρNIR + ρRED)
(2.1)

where ρ denotes the spectral reflectance within respective bands of multispectral remote

sensing data (Karnieli et al., 2010).

The NDVI laid the foundation for the development of several drought indices such as the

Vegetation Condition Index (VCI), which is used in this thesis. Kogan (1990) introduced the

VCI as a modification of the NDVI computed from AVHRR radiance. A relative normalization

of the NDVI to its absolute maximum and minimum is undertaken in order to assess changes

in the NDVI through time. In doing so, influences of local parameters and spatial variability

in phenology between different land cover types and climate conditions are lowered. The

VCI aims to separate short-term weather dynamics from the long-term ecological signal for

drought monitoring. This is achieved by scaling the NDVI values in relation to the amplitude

of their range during the available time period. The signal is further amplified by ranking it

on a linear scale where the minimum value equals 0 and the maximum 100 (Karnieli et al.,

2010; Kogan and Sullivan, 1993). The VCI is calculated as follows.

V CI =
(NDV Ij −NDV Imin) ∗ 100

NDV Imax −NDV Imin
, (2.2)

where NDV Ij is the average NDVI over a composite period of interest (week, decade, month

etc.), NDV Imin and NDV Imax are the corresponding multi-year minimum and maximum

NDVI values in the available data record for the specific analysed period (Kogan and Sullivan,

1993; Zargar et al., 2011).

The relationship between reflectance characteristics in the RED and NIR spectral domains

is also used by other indices such as Soil-Adjusted Vegetation Index (SAVI), Perpendicular

Drought Index (PDI) and Enhanced Vegetation Index (EVI) (see Table 2.2). Further, re-

motely sensed surface temperature, which is derived from thermal channels of various satellite

instruments, can successfully contribute to the quantification of drought conditions. For this

purpose, Land Surface Temperature (LST) is computed from bands representing the thermal

infrared (TIR) spectrum. Prominent indicators based on TIR data are the Temperature

Condition Index (TCI) and the Vegetation Health Index (VHI) (AghaKouchak et al., 2015;

Karnieli et al., 2010). Another complementary to the NDVI is the Normalized Difference Wa-

ter Index (NDWI), making use of the relation between NIR and short-wave infrared (SWIR)

spectral domains.

All in all, diverse enhanced, modified and combined remote sensing-based drought indices

can be found and new indicators are frequently proposed. For a more detailed insight into

the high amount of remote sensing-based drought indices, the interested reader is referred to

AghaKouchak et al. (2015), Niemeyer (2008) and Zargar et al. (2011).
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2.3.2 ENSO indices

In order to quantify the strength and monitor the temporal sequence of ENSO warm and

cold phases, several operationally used ENSO proxies have been developed based on oceanic

and/or atmospheric parameters. These indices define the strength and phase of ENSO events

on a monthly scale and rely on variables measured over various parts of the Pacific ocean

(Propastin et al., 2010). In the following, some frequently used ENSO indices will be presen-

ted.

On the one hand, temperature-based indices depend on SST anomalies within different defined

regions of the equatorial Pacific, located between 5◦N and 5 or 10◦S. The so-called Niño-1

and Niño-2 regions are located off the coast of Peru and Ecuador and near the Galapagos

Islands, respectively, whereas the Niño-3 region extends in the central and Niño-4 in the

western part of the tropical Pacific. Niño-3.4 overlaps portions of the latter regions. Its SST

anomalies have been regarded the best SST-based proxy for the core ENSO phenomenon

(Barnston et al., 1997; Hanley et al., 2003). A common quantitative definition and standard

measure of El Niño and La Niña events is based on Niño-3.4 SST anomalies regarding the

reference period of 1971-2000. The 3-month running mean of SST anomalies in this region is

represented in the Oceanic Niño Index (ONI), which is displayed in Figure 2.5 (bottom right)

for the period of 2000-2016. For an El Niño event, five consecutive monthly ONI values have

to be above the threshold of 0.5◦C (below -0.5◦C for La Niña; NOAA, 2016d). Based on ONI,

the intensities of El Niño and La Niña can be measured. Accordingly, weak (SST anomaly:

0.5 to 0.9◦C), moderate (1.0 to 1.4◦C), strong (1.5 to 1.9◦C) and very strong (≥2.0◦C) events

can be distinguished (Golden Gate Weather Service, 2016). In this regard, Table 2.3 lists

the ENSO warm and cold events having occurred since 2000 according to their ONI-based

intensities.

Table 2.3: El Niño and La Niña years categorized by intensity (ONI values) between 2000 and 2016 (Golden
Gate Weather Service, 2016)

El Niño La Niña

Weak Moderate Very Strong Weak Moderate

2004-05 2002-03 2015-16 2000-01 1999-00

2006-07 2009-10 2011-12 2007-08

2010-11

On the other hand, the Southern Oscillation Index (SOI) measures the normalized difference

in sea level pressure between Papeete, Tahiti, and Darwin, Australia. It illustrates the large-

scale fluctuations in air pressure between the western and eastern equatorial Pacific during

El Niño and La Niña events. The negative phase implies below-normal pressure at Tahiti

and higher-than-average pressure at Darwin, which coincides with abnormally warm SST in

the eastern Pacific typical for El Niño. Vice versa, La Niña is associated with a positive SOI

value (NOAA, 2016f). Another ENSO index is Outgoing Longwave Radiation (OLR) which is

measured by AVHRR across equatorial areas from 160◦E to 160◦W and then converted into
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a standardized anomaly index. Negative values represent conditions of enhanced convection

and hence are associated with El Niño (NOAA, 2016e).

What is more, a combined index is provided in form of the MEI, which is predicated on

six observed variables over the tropical Pacific: Sea level pressure, zonal and meridional

surface winds, SST, surface air temperature, and total cloudiness fraction of the sky. These

parameters are combined via Principal Component Analysis (NOAA, 2016b). Figure 2.5

shows the temporal evolution of ENSO from March 2000 to April 2016 (the study period

used in this thesis) by means of different ENSO indices.

Figure 2.5: Time series of different ENSO indices for 2000 - 2016: Values associated with El Niño phases are
displayed in red, La Niña is shown in blue. For Niño-3.4 SST anomalies and ONI, ±0.5◦C is used
as threshold, whereas the ±0.2 percentiles threshold is applied for MEI (Data source: NOAA,
2016a; NOAA, 2016c; NOAA, 2016f; NOAA, 2016g).

2.3.3 Remote sensing-based drought monitoring

2.3.3.1 Operational drought information platforms

In order to operationally provide broad-scale information on droughts for the public, various

drought-related data and information platforms emerged both at regional and global level.

In this framework, the U. S. Drought Monitor (USDM) integrates different indices from a

meteorological, agricultural and hydrological perspective into final maps with coarse spatial

resolution of several kilometres, displaying the magnitude and extent of drought over the

United States (Deng et al., 2013; Svoboda et al., 2002). Another regional-scale example is the

European Drought Observatory (EDO), which consists of drought-relevant information de-

rived from meteorological, agricultural and remote sensing-based drought indices at a spatial

resolution of about 9 km (Sepulcre-Canto et al., 2012).

15



Theoretical background

In a global context, the Global Integrated Monitoring and Prediction System (GIDMaPS)

provides meteorological and agricultural drought information derived from multiple remote

sensing- and model-based precipitation and soil moisture data with spatial resolutions of up to

14 km (Hao et al., 2014). Further, a platform for drought detection and early warning focused

on food security is provided by the Famine Early Warning Systems Network (FEWS NET),

which, amongst others, is maintained by the U.S. Agency for International Development

(USAID). This information system was established in 1985 and combines rainfall-, vegeta-

tion index-based and model-based indicators such as the SPI and NDVI at different spatial

resolutions (250 m to 10 km). Regional focus is laid on Sub-Saharan Africa, Afghanistan

and Central America (Senay et al., 2015). A more recent global monitoring system in terms

of agricultural drought is the Global Agricultural Drought Monitoring and Forecasting Sys-

tem (GADMFS) presented by Deng et al. (2013). It mainly relies on NDVI-based drought

indicators such as VCI as well as other agricultural drought-related variables like soil mois-

ture and land cover type. Thereby, the spatial resolution was remarkably improved by using

MODIS-derived NDVI imagery (250 m).

Probably, the most consistent and comprehensive drought information system focussed ex-

clusively on Africa represents the African Flood and Drought Monitor (AFDM) developed

by Princeton University. The web-based platform provides an estimate of drought condi-

tions by integrating hydrological models, remote sensing data and seasonal climate forecasts.

Thereby, different drought indices are derived: SPI, modelled soil moisture, stream flow and

vegetation-related indices (Sheffield et al., 2014).

2.3.3.2 Remote sensing-based drought monitoring studies over Africa

Considering regional drought monitoring within Africa, numerous remote sensing-based stud-

ies, dedicated to desertification in the Sahel zone, have been published (e.g. Anyamba and

Tucker, 2005; Brandt et al., 2014; Herrmann et al., 2005; Heumann et al., 2007). A compre-

hensive summary of related research including the ongoing debate on the Sahelian ”greening”

is given by Karlson and Ostwald (2016), Mbow et al. (2015) and Knauer et al. (2014).

Eastern Africa, including the Horn of Africa, represents another focal region of remote sensing-

based studies on drought conditions. Awange et al. (2016a), for example, studied the relation

between meteorological and hydrological drought dynamics by relating satellite-derived SPI

with total water storage deficits. Ntale and Gan (2003) proved the suitability of SPI to monitor

eastern African droughts compared to PDSI variations. Further, Dutra et al. (2013) analysed

the 2010-2011 drought in the Horn of Africa by means of precipitation, soil moisture data and

NDVI. A rainfall deficit in both rainy seasons was revealed, leading to protracted negative

soil moisture anomalies and vegetation stress. The 2010-2011 drought was further studied by

Anderson et al. (2012), Meroni et al. (2014) and AghaKouchak (2015). A study carried out

by Viste et al. (2013) revealed 2009 as a year of exceptional large-scale drought in Ethiopia

based on a SPI time series (1972-2011). Southern Ethiopia shows a general precipitation

decline during the main rainy season. Taking into account the vague nature of vegetative
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drought in a model, Rulinda et al. (2012) carried out a study using NDVI images of eastern

Africa from 2005 to 2006. Thereby, a severe drought was detected, affecting about 60 %

of the vegetated study area. Studying the impacts of drought on vegetation, Rulinda et al.

(2013) applied an object-based approach on NDVI and rainfall estimates in order to quantify

the spatio-temporal movement of vegetative droughts in eastern Africa during the drought

year 1999. Based on observed similar trajectories, a relation between vegetative drought and

rainfall deficit was revealed.

With a focus on southern Africa, Rouault and Richard (2005) investigated droughts by

means of the SPI. An overall increase of droughts at a 2-year scale since the 1970’s was

revealed. Further, a prolonged rainfall-induced drought was indicated for 2002/2003 over

southern Africa. This severe drought period was additionally revealed from a study focussed

on meteorological and hydrological droughts in the South African Crocodile River catchment

(Mussá et al., 2015). What is more, Unganai and Kogan (1998) investigated the ability of

the AVHRR-derived drought indices VCI and TCI to detect temporal and spatial character-

istics of droughts in southern Africa. A validation with ground truth data revealed a good

performance for the prediction of corn yields. In this regard, Sannier et al. (1998) developed

a Vegetation Productivity Index (VPI) based on AVHRR-derived NDVI from 1981 to 1991

for southern Africa. In Zambia, the VPI was correlated with maize production, which indic-

ates the possibility to quantitatively assess drought impacts on agriculture (Sannier et al.,

1998). Mutowo and Chikodzi (2014) applied the VCI in order to study the spatial vari-

ation of drought in Zimbabwe from 2005 to 2010. Among multiple agricultural seasons under

drought, 2007/08 was found to be the most affected one. In this context, Brown and Funk

(2010) demonstrated the use of MODIS NDVI imagery as an accurate estimate of corn pro-

duction, which enabled early food aid in Zimbabwe. Based on the analysis of NDVI time

series carried out by Chisadza et al. (2015), drought seasons were identified in a catchment

area within the Limpopo River Basin of Zimbabwe in 2002/03, 2005/06 and 2006/07. For

southern Malawi, a pronounced agricultural drought was registered in 2004/05 by analysing

maize yield data from 2000 to 2009 (Jayanthi et al., 2013). Thereby, significant links between

maize yield losses and SPI were revealed.

As a continental scale approach, Rojas et al. (2011) analysed the probability of droughts

affecting agricultural areas at the sub-national level in Africa from 1981 to 2009. The meth-

odology was based on Vegetation Health Index (VHI) and phenological information derived

from NDVI based on AVHRR data at 8 km resolution. Seasonal averages of VHI proved to be

a valid drought indicator for the African continent and revealed results that mirror recorded

major drought events during the study period. Furthermore, Naumann et al. (2012) evaluated

the uncertainties with calculating the SPI and the corresponding effect on the level of confid-

ence in drought monitoring over Africa. In another study, Naumann et al. (2014) compared

different drought indicators, the SPI, SPEI and Soil Moisture Anomaly (SMA), according

to their capability of drought detection across Africa. This was accomplished using different

precipitation data sets. In both studies, Tropical Rainfall Measuring Mission (TRMM) data

were proven most suitable to reliably monitor drought over Africa due to its high spatial
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resolution. A remote sensing-based time series analysis carried out by Vicente-Serrano et al.

(2015) investigated land degradation in semiarid regions on the globe and revealed essential

information on the vegetation response to drought in the African Sahel, southern Africa and

the Horn of Africa during 1982-2011. The drought indices used are SPEI and AVHRR-derived

NDVI. As a result, the availability of water measured by SPEI mainly explains the variab-

ility of NDVI for South Africa, Namibia and areas of the Sahel. Nevertheless, no universal

vegetation response to drought could be found, since land degradation in semiarid areas is

controlled by numerous factors.

Figure 2.6: Years and African countries affected by droughts between 2000 and 2016 (information based
on Guha-Sapir et al., 2016; Masih et al., 2014). Depicted years may refer to any area within
respective countries.

In Figure 2.6, recorded years of drought events in Africa between 2000 and 2016 are distributed

within a map. Underlying information is extracted from a comprehensive literature review

on droughts in Africa (Masih et al., 2014) and the International Disaster Database EM-

DAT (Guha-Sapir et al., 2016). Here, years of spatially wide-ranging droughts with effects

on numerous adjacent countries are displayed in enlarged size. Positions of years indicate the

affected country but not the specific sub-national region. Rectangular boxes roughly mark

the extent of grouped regions. For this thesis, analyses are focussed on eastern and southern

Africa, since these regions hold a particularly large record of droughts for the selected period.
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2.3.4 Relation of ENSO and droughts in Africa

Numerous publications can be found regarding the relation between ENSO and drought

conditions in Africa. These studies mostly rely on drought indices derived from observed,

simulated or remotely sensed data. Above all, rainfall data and derived indices are commonly

used. In this regard, remote sensing-based approaches mostly rely on AVHRR-based NDVI

time series.

By correlating the ENSO index MEI with the drought indicator SPEI based on both observed

and simulated climate model data, a strong link between ENSO and droughts over southern

Africa was revealed for the rainy seasons (December to February) between 1989 and 2008

(Meque and Abiodun, 2015). What is more, 8 of the 12 major SPI-derived drought years

in southern Africa during the 20th century coincide with El Niño, which indicates a given

relation between ENSO and southern African rainfall (Rouault and Richard, 2005). Stige et al.

(2006) exhibited the linkage between ENSO and the productivity of crops, livestocks, and

pastures in Africa using national records and remote sensing data on pasture greenness from

1982-2003. Accordingly, overall African food production is reduced during El Niño conditions.

However, the strongest effect is seen in southern African maize production. Further, Anyamba

and Eastman (1996) studied changes in vegetation greenness in Africa between 1986 and 1990

and its relation to ENSO. Strong spatial and temporal teleconnection patterns between ENSO

indices (SOI, OLR, SST anomalies) and NDVI variation were depicted by means of Principal

Components Analysis (PCA). For southern Africa, NDVI resulted low during warm phase

and high during cold phase events. Anyamba et al. (2001) also assessed the NDVI anomaly

patterns over Africa during the specific El Niño event of 1997/98 and revealed two dominant

clusters. Equatorial eastern Africa exhibits positive NDVI anomalies representing a lagged

response to eastern Pacific warming. Concerning southern Africa, slightly greener than normal

conditions were revealed from October to November, whereas the later season (January - May)

showed abnormally dry conditions. Drought response in southern Africa was not as severe

as in previous El Niño years, which can probably be explained by dampening influences of

the western Indian and the equatorial Atlantic Ocean. Another study was carried out by

Propastin et al. (2010) who analysed the vulnerability of vegetation over Africa to ENSO

warm events via statistical correlation between AVHRR-derived NDVI and MEI as an ENSO

index for the period 1982-2006. Accordingly, an El-Niño-driven vegetation decrease occurs

most frequently in large areas of southern Africa including South Africa, Zimbabwe, Zambia,

and Tanzania. What is more, vulnerability of vegetated areas to ENSO highly depends on

the vegetation type. This revealed connection between warm phases of ENSO and drought

conditions in southern Africa is further confirmed by Lyon (2004), Crétat et al. (2012), Kogan

(2000), Richard et al. (2000) and Anyamba et al. (2002).

Plisnier et al. (2000) measured the teleconnection patterns between an ENSO index and sev-

eral ecosystem variables in eastern Africa based on both remote sensing and climate data

during 1982-1994. Although the effect of ENSO on climatic and ecological variability was

confirmed, the impact pattern is complex and highly differentiated in space due to the contri-
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bution of local climate systems, effects of large lakes, the proximity to the coast, topography

and land cover. According to Philippon et al. (2014), who carried out a correlation analysis

between long-term time series of Niño-3.4 SST index and AVHRR-derived NDVI, an asym-

metrical vegetation signal in the rainy seasons over eastern Africa was uncovered. Observed

teleconnection patterns of ENSO comprise an emerging dipole between negative correlation

over the western part and positive correlations in the eastern part from October to November.

For the long rains (March to May), only a weak impact of ENSO was revealed. Indeje et al.

(2000) studied the rainfall patterns between 1961 and 1990 and their relation to ENSO. Dur-

ing El Niño years, relatively wet conditions were observed in both rainy seasons, whereas dry

conditions dominated the rainy seasons of the following year. Contrary to southern Africa,

eastern Africa faces droughts during La Niña (Masih et al., 2014). Lott et al. (2013) analysed

the failure of the short rains during the eastern African drought of 2011 and attributed them

to the consequences of the cold phase of ENSO.

On a continental scale, Philippon et al. (2014) revealed a strong dipole pattern in vegetation

response during the peak phase of ENSO. Accordingly, areas south of 18◦S are negatively

correlated with ENSO, showing reduced photosynthetic activity during El Niño, whereas

the North is positively correlated, showing enhanced NDVI north of 18◦S. Hence, regional-

scale dipoles and spatio-temporally propagative patterns were revealed as features of ENSO

teleconnections over Africa. However, the Sahel exhibited a weak sensitivity of vegetation

to ENSO, which could be explained by the small rain use efficiency of this area, the timing

of rainy season in relation to ENSO and a closer linkage of precipitation to SST over the

Mediterranean and Indian Ocean (Fontaine et al., 2011; Philippon et al., 2014).

Frequently, ENSO-related droughts have led to reduced agricultural yield, crop failure and

even food insecurity in some parts of Africa (amongst others Funk et al., 2008; Stige et al.,

2006). In particular, significant drought effects of ENSO on growing seasons were revealed

for eastern and southern Africa (Brown et al., 2010). In this context, the 2010/11 drought

in eastern Africa, which occurred during La Niña, caused food crises and famine in multiple

countries with about 9 million people affected. It was considered one of the most extreme

drought events of the region (Funk, 2011; OCHA, 2011). In addition, severe impacts on

agriculture and food security have been registered for the recent drought period over southern

Africa, which evolved in the context of the very strong El Niño in 2015/16. Because of

extensive crop failures and an associated insecure food supply, humanitarian assistance is

required for millions of people in Zimbabwe, Malawi, Mozambique and Madagascar until

2017 (GEOGLAM, 2016). Since severe ENSO-related drought impacts have been observed

over eastern and southern Africa, these areas are selected as focal regions for this thesis.
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Study area

3.1 Geographical setting

The study area of this thesis covers the African continent, which is located between approx-

imately 37◦N and 34◦S and about 17◦W and 51◦E. Being the second largest continent on

earth, Africa extents to about 30 million km2 and borders on the Mediterranean Sea in the

north, the Atlantic Ocean in the west, the Indian Ocean in the east and the Red Sea in

the northeast. On the whole, the relatively smooth coastline has a length of approximately

28,000 km (Du Bois and Gates, 2014; Jones et al., 2013).

Figure 3.1: Major geographical features of Africa (Jones et al., 2013)

Geographically, striking features are the extensive Sahara Desert, the Atlas Mountains in

the northwest, the Sahel, which stretches south of the Sahara from Senegal to the Red Sea,
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the West African Coast, the Congo Basin, the Great East African Rift Valley and the South

African Plateau (see Figure 3.1). Topographically, Africa is divided into a northwestern part

tending to lower elevations and a southeastern area dominated by plains and plateaus at

about 1000 to 2000 m a.s.l. (Jones et al., 2013).

Since agricultural drought stands in the focal point of this thesis, the following description of

the study area is restricted to information on climate conditions, soils, vegetation and land

cover.

3.2 Climate

Africa is primarily situated between the Tropics of Cancer and Capricorn and, thus, mainly

lies within the intertropical zone. Its climate is dominated by the Intertropical Convergence

Zone (ITCZ) associated with subtropical high pressure cells on each of the northern and

southern sides. As a consequence of the shifting ITCZ, associated convective rainfalls and

air transportation from the subtropics to the ITCZ via the Hadley cell, precipitation can be

considered a key factor of African climate. Due to its location at the equator, solar radiation

over Africa is generally high. Climate conditions across the continent are further influenced

by the effect of cool ocean currents, the difference in shape between the north and south

as well as the absence of mountain chains as climatic barriers (Jones et al., 2013; Lydolph,

1985).

All in all, Africa consists of areas under arid (57.2 % of surface area), tropical (31.0 %)

and temperate (11.8 %) climate. Figure 3.2 displays different climate zones occurring on

the continent of Africa according to the Köppen-Geiger classification. The arid climate zone

comprises an extensive area under warm desert climate (BWh), smaller regions under cold

desert (BWk) as well as warm (BSh) and cold (BSk) semi-arid steppe climate. Major arid

regions can be found in the Sahara, the Sahel, the Horn of Africa and south-western Africa

(Kalahari Desert). In the dry desert zone, which occupies nearly half of the continent, annual

rainfall is erratic with less than 100 mm and temperature shows large daily and seasonal

extremes. Semi-arid steppe zones are characterized by an annual rainfall of less than 600 mm,

falling exclusively in the summer months. Tropical conditions are located around the equator

and are subdivided into equatorial (Af), monsoon (Am) and tropical savannah (As) climate.

In this humid to sub-humid zones, annual rainfall ranges from 600 to over 1500 mm. Finally,

most of the temperate regions show a dry season either in summer (Mediterranean climate

Csa, Csb) or winter (humid subtropical climate Cwa, Cwb) and are mainly located in the

northern- and the southernmost areas of Africa (Jones et al., 2013; Peel et al., 2007).

3.3 Soils

The distribution of soil types across the African continent is directly linked to its climate

zones. Since crop production requires arable land, fertile soils are essential for food security.

However, areas meeting this precondition are limited and not distributed evenly across Africa.
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Figure 3.2: Köppen-Geiger climate zones of Africa (Peel et al., 2007)

Figure 3.3: Major soil types in Africa (Jones et al., 2013)

About 55 % of the African surface area is considered unsuitable for rain-fed agriculture other

than nomadic grazing, since climate conditions are too hot and dry, areas are dominated by

sandy, weakly developed soils or necessary nutrients are lacking (Jones et al., 2013).
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The map in Figure 3.3 shows the zonal arrangement of dominant soil groups in Africa ac-

cording to World Reference Base for Soil Resources (WRB) of the Food and Agricultural

Organization of the United Nations (FAO). Central, wetter regions are mostly covered with

Ferralsols, which are further associated with Acrisols. These weathered laterite soils are

leached of minerals and generally nutrient-poor. Here, the dominant agricultural land use

practice is shifting cultivation, which involves the burning of natural vegetation for nutrient

supply. Further, Calcisols, Arenosols and Leptosols dominate the dry desert regions. These

soil types exhibit low water-holding capacity and nutrients and, thus, soils around the margins

of deserts are often characterized by physical characteristics of acidity, alkalinity, salinity, or

erosion and hold low agricultural potential (Jones et al., 2013; UNEP, 2008). Among the most

productive soils for agriculture in Africa are Luvisols, Vertisols, Chernozems, Kastanozems

and Fluvisols, which possess deep permeable horizons of clayey and loamy texture, provide

an adequate nutrient supply and a sufficient water-holding capacity. These soils are ideally

suited for agriculture and represent about 10 % of the African farmland, mainly situated

south of the Sahel (Senegal, Mali, Burkina Faso, Ghana, Togo, Benin, Nigeria, Chad) and

over southern Africa, e.g. in Mozambique, Zambia, Zimbabwe and South Africa (Jones et al.,

2013; UNEP, 2008).

3.4 Vegetation and land cover

Biomes are characterized as large areas with ecologically similar plant and animal communit-

ies and are used for describing Africa’s vegetation at a continental scale. In general, forests,

savannah, grassland and deserts can be found as major vegetation zones (Jones et al., 2013;

UNEP, 2008). The distribution of biomes is determined by rainfall pattern and climate zones.

Accordingly, the highest primary productivity and biodiversity is generally found in zones

of high annual rainfall, making the equatorial climate zone (Af) the most species-rich region

(UNEP, 2008).

Figure 3.4 displays the distribution of biomes over Africa according to UNEP (2008). The

Mediterranean biome is situated in northern Africa and along the south-western coast of

South Africa. Here, characteristic drought-tolerant and xerophytic plant communities can be

found. Within the semi-desert biome, which is regarded a transition zone between savannah

and desert areas, short grasses and typical iconic acacias are predominant. Further, plants

have developed different strategies in order to conserve moisture during the dry season.

The savannah biomes are the characteristic ecosystem of the African continent. Seasonal

precipitation is the dominant climatic force, shaping a vegetation structure that consists of

more or less continuous grass cover and trees without closed canopies. Here, frequent fires

are important recurrent phenomena during the dry season.

Tropical rain forests are characterized by a layered vegetation, which is dominated by tall

trees rising above a very dense canopy of shorter trees, vines and lianes as well as a rather open

plant cover nearest the ground. These biome holds the highest biodiversity of all terrestrial

ecoregions.
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Figure 3.4: Biomes of Africa (UNEP, 2008)

Figure 3.5: Land cover of Africa for 2008-2012 (Data source: ESA Climate Change Initiative, 2011)

What is more, the desert biome consists of vegetation highly adapted to precipitation deficits

and extreme temperatures. However, biomass is generally very low. A zone of temperate

grassland is located in southern Africa, where grasses and scattered trees are prevalent.

Montane vegetation is mainly located in the Ethiopian Highlands, the Albertine Rift and

the Arc Mountains of eastern Africa. Here, montane forest, bamboo, heather and alpine
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tundra can be found from lower to higher elevations (UNEP, 2008).

A more detailed overview of vegetation distribution in Africa provides the land cover map of

ESA Climate Change Initiative (2011) for the 5-year period of 2008-2012. Forests within the

tropical rainforest and moist savannah biomes are further divided into broadleaved, evergreen

and mixed leaf types. Dry savannah areas exhibit grassland and shrubland as major classes

of land cover. Further, cropland areas can be found in different biomes, especially in the

Mediterranean biome, moist and dry savannah as well as in semi-desert areas.

Land resources of Africa are rapidly changing. This involves human activity, especially trans-

formations of land cover, changes in land use and productivity. This is of high relevance, since

a majority of the population of sub-Saharan Africa lives in rural areas and, thus, depends

strongly on natural resources (UNEP, 2008).
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Data and methods

4.1 Methodological overview

In the following sections, the underlying methodology of this thesis is presented, consisting

of data acquisition, preprocessing and drought detection based on remote sensing time series

analysis.

Figure 4.1: Schematic overview of methodological approach

Figure 4.1 gives a schematic overview of the major methodological steps. Firstly, remote

sensing-based data sets are used in order to derive meteorological and vegetation-based in-

dicators for agricultural drought. Secondly, phenological information is extracted from the

temporal vegetation profiles. This is used in order to characterize the average timing and

duration of the growing season, which is focussed during subsequent time series processing.

Finally, extent, temporal pattern and magnitude of detected droughts are analysed. Drought
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index time series are further examined with regard to their relation to ENSO. Hereby, corres-

ponding correlation pattern and the respective time lags are analysed for African agricultural

areas.

4.2 Data

An overview of used remote sensing-based data sets and the respective specifications is given

in Table 4.1.

Table 4.1: Used remote sensing-based data sets and its general characteristics

Dataset TRMM 3B43 (V7) MODIS MOD09A1 (V6) EarthStat Cropland

Variable Precipitation rate
(mm/h)

Surface reflectance Cropland area fraction

Source TRMM, gauge
analysis

MODIS MODIS, SPOT
Vegetation, inventory
data

Temporal coverage 1998-01-01 to
present

2000-02-26 to present 2000

Spatial coverage 50◦S to 50◦N Global Global

Temporal resolution 1 month 8 days (composite) no time series

Spatial resolution 0.25◦ × 0.25◦ 500 m 5 min

Data format netCDF HDF GeoTIFF

4.2.1 Precipitation data

In the present thesis, the TRMM Multisatellite Precipitation Analysis (TMPA) is used in

order to assess meteorological drought based on precipitation. This product was chosen due

to its successful implementation in numerous Africa-related studies (e.g. Dinku et al., 2007;

Herrmann et al., 2005; Naumann et al., 2012, 2014).

Tropical Rainfall Measuring Mission (TRMM) is a joint mission of the National Aeronautics

and Space Administration (NASA) of the United States and the National Space Development

Agency (NASDA) of Japan with the aim of measuring tropical and subtropical precipitation.

Therefore, several precipitation-related sensors, such as the precipitation radar, the TRMM

microwave imager and the Visible and Infrared Radiometer System (VIRS) are applied on

board (Du et al., 2013). TMPA combines these remotely sensed precipitation estimates with

land surface gauge analyses (Huffman et al., 2007). Based on the TMPA algorithm, a level

3 product, 3B43, was generated by Global Precipitation Climatology Center (GPCC) by

means of a Huffman’s algorithm. It consists of monthly precipitation rates (mm/h) at a

spatial resolution of 0.25◦×0.25◦. Global coverage spans the latitudes from 50◦S to 50◦N (Du

et al., 2013; Huffman et al., 2007).

For this thesis, TRMM 3B43 (Version 7) data from 2000 (March) to 2016 (April) is retrieved

in netCDF format (TRMM, 2011). Images are converted to GeoTIFF format (Code SPI-0 in
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Table 1 of appendix) and cut to the extent of the study area using the language and software

environment R (R Core Team, 2013).

4.2.2 Surface reflectance data

Although numerous studies dealing with drought monitoring over large areas are based on

AVHRR data, which hold a relatively long temporal record beginning in 1981, this thesis is

based on Moderate-resolution Imaging Spectroradiometer (MODIS) data, which is available

since February/March 2000. MODIS provides acquisitions with higher spatial resolutions,

more spectral channels, geolocation of higher accuracy, and improved atmospheric correction

than AVHRR (Townshend and Justice, 2002; Wu et al., 2015).

Figure 4.2: MODIS granules over Africa

MODIS is a scientific instrument aboard the research satellites Terra and Aqua operated

by NASA. It comprises 36 spectral bands with wavelengths ranging from 0.4 to 14.4 µm

(NASA, 2016a). The MOD09A1 Surface Reflectance product from Terra (Vermote, 2015)

provides estimates of spectral reflectance of 7 spectral bands with a spatial resolution of

500 m per pixel. Hereby, values are already corrected for the effects of atmospheric scattering

and absorption. Terra is an near-polar orbiting satellite, crossing the equator at approximately

10:30 am/pm each day. Data acquired in intervals of 8 days are combined to composites. From

all acquisitions within the 8-day composite period, one value is assigned for each pixel as the

best possible observation based on several criteria, comprising high coverage, low view angle,

the absence of clouds and aerosol loading (Choi et al., 2013; Sánchez et al., 2016).
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In the present thesis, MOD09A1 Surface Reflectance data are retrieved for 41 granules cov-

ering the African continent (see Figure 4.2). The 8-daily images with a spatial resolution of

500 m are downloaded for the study period of 2000 (February 26) to 2016 (April 30) in HDF

format, which provided a data base of 748 × 41 image files.

4.2.3 ENSO indices

Multivariate ENSO Index (MEI) is used as primary ENSO index in this thesis, since it

integrates more information than other indices and incorporates multiple parameters of the

coupled ocean-atmosphere system (see Section 2.3.2). The data set is retrieved in form of a

table containing bimonthly values. Hereby, each value is assigned to its last corresponding

month (NOAA, 2016b). In order to identify months within categorized El Niño or La Niña

periods, the standard definition based on Oceanic Niño Index (ONI) is used. Accordingly, an

ENSO warm (cold) phase is characterized by five consecutive months showing ONI values

above 0.5◦C (below -0.5◦). For further information on ONI, see Section 2.3.2.

4.2.4 Ancillary data

With regard to agricultural areas, the EarthStat data set on global crop and pasture areas

2000 is used in this thesis (EarthStat, 2008). This data product is based on a combination

of satellite-based land cover classifications, a MODIS-derived global land cover product from

Boston University and Satellite Pour l’Observation de la Terre (SPOT) VEGETATION-based

Global Land Cover 2000 (GLC2000) with additional agricultural inventory data. Gridded

cropland and pasture area fraction data are available at spatial resolutions of 5 min (about

10 km; Ramankutty et al., 2008). The 10 km grids contain information on sub-pixel fractions

of cropland and pasture, respectively. In this thesis, only cropland information is used for the

detection of agricultural droughts. Data is downloaded in GeoTIFF format and cut to the

extent of the study area. Image pixels where the fraction of cropland area exceeds zero are

included into the applied drought analysis, whereas pixels without cropland are masked. This

represents a rather broad crop mask, since it includes all areas where cropland is present at

any percentage. Thus, mixtures of cropland with other land use types and possible land use

changes may influence the detection of agricultural droughts.

Further, for mapping drought-related results and regional analysis, an openly available data

set of administrative boundaries is acquired from the database of Global Administrative

Areas (GADM, 2015) in shapefile format. Only those GADM lying within the study area are

extracted, containing administrative divisions of level 0 and level 1.

In order to examine the effect of detected droughts on national agricultural production within

the focal regions, yearly crop statistics from the FAOSTAT database (FAO, 2016b) are ac-

quired. The FAOSTAT data set aims to comprehensively cover production of primary crops

for all countries and regions in the world (FAO, 2016b). Here, focus is laid on primary crops

containing vegetables, fruits, treenuts, cereals, pulses, roots and tubers, fibre crops and oil

crops. Respective production quantity data are retrieved for 2000-2013 (Table 2 in appendix).
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4.3 Derivation of drought indices

4.3.1 Standardized Precipitation Index (SPI)

As a meteorological drought indicator, Standardized Precipitation Index (SPI) is used in

this thesis, since it has been selected as a key indicator for global drought monitoring by

the World Meteorological Organization (WMO) and successfully implemented into multiple

drought monitoring approaches (e.g. Awange et al., 2016b; Naumann et al., 2012, 2014;

Ntale and Gan, 2003). Monthly SPI is derived for 1-, 3-, and 6-monthly aggregated TRMM

precipitation data using R (Code SPI-1 in Table 1 of appendix).

Firstly, based on gridded monthly TRMM rainfall images, sums are calculated over each of

the accumulation periods of 1, 3 and 6 months for each pixel in order to provide a monthly

SPI output that corresponds to different temporal scales of drought. As a first step of the

SPI algorithm, accumulated rainfall data are analysed for each pixel in order to estimate the

two key coefficients for a subsequent transformation of the observed frequency distribution

to a gamma distribution via maximum likelihood estimation. For instance, the transforma-

tion of the 3-monthly accumulated precipitation value of June 2000 into SPI values relies on

the available data record for the periods containing the same three months (16 observations

from 2000 to 2015 ). The gamma distribution is chosen in order to reliably respond to the

known asymmetrical frequency distribution of precipitation, since, in a typical record of rain-

fall totals, most of the occurrences are found at low values, whereas larger values occur with

rapidly decreasing likelihoods (Keyantash and NCAR, 2016).

Figure 4.3: Comparison of empirical distribution with fitted gamma and normal distribution for TRMM
3B43 precipitation values for March (1-monthly aggregation) 2000-2016 of an exemplary pixel at
16.36◦S 34.05◦E. Left: Histogram and density functions, right: Cumulative density function

This is shown in Figure 4.3, which displays the distribution of an exemplary precipitation

record for a randomly chosen pixel (16.36◦S 34.05◦E: Moatize, Mozambique) within the used
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data set and compares its empirical density with two theoretical density functions. Accord-

ingly, gamma distribution provides a better fit than normal distribution. Fitting the data to

gamma distribution

g(xk) =
1

βαΓ(α)
xα−1
k e−xk/βfor : xk > 0 (4.1)

with α > 0 as shape and β as scale factor, xk > 0 as the amount of precipitation over k

consecutive months and Γ(α) as the gamma function

Γ(α) =

∫ ∞
0

yα−1e−ydy (4.2)

includes the estimation of α and β via Maximum Likelihood Estimation (Asadi Zarch et al.,

2015). Afterwards, precipitation values are transformed to normally distributed SPI values

via the respective cumulative probability value (i.e. green lines in Figures 4.3 and 4.4).

Figure 4.4: CDF of normal distribution for the range of SPI values. CDF values of gamma (see Figure 4.3)
and normal distribution are matched in order to derive SPI values from given precipitation.

Finally, the SPI is described as follows:

SPI =
P − P ∗

σP
(4.3)

where P is the aggregated precipitation for a certain time interval, P ∗ is the respective mean

and σP represents the standard deviation over the available data record for the studied interval

(Keyantash and NCAR, 2016). Accordingly, the resulting dimensionless SPI has its mean at

0 and represents the anomaly of observed rainfall relative to the recorded precipitation time

series, which is expressed in standard deviation units. This calculation procedure is carried out

for each pixel and all layers of the precipitation raster stack, where each layer represents the

aggregated rainfall value for a certain month. For each of the aggregation intervals, monthly

SPI images are generated (SPI-1, SPI-3, SPI-6). Although three different aggregation levels
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were produced, focus was lain on 3-monthly aggregated SPI (SPI-3) for further analyses,

since it represents a seasonal-scale precipitation deficit. The latter is regarded a direct cause

for agricultural drought and, thus, reflects soil moisture conditions essential for agricultural

activities (WMO, 2012). For selected locations of the focal regions, SPI additionally was

computed as a function of both time and aggregation level (1- to 12-monthly time scales)

to give an insight into the propagating patterns of droughts on different time scales (see

appendix, Figure 2).

4.3.2 Vegetation Condition Index (VCI)

NDVI and VCI are derived from 8-days composites of MODIS spectral reflectance using

Interactive Data Language (IDL) (Code VCI-0 in Table 1 of appendix). Spectral reflectance

values of bands 1 and 2 are extracted by iterating through all available raw MODIS images.

These bands cover the RED and NIR spectral domain, respectively, and are needed for cal-

culating the NDVI (see Section 2.3.1.4). Subsequently, NDVI values are computed according

to equation 2.1.

Figure 4.5: Workflow of the performed derivation of VCI for an example composite. Coloured cell values are
incorporated into the calculation: orange = current NDVI value, yellow = values of NDVI time
series with respective maximum and minimum, red = resulting VCI value

Based on the generated 8-daily NDVI time series, VCI is derived. The methodology depends

on computed minimum and maximum NDVI for each of the 46 composites within a year. As

an example, NDVI extrema for Day Of Year (DOY) 1 refer to all acquisitions on the first day

of year during the studied time period (16 observations between Feb/March 2000 and April

2016). Thereupon, the VCI is derived according to equation 2.2. Figure 4.5 contains an illus-

tration of the necessary steps for calculating NDVI and VCI from MODIS spectral reflectance

time series. Hereby, the current NDVI value is scaled against the difference between maximum
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and minimum NDVI for the considered time of acquisition (here: DOY 1). Consequently, a

time series of both NDVI and VCI images is derived from MODIS spectral reflectance data.

4.4 Detection of agricultural drought

4.4.1 Extraction of average growing season

In order to assess agricultural droughts, phenological information is retrieved from the pre-

viously generated NDVI time series. For this purpose, the software package TIMESAT 3.2

is used (Eklundh and Jönsson, 2015). The timing of growing season is determined for each

pixel based on an average NDVI time series during the course of the year, which is retrieved

from the available data record.

Figure 4.6: Schematical flowchart of the extraction of the average growing season from MODIS-derived NDVI
time series by means of TIMESAT (SOS: Start of Season, EOS: End of Season, DOY: Day of
Year)

As a first step, the median is derived for each DOY through the available NDVI time series

from 2000 to 2016 (Code PH-1 in Table 1 of appendix). The resulting 46 raster images

of median NDVI resemble the average distribution of NDVI throughout the year and are

thereupon used as input data for the TIMESAT procedure. Because of special processing

requirements, the input median NDVI files are copied twice so that an artificial time series is

generated, spanning 3 years. Subsequently, this median NDVI time series is smoothed for each

pixel applying the Savitzky-Golay filter with a window size of 4 (Savitzky and Golay, 1964).

A seasonal parameter of 0 is defined in order to include areas with bimodal rainy seasons. For

deriving the timing of the growing season, a temporal window is specified. This time span was

set from DOY 241 of the first year to the end (DOY 361) of the second year of the artificial

3-year time series in order to include growing seasons which start before and end after the

turn of the year. The detection captures up to two growing seasons, lying completely within

the time window. Dates of Start Of Season (SOS) and End Of Season (EOS) are extracted.
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Hereby, SOS and EOS are defined as 0.2 of the amplitude (see example in Figure 4.6). The

output files of SOS and EOS indices are transformed from binary values into both months

and days of year, which are used for the detection of agricultural droughts (Code DD-0 in

Table 1 of appendix). Dates lying within the previous year, are stored as negative values (e.g.

SOS of months -2 refers to November of previous year).

4.4.2 Drought detection during average growing season

4.4.2.1 Continental-scale drought detection

In order to quantify the strength and duration of agricultural droughts over Africa for each

seasonal year, statistical and threshold-based parameters are derived from time series of 3-

monthly accumulated SPI (SPI-3) and VCI . Hereby, a seasonal year starts at DOY 241 of the

corresponding previous year (see Section 4.4.1). In this case, the meteorologically originated

SPI-3 is regarded an index for agricultural drought, since the accumulation period of 3 months

can be associated with soil moisture response to rainfall.

First of all, SPI images are reprojected and resampled to the same spatial grid as MODIS-

derived SOS and EOS images using Python and Geospatial Data Abstraction Library (GDAL)

for reprojecting and IDL for adapting the spatial grid (Codes PR-1 and PR-2 in Table 1 of

appendix).

Figure 4.7: Schematical flowchart of the detection of agricultural droughts for each seasonal year based on
drought index time series (SOS: Start Of Season, EOS: End Of Season)

The SOS and EOS data set indicates for each pixel the average timing and duration of

the growing season. Based on this information, the number of observations under drought

conditions is extracted by using defined thresholds for both drought indices. This was done

using IDL procedures (Codes DD-1 and DD-2 in Table 1 of appendix).

In this thesis, SPI is categorized based on the classification of WMO, 2012, which is outlined

in Table 4.2. Accordingly, a threshold of -1 was used for SPI, with values below the threshold

representing moderate to extreme drought conditions. With respect to VCI , Kogan (1995)
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Table 4.2: Drought categories based on SPI (WMO, 2012) and VCI (Klisch and Atzberger, 2016)

Drought category SPI range VCI range [%]

Extreme drought SPI ≤ -2 VCI < 10

Severe drought -2 < SPI ≤ -1.5 10 ≤ VCI ≤ 20

Moderate drought -1.5 < SPI ≤ -1 20 < VCI < 35

No drought SPI > -1 VCI ≥ 35

proposed a threshold of 35 % for classifying drought. This classification is widely adopted by

the drought monitoring community (Deng et al., 2013; Gebrehiwot et al., 2011). Accordingly,

a drought classification stated by Klisch and Atzberger (2016) is applied for VCI (see Table

4.2). The 35 % threshold was used, including moderate to extreme drought conditions.

Consequently, all observations below the mentioned thresholds are counted and related to

the average duration of the growing season for each pixel. A parameter of relative duration of

drought conditions during each seasonal year is produced, representing the percental duration

of growing season affected by drought (see Figure 4.7). This procedure is applied for each of

the drought indices separately.

4.4.2.2 Regional-scale drought detection

Duration and extent of agricultural droughts in the selected focal regions of southern and

eastern Africa are further assessed by means of statistical analyses in QGIS. For each region,

one drought-affected seasonal year is specified: 2002/03 for southern Africa and 2010/11 for

eastern Africa. Figure 4.8 gives an overview of applied GIS analyses including vector-based

intersections and the derivation of statistics.

Figure 4.8: Schematic flowchart of regional-scale drought detection and vector-based GIS analysis
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Relative duration of agricultural droughts is derived for administrative units at sub-national

level (level 1 of GADM). Hereby, GADM level 1 polygons are intersected with the used Earth-

Stat (2008)-derived crop mask. Based on the resulting areas, which comprise the cropland

area per administrative unit, the mean relative drought duration for the selected seasonal

year is derived (see Section 4.4.2.1). For this purpose, zonal statistics plugin for QGIS is

used. The resulting values represent the mean relative duration of drought related to the

growing season over all cropland areas within the corresponding administrative unit.

What is more, the percentage of drought-affected cropland is assessed at national level both of

the selected regions and seasonal years. As a first step, the crop mask layer is intersected with

GADM level 0 (national level) polygons and, subsequently, the area of cropland (in km2) is

calculated for each country. Secondly, drought-affected areas are defined on a pixel bases when

droughts were detected for at least 30 % of the growing season. These drought-affected pixels

are intersected with cropland area per country and, thereupon, the area of drought-affected

cropland (in km2) is calculated for each country. Finally, for each country, the percentage of

total cropland areas affected by drought during the focus years is calculated.

4.5 Correlation analysis

4.5.1 Cross-correlation of drought indices and ENSO index

For assessing the general relation between ENSO and agricultural drought over Africa, cross-

correlations are applied between MEI as an ENSO index and each of the drought indices SPI

and VCI . For this analysis, monthly means are derived for the complete time series of 8-daily

VCI images using Python (Code CC-01 in Table 1 of appendix).

The cross-correlation analysis is implemented in IDL procedures (Codes CC-02, CC-1 and

CC-2 in Table 1 of appendix) and was carried out with varying temporal lags. Hereby, all

lags between -6 to +6 months are tested. The drought index time series is shifted against

the MEI time series by the respective amount of months. Subsequently, the cross-correlation

Pxy(L) of two sample populations (time series) X and Y is calculated as a function of the

lag L:

Pxy(L) =



N−|L|−1∑
k=0

(xk+|L|−x̄)(yk−ȳ)√√√√[
N−1∑
k=0

(xk−x̄)2

][
N−1∑
k=0

(yk−ȳ)2

] for L < 0

N−|L|−1∑
k=0

(xk−x̄)(yk+L−ȳ)√√√√[
N−1∑
k=0

(xk−x̄)2

][
N−1∑
k=0

(yk−ȳ)2

] for L ≥ 0

(4.4)

where x̄ and ȳ denote the means of the sample populations x = (x0, x1, x2, ..., xN−1) and y =

(y0, y1, y2, ..., yN−1), respectively (Exelis Visual Information Solutions, 2016). This procedure

is applied for correlating 3-monthly aggregated SPI-3 with MEI as well as VCI with MEI.

Figure 4.9 displays the positions of shifted time series for one exemplary month 0 with no

time lag (center), a lag of -3 (left) and +3 (right).
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Figure 4.9: Set-up for correlation analysis with shifted time lags (left: negative shift, middle: no shift, right:
positive shift)

Apart from calculating the correlation coefficients between the two time series, a student’s

t-test is carried out in order to test for significance. Critical values for the correlation were

calculated at the 95 % level of significance. Accordingly, for each time lag, a significance

mask is derived, indicating if a pixel yields significant (value 1) or unsignificant (value 0)

cross-correlation between the time series of the respective drought index and MEI. Finally,

the lag and the value of the maximum correlation coefficients per pixel are extracted by using

Python (Code CC-3 in Table 1 of appendix).

4.5.2 Time lag analysis for selected ENSO events

What is more, with the aim of studying the relation between drought and ENSO, temporal

response times between minima of drought indices and peaks (El Niño) or minima (La Niña)

of MEI are analysed for each of the major ENSO events within the studied time period

(Codes TR-1 and TR-2 in Table 1 of appendix). ENSO warm and cold phases are selected

from MEI time series based on the standard ONI thresholds (see Section 2.3.2). MEI values

are compared with SPI-3 and monthly means of VCI, respectively. Firstly, the month with

maximum or minimum MEI is identified according to the studied ENSO event. Months of

drought index minima are extracted for up to 6 months after the MEI extremum. Finally,

the temporal difference and, additionally, corresponding minimum drought index value are

retrieved for each pixel. Figure 4.10 visualizes this procedure for an exemplary pixel in the

case of El Niño.

Figure 4.10: Example of response time analysis for El Niño: Difference between months of ENSO peak and
drought peak (minimum of drought index)
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Chapter 5

Results

5.1 Timing of average growing season

As a first result, the start (SOS) and end (EOS) of the average growing season was derived

from multi-annual (2000-2016) MODIS-based median NDVI time series. Months of SOS and

EOS are displayed in Figure 5.1. The derived timing of the growing season provides the basis

for further analyses of agricultural drought.

Figure 5.1: Start and end of detected growing seasons within the average seasonal year (SOS-1/SOS-2: start
of first/second growing season; EOS-1/EOS-2: end of first/second growing season)
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Figure 5.2: Mean SPI-3 during growing seasons from 2001 to 2016 (seasonal years)

Due to the zonally graduated distribution of precipitation and climate zones across the African

continent, growing seasons show spatially varying lengths and differing timing within the

average seasonal year. Whereas the Sahel region exhibits a rather short growing season of

about 3-5 months, some regions under tropical climatic conditions show growing seasons

spanning more than 10 months, e.g. parts of Zambia, Zimbabwe and Mozambique. Further,

a bimodal distribution, where two growing seasons occur within one seasonal year, can be
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Figure 5.3: Mean VCI during growing seasons from 2001 to 2016 (seasonal years)

identified in the Nile delta, parts of West Africa (e.g. Ivory Coast, Ghana, Togo, Benin,

southern Nigeria) and eastern Africa, especially in south-western Ethiopia, Kenya, Somalia,

Uganda, Rwanda and Burundi (see figure 5.1, bottom).
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Figure 5.4: Relative duration of drought: Percentage of growing season affected by drought events (SPI-
3 below -1) from 2001 to 2016 (seasonal years)

5.2 Spatio-temporal pattern of agricultural drought

The spatio-temporal pattern of agricultural drought events over Africa is displayed through

the means of the drought indices SPI-3 and VCI (referred to as drought severity) as well

as the relative duration of drought conditions defined by SPI-3- and VCI-based thresholds
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Figure 5.5: Relative duration of drought: Percentage of growing season affected by drought events (VCI be-
low 35) from 2001 to 2016 (seasonal years)

during the average growing season. Figure 5.2 and 5.3 present SPI-3- and VCI-based drought

severities during each growing season from 2001 to 2016, whereas Figure 5.4 and 5.5 show

the temporal dimension of drought for the same period. This relative duration of droughts

refers to SPI-3 below -1 and for VCI below 35, respectively. All in all, a temporally and
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Table 5.1: Seasonal years and countries of focal regions affected by extensive agricultural droughts based on
drought indices SPI-3 (Figure 5.2 and 5.4) and VCI (Figure 5.3 and 5.5)

Region Years Countries* affected by drought based on:

Mean SPI-3 Mean VCI Relative duration
(SPI-3 < -1)

Relative duration
(VCI < 35)

Eastern
Africa

2000/01 SO SD SS KE SD SO BI SO SS KE SD SO SS

2001/02 ET SD ER ET KE SD ER ET SD ER ET KE SD

2002/03 BI RW TA ER ET SD BI ET RW TA ET SD

2003/04 BI KE SD TA UG ER ET KE SD BI RW SD TA KE SD

2004/05 BI KE SD SO SS
TA UG

ER ET KE SD TA BI KE SO SS TA ER ET KE SD SO
SS

2005/06 ET KE ER KE SD TA BI ET KE RW SO
TA

KE SD SO TA

2006/07 ET ET SD ET KE

2007/08 ET TA ET KE SO ER ET ET KE SO

2008/09 ER ET KE SD SO
SS UG

ER ET KE SO SD
TA

ER ET KE SD SO
SS UG TA

ER ET KE SD SO

2009/10 BI ER RW SD SS
TA UG

ER ET KE SD SO BI ER RW SD SS
UG

ER KE SD SO

2010/11 ER ET KE SD SO
SS UG

ER ET KE SD SO ER ET KE SD SO
SS UG

ER ET KE SD SO

2011/12 SD SS UG ER ET BI RW SD SS UG ER ET

2012/13 ER SD SS UG ER KE SD ER SD SS ER KE

2013/14 KE RW SO TA UG KE SO TA RW UG TA KE SD SO

2014/15 ET RW SO SS UG ER ET KE SD SO ET SS UG ER ET KE SD SO

2015/16 ER ET RW SD SO ER ET SD ER ET SD ER ET KE SD

Southern
Africa

2000/01 AO MG AO NA ZA AO MG NA ZA AO MG NA ZA

2001/02 AO SZ ZM ZW NA BW ZA ZW AO BW SZ ZW BW MZ NA ZA ZW

2002/03 AO BW LS NA SZ
ZA ZW

BW LS NA SZ ZA BW LS NA SZ ZA BW LS NA ZA ZW

2003/04 AO ZA AO BW MG NA ZA AO MW SZ ZA AO BW NA ZA

2004/05 MW ZA ZM ZW BW MW MZ NA
ZW

MW MZ ZM ZW BW MG MW MZ
NA ZA ZM ZW

2005/06 MG ZA BW MG ZA MG MZ SZ ZA BW MG ZA

2006/07 BW LS NA ZA BW NA ZA BW LS MW NA ZA BW LS NA ZA ZW

2007/08 MG MW ZA ZW MG ZW MZ ZA ZW

2008/09 ZA BW NA ZA ZA BW MG NA ZA

2009/10 AO MG MG LS MZ
NA ZA

MG NA ZA AO MG AO MG NA ZA

2010/11 MG MW MZ ZA NA ZA MG MZ ZA ZA ZW

2011/12 AO BW LS MW
MZ ZA ZW

BW MZ ZW AO BW LS MG MZ
ZA ZW

AO BW LS MZ ZW

2012/13 AO BW LS MG NA
ZA ZM ZW

BW LS MG NA ZA
ZW

AO BW MG NA
ZM ZW

AO BW MG MW
NA ZA ZW

2013/14 LS MG MZ ZA ZM LS MG ZA LS MG ZM AO LS MG NA ZA

2014/15 AO BW LS MG
MW MZ NA SZ ZA
ZM ZW

BW LS MG MW
NA ZA

AO BW LS MZ
MW NA ZA ZM

AO BW LS MZ NA
ZA

2015/16 LS MG MW MZ
NA SZ ZA ZM ZW

BW LS MG MZ NA
SZ ZA

LS MW MZ NA SZ
ZA ZM

BW LS MG MZ NA
SZ ZA

* Country codes: AO = Angola, BI = Burundi, BW = Botswana, ER = Eritrea, ET = Ethiopia, KE = Kenya, LS = Lesotho,

MG = Madagascar, MZ = Mozambique, MW = Malawi, NA = Namibia, RW = Rwanda, SD = Sudan, SO = Somalia, SS = South
Sudan, SZ = Swaziland, TA = Tanzania, UG = Uganda, ZA = South Africa, ZM = Zambia, ZW = Zimbabwe

spatially dynamic drought pattern can be revealed for the examined time period. Hereby,

seasonal years of regionally widespread drought conditions, mostly located over core areas

with particularly strong drought signals, are exhibited. Regarding analyses of the vegetation-

related VCI, a generally larger and stronger drought signal is noticeable over Africa compared
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to drought patterns of rainfall-related SPI-3. With reference to the selected focal regions of

eastern and southern Africa, Table 5.1 lists countries that were affected by severe agricultural

droughts in a corresponding seasonal year of the study period. This information is based on

visual examination of the retrieved SPI-3- and VCI-based drought patterns. Particularly

drought-affected years are framed.

With focus on eastern Africa, 2009 and 2011 stand out as years of extensive droughts based on

the severity and relative duration of agricultural droughts (see Table 5.1 and figures 5.2 - 5.5).

Additionally, VCI-based parameters reveal 2001, 2005 and 2006 as drought-affected seasonal

years for Kenya and Somalia. Further, droughts were also detected for 2002-2003, 2008 and

2015-2016 over central Ethiopia (see also local SPI dynamics in appendix, Figure 2). In 2009,

regions of major precipitation deficit were concentrated in northern Ethiopia and Eritrea as

well as in southern Kenya and north-eastern Tanzania, consisting of large areas where mean

SPI-3 ranges between −1 and −1.5. The vegetation-related drought index basically retraces

this pattern. However, VCI-based indicators reveal strikingly stronger drought conditions

over northern Ethiopia, in the Rift Valley, and across Kenya, where agricultural droughts

affected a large part of the growing season. According to mean SPI-3, the seasonal year 2011

was influenced by increased drought conditions in south-eastern Sudan and west Eritrea. A

”hot spot” area of severe drought (mean SPI-3 between −1.5 and −2) can be found over

southern Ethiopia, as well as a moderate drought signal (mean SPI-3 between −0.5 and

−1) spanning widely across Kenya and southern Somalia. Here, mean VCI drought signal

is similar to SPI-3 and especially striking for Kenya and Somalia (VCI between 20 and 30

%). However, no drought indication is present over western Ethiopia and Uganda, where a

precipitation deficit was persistent during the growing season. Relative VCI-based drought

duration pattern retraces the SPI-related signal and particularly highlights northern Kenya

and Somalia, where over 50 % of the growing season was influenced by drought.

Southern Africa is extensively affected by sever agricultural droughts during the seasonal

years of 2003 and 2015/16 according to both drought severity and indicators of relative

duration of droughts (see Table 5.1 and figures 5.2 - 5.5). Further drought years are 2005,

2007 and 2013, where a drought signal is revealed over parts of the focal region. For 2003,

both precipitation-based drought indicators (mean SPI-3 and SPI-3-based relative duration of

drought) expose drought conditions centred over north-eastern South Africa, Lesotho, eastern

Botswana, west and north-eastern Zimbabwe as well as over south-eastern Namibia. The

vegetative drought pattern mostly agrees with the SPI-based one, but reveals larger extents

of drought-affected areas. Accordingly, nearly the complete agricultural area of Botswana and

Namibia was influenced by drought, showing a mean VCI of below 20 % and relative drought

durations of over 70 % of the growing season. For the seasonal year 2016, which was analysed

only until April, SPI-based drought signals are centred over central South Africa/Lesotho

and Namibia with mean SPI-3 as far as -1.5 and a relative drought duration of up to 100 %.

Drought indications are also given in eastern South Africa and southernmost Mozambique,

showing a large area of severe drought conditions with SPI-3 ranging between −1.5 and

−2 and relative durations of 80-100 %. This pattern is mirrored by VCI-based indicators.
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Strikingly, a core area with high drought signals situated over Mozambique, Malawi, eastern

Zimbabwe and Zambia can be revealed from SPI-3. Values are below -1 with a circular

pattern of SPI-3 between −1.5 and −2 and drought duration of 80-100 % of the growing

season. However, no major vegetation-related drought signal is present for the mentioned

region. This marks the area of strongest deviations between SPI-3- and VCI-based drought

patterns.

5.3 Relation between ENSO and agricultural drought

5.3.1 Correlation between ENSO and drought index time series

The comparison of cross-correlation results between the ENSO index MEI and each of the

two drought indices reveals a broadly consistent pattern. Although correlation coefficients do

not exceed an absolute value of 0.6 and, thus, only weak to moderate linear relations can be

suggested between ENSO and drought indices, the direction of correlation sheds light on the

spatio-temporal pattern of emerging droughts in relation to ENSO events. Figure 5.6 displays

the maximum correlation coefficient with its corresponding time lag for the cross-correlation

between MEI and SPI-3 and VCI, respectively.

Figure 5.6: Maximum correlation coefficients over Africa between the ENSO index MEI and SPI-3 (top left)/
MEI and VCI (top right) and their corresponding time lags in months (bottom)

Over large areas in southern Africa, negative correlation coefficients (−0.5 < r < −0.2) were

measured, which indicates weak to moderate negative relations between MEI and drought

index time series. Consequently, the drought index tends to decrease when MEI increases,
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which results in a tendency towards drought conditions over southern Africa during El Niño

events. The SPI-3-based correlation pattern reveals a moderate negative correlation hot spot

over Malawi, Mozambique, Zambia and Zimbabwe, whereas VCI exhibits a different, rather

mixed signal for this area. The latter consists of a predominant positive correlation over

Zambia, Zimbabwe and north-eastern Mozambique, whereas Malawi, central and southern

Mozambique are dominated by weak negative correlation coefficients. Regarding the temporal

offsets, the maximum correlation between MEI and SPI-3 over South Africa, Lesotho, Namibia

and Botswana was detected for time lags of 4 to 6 months, whereas Malawi, Mozambique

and Zimbabwe show the highest correlation coefficients for a time lag of -2 to 0 months.

VCI-based time lags reveal a similar pattern. Although matching the arrangement of VCI-

related correlation values, a diffuse pattern of time lags is present over the region of Malawi,

Mozambique and Zimbabwe, where a belt of negative lags between -6 and -3 can be identified

over Zimbabwe and lags of 0 to 3 months dominate Malawi and southern Mozambique.

Strikingly, a meridional dipole is identified in the correlation patterns over southern Africa.

This dipole between generally negative correlation coefficients in the south and positive values

in the north is emergent at about 15◦S for SPI-3 and 18◦S for VCI. Thus, VCI reveals a

positive relation to MEI over the northern parts of southern Africa, whereas SPI-3 indicates

a contrary behaviour.

Eastern Africa shows a positive correlation pattern indicating weak to moderate relations to

ENSO (0.2 < r < 0.5) over southern Ethiopia, eastern Kenya and Somalia based on both

SPI-3 and VCI time series. The corresponding time lag lies between 0 and 4 months. Thus,

for this region, El Niño events are associated with abnormally wetter conditions, whereas

La Niña can be related with drier conditions. In contrast, a negative correlation pattern is

present for both drought indices over central and northern Ethiopia (time lags between -5

and -4 months), a small strip along the coast of Somalia (time lags of about -6 months) and,

secondly, north of the Victoria Lake covering Rwanda, Uganda and western Kenya (time lags

of -6 to -5 months). In these areas, the SPI-3 pattern is spatially more extensive, whereas

for VCI, bands of negative correlation are limited to the border region between Uganda and

Kenya and the Rift Valley of Ethiopia. However, VCI-based correlation values additionally

display a negative relation to ENSO over Sudan and Eritrea. Here, time lags are between -4

and -2 for Ethiopia, -6 and -5 for Uganda/Kenya as well as 0 and 4 months for Sudan/Eritrea.

Hence, a drought signal is revealed for central Ethiopia and the border region of Uganda and

Kenya, taking place prior to the MEI maximum, in the context of El Niño. Vegetative droughts

tend to occur after the MEI peak over Sudan and Eritrea. All in all, a rought east-west dipole

can be identified from the correlation patterns over eastern Africa.

5.3.2 Droughts during individual ENSO events

5.3.2.1 ENSO-related drought dynamics on a monthly scale

For the strongest El Niño and La Niña events that where registered between 2000 and 2016,

the development of agricultural droughts is monitored in Figures 5.7, 5.8, 5.9 and 5.10. Hereby,
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Figure 5.7: SPI-3 for El Niño events 2015/2016 (strong), 2009/10 (moderate) and 2002/03 (moderate) during
September (Sep), December (Dec), January (Jan) and April (Apr)

drought indices are compared on a monthly scale. Firstly, September is selected as a month

representing conditions during the onset of the respective ENSO event. What is more, Decem-

ber (Dec) and January (Jan) reflect the time where ENSO is at its highest intensity and,

lastly, April (Apr) is monitored as a month during the declining ENSO event. Months were

chosen according to their coincidence with major growing seasons over eastern and southern

Africa. In this case, site-specific growing seasons are included, whereas all areas where the

average growing season does not coincide with the selected months are excluded from the

analyses (dark grey colours in maps). Figure 5.7 shows the development of SPI-3 and Figure

5.8 the monthly means of VCI during El Niño events of 2015/16, 2009/10 and 2002/03.

48



Relation between ENSO and agricultural drought

Figure 5.8: Monthly means of VCI for El Niño events 2015/2016 (strong), 2009/10 (moderate) and 2002/03
(moderate) during September (Sep), December (Dec), January (Jan) and April (Apr)

In the ongoing El Niño 2015/16, which was categorized as strong event based on ONI, drought

can be monitored over Ethiopia, Eritrea, Kenya and Uganda showing extensive, severely

to extremely dry conditions based on SPI-3 (map for September 2015). Further, Sudan is

affected moderately. VCI shows a similar pattern, where droughts are concentrated over

Ethiopia, Eritrea, Kenya and Sudan. Though, Uganda is not affected by vegetative droughts.

Further, some areas in West Africa, including the Ivory Coast, Ghana, Togo and Benin are

affected by dry conditions in September based on both drought indices. The largest extent

of SPI-3-based droughts are recorded in December over southern Africa. Especially, Zambia,

Zimbabwe, South Africa, Swaziland and Lesotho were affected by extreme droughts, which are
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Figure 5.9: SPI-3 for La Niña events 2010/11 (moderate) and 2007/08 (moderate) during September (Sep),
December (Dec), January (Jan) and April (Apr)

indicated by SPI-3 below -2. In the following month, the core zone of drought decreases and

moves in northeastern direction towards Malawi and Mozambique. Monthly means of VCI also

indicate extreme drought conditions during these months of high El Niño intensity, with large

areas showing VCI values below 20. However, VCI exhibits a strikingly smaller drought extent

over southern Africa than SPI-3. Here, the zone of drought over Malawi and Mozambique,

revealed from SPI-3, is lacking and drought signals are in fact concentrated over Botswana,

South Africa and Lesotho. During the decline of El Niño (map for April 2016), droughts are

still persistent in southernmost South Africa, Namibia and southern Mozambique for both

drought indices. Additionally, agricultural droughts are monitored over Kenya and Somalia

for January (spot) and April 2016 (extensive area).

In comparison to 2015/16, the observation of drought indices for the moderate El Niño

2009/10 reveals a different pattern. However, a severe to extreme drought pattern is observed

over eastern Africa during the onset of El Niño, resembling the situation of 2015. Differences

arise from the months with the highest El Niño intensities. For southern Africa, SPI-3 exhibits

a weak signal of moderate droughts over Mozambique, more pronounced during January 2010,

and scattered extreme droughts in southern Madagascar. VCI indicates scattered droughts
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Figure 5.10: VCI for La Niña events 2010/11 (moderate) and 2007/08 (moderate) during September (Sep),
December (Dec), January (Jan) and April (Apr)

over south-western South Africa, parts of Namibia, western Botswana and southern Mada-

gascar. All in all, no comparable drought signal to 2015/16 is found for El Niño 2009/10.

In April 2016, spots of moderately to extremely dry conditions along the southern coast of

South Africa are revealed from both drought indices.

El Niño 2002/03 exhibits a drought pattern roughly similar to the 2015/16 situation. First

of all, eastern Africa was affected by droughts during the onset of El Niño (September 2002).

This observed pattern is similar to both the 2015/16 and 2009/10 events. Regarding the

high-intensity phase of El Niño, a major drought signal can be identified over southern Africa

during December and January based on both drought indices. For SPI-3, the drought-affected

countries are eastern Botswana and South Africa, Zimbabwe, Lesotho and Swaziland, where

dry conditions were particularly emergent during January 2003. VCI-based drought signal

over southern Africa is focussed on Namibia, Botswana and South Africa, whereas Zimbabwe

does not exhibit a noteworthy drought pattern. Further, a vegetation-based drought signal

was still present in the declining event (April 2003). Thus, compared to SPI-3-based images,

the core region of droughts is shifted more to the west and the drought signal shows a higher

persistence.
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Figures 5.9 and 5.10 show SPI-3 and VCI for the moderate La Niña events 2010/11 and

2007/08, respectively. During the onset of La Niña 2010/11 (September 2010), a precipitation

deficit was observed over central Sudan and southern South Africa. The vegetation-based

pattern retraces the drought signal in South Africa, however, indicates merely small spots

of drought in Sudan. SPI-3 and VCI reveal a pronounced extensive agricultural drought in

eastern Africa in December and January, when La Niña reached its highest intensity. Most

affected areas are situated in Ethiopia, Kenya and Somalia with extreme SPI values of below

-2 and VCI of below 10. SPI-3 exhibits other core areas of severe drought over northern

Mozambique and Madagascar, which are not matched by VCI. The eastern African drought

demonstrates a high persistence, since even in the declining stage of La Niña (April 2011), a

severe drought signal can be observed from both indicators.

During La Niña 2007/08, a generally weaker drought pattern is monitored compared to

2010/11. For the onset of the La Niña event (September 2007), moderate drought conditions

are observed along the South African coast, matching the pattern of La Niña 2010/11. With

respect to December and January, drought indices reveal a slightly differing picture. Although

SPI-3 only shows drought conditions over Ethiopia and does not indicate a major extensive

precipitation deficit over Kenya and Somalia, VCI exhibits a moderate drought signal over

the mentioned eastern African region for December and January. Both indices show droughts

in Namibia, whereas the SPI-based drought pattern displays a precipitation deficit spanning

to Angola (January 2008). In the subsequent declining stage of La Niña (April 2008), SPI-3

and VCI widely coincide, revealing a drought pattern focussed on Ethiopia and Somalia as

well as Botswana.

5.3.2.2 Response times of ENSO-related droughts

For each of the previously pictured El Niño and La Niña events, time lag analysis was carried

out, individually. Hereby, the temporal offset between the month of highest ENSO intensity

and the month with lowest drought index value are examined. As an example for El Niño,

Figure 5.11 presents the time lag pattern of observed droughts during 2002/03. With focus

on La Niña, Figure 5.12 displays the time lag of droughts during 2010/11. Negligible areas

were masked. Accordingly, if the detected minimum drought index is not indicating at least

moderately dry conditions (see thresholds in Table 4.2), if no significant correlation was

revealed (see significance mask from correlation analysis in Section 5.3.1), or if the respective

growing season was not affected by droughts (threshold of 0 %, see relative duration of

drought, Figures 5.4 and 5.5), pixels are displayed in dark gray.

During El Niño 2002/03, drought-affected areas with significant correlation results are limited

to large areas in southern Africa and to smaller regions of eastern Africa. Further, a zonal

band of droughts with negative time lags across West Africa spanning to the Sahel zone is

observed. The spatial pattern of temporal offsets is divided into two segments over southern

Africa, where the west differs from the east (see Figure 5.11, left). Hence, large areas in

South Africa, Namibia and western Botswana are affected by most intense droughts 4 to 6
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Figure 5.11: Temporal offset between MEI peak and drought index minimum during El Niño 2002/03 for
SPI-3 (left) and VCI (right)

Figure 5.12: Temporal offset between MEI minimum and drought index minimum during La Niña 2010/11
for SPI-3 (left) and VCI (right)

months after the MEI peak, whereas strongest droughts in eastern Botswana, Zimbabwe and

southern Mozambique were observed directly in the month of the highest El Niño intensity.

VCI-based thresholds reveal a larger drought-affected area for time lag analysis. Temporal

offset of severe and extreme droughts in southern Africa are mostly between 3 to 6 months,

whereas some regions in central South Africa and especially in Botswana and Mozambique

exhibit negative time lags of -7 to -3 months, which differs from the SPI-3-based pattern (see

Figure 5.11, right). The resulting time lag pattern for El Niño 2002/03 over southern Africa is

broadly consonant with the respective temporal offsets unfolded by correlation the time series

of ENSO and drought indices (see section 5.3.1, Figure 5.6). What is more, eastern Africa

contains several drought-affected areas. Central Ethiopia reveals strong droughts occurring

before the El Niño peak (time lags between -3 and 0 and partly below). The negative lags in

this region are consistent with both SPI-3- and VCI-related time lag images revealed from

correlation analyses (see Section 5.3.1, Figure 5.6). Northwestern Ethiopia, Eritrea and Sudan

are partially affected by vegetative drought in temporal coincidence with the MEI peak. This

is also observed from the VCI-based lag pattern of the correlation analyses (see Section 5.3.1,

Figure 5.6, right).
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The time lag pattern for La Niña 2010/11 exhibits positive values for the major significantly

drought-affected areas in eastern Africa, especially southern Ethiopia, Kenya, Uganda and

Somalia (see Figure 5.12). Here, severe to extreme agricultural droughts arose 3 to 5 months

after the month of MEI minimum that indicates the highest intensity of La Niña. In compar-

ison, correlation-based time lag images also revealed positive offsets ranging from 0 to 4 for

the mentioned region (see Section 5.3.1, Figure 5.6).

By comparing the observed occurrence of droughts during major El Niño and La Niña events,

it can be concluded that no universal drought pattern exists during different ENSO events.

Independently from its intensity, each warm or cold phase shows a different precipitation- and

vegetation-based drought signal. These variations apply to both space and time. However,

similar drought patterns were revealed for certain regions. These are consistent with the

tendencies unfolded by means of the correlation analysis (see Figure 5.6), regarding the

occurrence of droughts during the respective ENSO phase and its time lags. As an example,

for each of the three studied El Niño years, drought could be identified in Ethiopia and western

Kenya during the onset of the event and prior to the actual El Niño peak (see Figures 5.7,

5.8 and 5.11). This pattern is coherent to the respective correlation result (see Section 5.3.1,

Figure 5.6), showing negative correlation coefficients with monthly lags of about -6 to -4.

Further, the widely negative correlation of both drought indices to MEI over southern Africa

with different positive time lags can be confirmed by drought signals for two of the three El

Niño events (2015/16 and 2002/03). Likewise, this applies to La Niña, where revealed positive

correlations between ENSO and drought indices for Ethiopia, Kenya and Somalia could be

verified for the 2010/11 and to a weaker extent for the 2007/08 La Niña situation. These La

Niña-related drought dynamics are also present in the correlation result.

5.4 Regional impacts of agricultural drought

The effects of particularly severe drought years on administrative areas, cropland and national

agricultural production is analysed with focus on eastern and southern Africa. Hereby, the

regional drought severity is expressed by means of the relative duration and the spatial extent

of agricultural droughts on cropland areas.

5.4.1 Drought in southern Africa in 2002/03

Maps of Figure 5.13 show the relative duration of droughts during the growing season for

sub-national administrative units (GADM level 1) over the focus region of southern Africa.

The result is displayed both for SPI-3- (top page) and VCI-based (bottom page) thresholds

of severe drought. Based on SPI-3, administrative units with highest average persistence of

drought comprise all 4 regions of Swaziland (Lubombo, Shiselweni, Hhohho, Manzini), where

over 50 % of the growing season was affected. Further, north-eastern provinces of South Africa

(Limpopo, Mpumalanga, Gauteng), Quthing in Lesotho, Hardap in Namibia and North-East

District in Botswana exhibit relative drought durations of over 40 % of the growing season.

Regions with values of over 30 % are situated along a northwest-southeast directed band from
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north-eastern Namibia to southernmost Zimbabwe and in the border regions between South

Africa and Namibia. As indicated by VCI, the drought persistence during the growing season

is especially high in nearly all Namibian regions, particularly in Hardap (over 90 %), Khomas

and Omaheke (ca. 75 % each), districts of western Botswana (between 70 and 85 %) as well

as in the northern provinces of South Africa, containing Northern Cape with about 70 %,

North West Province and Limpopo with over 50 % each. In comparison to precipitation-based

drought duration pattern, the vegetation-related signal exhibits more regions with intensively

drought-affected growing seasons. Per trend, these are concentrated further in the west.

Additionally, the extent of drought-affected cropland is compared for SPI-3- and VCI-based

thresholds of relative drought duration at a national scale (see thresholds in Section 4.4.2.2).

The comparison is displayed in Figure 5.13 for selected countries. According to the SPI-based

threshold, countries that show the highest spatial extent of drought-affected cropland in the

season 2002/03 are Swaziland with 100 %, Botswana with 50 %, South Africa with 44 %,

Namibia with 35 % and Zimbabwe with 32 %. VCI indicates the same most affected countries.

However, it reveals a different order, comprising Botswana with 98 %, Namibia with 97 %,

South Africa with 75 %, Swaziland with 72 % and Zimbabwe with 34 % of drought-affected

cropland during the growing season. Here, values are strikingly higher for the core region over

Botswana, Namibia and South Africa, compared to the SPI-based result.

Time series of crop production in tonnes (FAO, 2016b) is displayed on the right panel of

Figure 5.13 for each of the selected drought-affected countries. Detailed values per crop type

can be retrieved from Table 2 in the appendix.

Namibia does not show a decline in overall production for 2002/03, since roots and tubers,

which represent the highest share of Namibian primary crops, exhibit a steady growth in

production. However, cereal production slightly decreased (by about 7 %) from 2001 to 2002

to one of the lowest quantities within the recorded time span. Further, the production of

pulses declined by about 39 %. For Botswana, an increase in cereal production of 50 % is

visible in 2002. Thus, no clear drought impact on yields is derived from the statistics of crop

production. In 2003, however, crop production was lower compared to adjacent years, with

produced roots and tubers decreasing to the second lowest value from 2000 to 2013. In South

Africa, the production of fruit and vegetables remained stable, whereas pulses decreased by

around 38 % from 2001 to 2002. However, 22 % more cereals were produced, compared to

2001, leading to a generally high crop production. In 2003, the lowest production of roots

and tubers was recorded. Further, cereal production dropped by about 9 %, which leads to

a lower crop production in 2003, compared with the previous year. In Swaziland, the effect

of droughts can be noticed in crop production numbers for 2002/03, although 2006/07 can

be identified as the years of lowest production. In 2002, cereal production decreased by 18 %

compared to 2001. The production of treenuts shows a decrease of 59 %. The amount of

pulses, which declined by 19 %, came to its lowest recorded value. In 2003, the production

of roots and tubers comes to a minimum. With focus on 2002/03, a striking decrease in crop

production is depicted for Zimbabwe. In 2002, the quantity of produced cereals, which are

the main primary crops, decreased by 51 % compared to the previous year.
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Figure 5.13: Agricultural droughts in southern Africa at regional level during the seasonal year 2003 based on SPI-3 and VCI: Zonal means of relative drought duration (see
maps on left panel: top page for SPI-3, bottom page for VCI), drought-affected cropland area per country (pie charts on middle panel) and national statistics of
crop production between 2000 and 2016 (bar charts on right panel, FAO, 2016b)
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Although a further increase was measured for 2003, production still remained low. Crop

production in Malawi was generally low from 2000 to 2005. In 2002, the production of roots

and tubers, the main crops in Malawi, decreased about 53 % to its minimum value within the

studied record and remained on a low level in 2003. Compared to 2001, when cereal production

dropped about 29 %, even less cereals (-8 %) were produced in 2002. In Mozambique, 2002/03

coincides with a phase of low crop production. Cereal (-10 %) and treenuts (-13 %) production

decreased from 2001 to 2002, revealing one of the lowest values within the recorded time

period.

5.4.2 Drought in eastern Africa in 2010/11

Analogous to Figure 5.13, maps of Figure 5.14 show relative drought duration per region

based on SPI-3 (top page) and VCI (bottom page) thresholds with focus on eastern Africa.

According to SPI-3, regions with most persistent agricultural droughts in the seasonal year

of 2011 were north-western Kenyan counties Marsabit, Wajir and Isiolo with relative drought

durations of over 60 % of the growing season. Other regions with values of over 50 % are

adjacent administrative units (Garissa in Kenya, Gedo in Somalia) and districts of Uganda

(Nakasongola, Kampala and Nebbi). This SPI-3-based pattern of drought duration reveals

a clear core zone over north-eastern Kenya, extending to Somalia, southern Ethiopia and

eastern parts of Uganda, South Sudan and Sudan. VCI-based drought persistences reveal

a similar pattern over eastern Africa. Here, nearly the same ”hot spot” zone is identified

over Kenya, though, spanning further to the northeast. Most affected counties were again

Isiolo and Marsabit, showing relative drought durations of over 60 % of the growing season,

as well as Turkana and Samburu with over 50 %. Other areas of strikingly high drought

persistence can be identified in Somalia (Shabeellaha and Banaadir) and in the border region

between Sudan and Eritrea (Al Qadarif, Sudan and Gash Barka, Eritrea), where values of over

50 % are exhibited. In contrast to the SPI-3-based pattern, VCI-derived core zones of high

drought persistence does not extend into South Sudan and Uganda. However, the Ethiopian

Rift Valley (Afar) and south-western Sudan is affected by prolonged drought periods in the

growing season.

Regarding the extent of cropland affected by severe droughts in 2010/11, SPI-3 indicates

Somalia with 75 %, Kenya with 65 % and Ethiopia with 43 % as most affected countries.

According to the VCI-based threshold, even 95 % of the Somalian cropland was affected by

persistent agricultural droughts during the growing seasons, whereas 67 % of agricultural

areas in Kenya were struck. Sudan follows with 56 % and Eritrea with 52 %. Apart from

South Sudan, VCI-related values of drought-affected cropland were higher than SPI-based

ones, especially in the case of Somalia. Generally, both indices reveal a similar pattern.

Statistical data of crop production reveal low values for Sudan in 2010, showing a 36 %

decline in cereal production. This cannot be compared with the depicted percentages of

drought-affected cropland and drought duration, since, in the case of Sudan, the growing

season of 2010 is not included in the seasonal year of 2011. In the latter, rather stable crop
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production values were registered. Eritrea does not show any decline in crop production in

2011 either. However, remarkably low crop production amounts were registered from 2002 to

2004 and in 2008. Since Ethiopian crop production has generally been growing from 2000 to

2013, no clear drought impact can be retrieved for the season 2010/11. In contrast, statistical

data for Somalia indicate a clear break in cereal production during 2011, showing a decrease

of 67 % compared to 2010. Produced cereals came to its lowest value between 2000 and 2013.

Since cereals normally account for a major part of the Somalian crop production, the overall

amount of produced crops in 2011 represent the minimum of the studied time series. A decline

in crop production in 2011 can be monitored for Kenya, too. Most notably, vegetable and

fruit production decreased about 22 % and 20 % with respect to the previous year. Further

a slight drop (-7 %) in produced cereals is visible.
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Figure 5.14: Agricultural droughts in eastern Africa at regional level during the seasonal year 2011 based on SPI-3 and VCI: Zonal means of relative drought duration (see maps
on left panel: top page for SPI-3, bottom page for VCI), drought-affected cropland area per country (pie charts on middle panel) and national statistics of crop
production between 2000 and 2016 (bar charts on right panel, FAO, 2016b)
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Chapter 6

Discussion

6.1 Monitoring agricultural droughts over Africa

Table 6.1: Seasonal years and countries of focal regions affected by extensive droughts according to the EM-
DAT disaster database (Guha-Sapir et al., 2016). Framed years are in agreement with revealed
SPI-3- and VCI-based results (see Table 5.1).

Years Countries* affected by drought

Eastern Africa Southern Africa

2000/01 SD SO AO MG MZ NA SZ ZW

2001/02 UG LS MW MZ SZ ZW

2002/03 ET RW TA LS MG MZ NA SZ ZW

2003/04 BI ET KE RW SO TA SZ ZA

2004/05 BI RW UG SO AO MW MZ ZM

2005/06 ET KE RW TA UG MG MW MZ

2006/07 RW SZ ZW

2007/08 ET UG SO LS MG MZ MW ZW

2008/09 BI ER ET KE SO SS UG MG MZ ZW

2009/10 BI ET SO SS MG MZ ZW

2010/11 BI ET KE SO TA UG MG ZW

2011/12 ET KE SD SO TA AO LS MW ZW

2012/13 MW NA ZW

2013/14 KE SO NA

2014/15 KE SD SO MG NA ZA ZW

2015/16 ET KE SO SS BW LS MG MW MZ SZ

ZA ZW

* Country codes: AO = Angola, BI = Burundi, BW = Botswana, ER = Eritrea, ET = Ethiopia, KE = Kenya,

LS = Lesotho, MG = Madagascar, MZ = Mozambique, MW = Malawi, NA = Namibia, RW = Rwanda, SD = Sudan,

SO = Somalia, SS = South Sudan, SZ = Swaziland, TA = Tanzania, UG = Uganda, ZA = South Africa,

ZM = Zambia, ZW = Zimbabwe

The retrospective analysis of the revealed agricultural droughts over Africa shows that major

drought events, which are mentioned in literature (see Section 2.3.3.2) or registered in the EM-

DAT disaster database (Guha-Sapir et al., 2016), are largely mirrored in the data. Index-based
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spatio-temporal drought patterns denote nearly all officially registered drought years between

2000 and 2016 (see Table 6.1). However, indices uncover a significantly higher amount of

agricultural droughts over the selected regions. Here, small-scale drought areas are monitored

as well, which may not have led to severe drought effects on a national level and, thus, have

not been included in the drought database. All in all, major droughts mentioned in scientific

studies could be monitored in this thesis. For eastern Africa, the precipitation deficit in

south-eastern Ethiopia during 2009 (Viste et al., 2013), the extensive vegetative drought

over Kenya and Tanzania in 2005/06 (Rulinda et al., 2012) as well as the most striking,

severe 2010/11 drought period that affected large parts in the Horn of Africa, particularly

Ethiopia, Kenya and Somalia (e.g. AghaKouchak, 2015; Anderson et al., 2012; Dutra et al.,

2013; Meroni et al., 2014), can be identified. Southern African drought events mentioned

in literature such as the prolonged and extensive drought in 2002/03 (Mussá et al., 2015;

Rouault and Richard, 2005), the 2007/08 drought period in Zimbabwe (Brown and Funk,

2010; Mutowo and Chikodzi, 2014) and the 2004/05 drought in southern Malawi (Jayanthi

et al., 2013) can also be affirmed from the results.

In order to test for the suitability of the presented drought index-based approach on con-

tinental drought monitoring, an accurate validation would be necessary. However, this lies

beyond the scope of this thesis and, thus, requires further investigation. For this purpose,

detailed statistics on agricultural yields, sampled ground truth data or measured rainfall an-

omalies could be utilized. Despite this lacking detailed evaluation, the general applicability

of drought indices SPI-3 and VCI for large-scale drought monitoring over Africa is demon-

strated.

Comparing mean drought indices (drought severity) with their respective threshold-based

relative duration of droughts (drought persistence) during the average growing season at the

continental scale, a good accordance is achieved. Hence, growing seasons that were affected

by agricultural droughts with high persistences exhibit generally higher drought severities.

However, the latter is relativized by temporal fluctuations of the drought index within the

growing season, including wet periods as well. This in turn leads to local differences between

drought severity and persistence, which is the case for VCI-derived parameters, where the

underlying time series holds higher temporal resolutions.

Although drought patterns indicated by SPI and VCI agree to a large extent, major deviations

can be found for several seasonal years. These differences can be explained by the particular

characteristics of the drought indices itself. Whereas SPI measures the rainfall deficit from

a primarily meteorological point of view, VCI assesses the condition of the vegetation cover.

The latter is not only influenced by water availability from precipitation but is also affected by

human activities in form of agricultural practices (e.g. irrigation, tillage, fertilization), land

use changes (e.g. exploitation of natural resources) and by natural influences like extreme

temperatures, fires, pests or plant diseases. These influencing factors can be equally respons-

ible for variations in NDVI, which provides the basis of VCI (Du et al., 2013; Herrmann

et al., 2005; Sepulcre-Canto et al., 2012). In this regard, the effect of temperature on evapo-

transpiration is to mention, which in turn considerably controls vegetation condition (Hayes
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et al., 2012). This, however, is neglected in the application of the SPI. Another reason for

deviations between the used drought indices are the accumulated effects of rainfall deficits on

vegetation condition and its consecutive delayed response. In this regard, the storage of water

in the soil reservoir is an important buffer between rainfall events and soil moisture availab-

ility for plants, which controls vegetation condition. The magnitude of this temporal delay

depends on vegetation type and characteristics, soil conditions, and potential evapotranspir-

ation (Hawinkel et al., 2016). Further, the SPI-3-based rainfall anomalies include events of

intense rains that do not necessarily have a positive effect on vegetation condition. Hereby,

infiltration to the soil reservoir is minor, since most of the water is lost due to immediate sur-

face run-off (Philippon et al., 2014). What is more, the timing of the rainfall deficit is decisive

for the occurrence of vegetative stress and the associated decrease in VCI. This involves both

the phase of the growing season and the crop-specific phenological stage affected by drought.

Hence, not all rainfall-derived drought events lead to a pronounced vegetation-based drought

signal in the data and, vice versa, not all events of vegetative drought occur as a consequence

of a rainfall deficit.

6.2 Relation of ENSO and agricultural droughts in Africa

6.2.1 Effects of ENSO on rainfall anomaly and vegetation condition

On the whole, the revealed temporal correlation patterns between ENSO index MEI and

drought indices SPI-3 and VCI are not entirely capable of explaining the complex relation

between ENSO and droughts over Africa. However, they rather provide directive information

on the occurrence of drier conditions in connection to ENSO warm and cold phases.

A weak to moderate negative relation between MEI and 3-monthly accumulated rainfall

anomalies, on the one hand, and vegetation condition, on the other hand, is identified for

large parts of southern Africa (r between -0.5 and -0.2). Here, the revealed trend of enhanced

drought conditions during high index phases of ENSO agrees with observations from numerous

scientific studies (e.g. Brown and Funk, 2010; Meque and Abiodun, 2015; Niang et al., 2014;

Propastin et al., 2010; Richard et al., 2000). What is more, the good agreement between

both correlation patterns in southern Africa clearly indicates that the impact of ENSO on

vegetation-based droughts can mainly be explained through the effect of rainfall. For this

area, a high sensitivity of vegetation to rainfall is assumed (Philippon et al., 2014). However,

a striking meridional dipole at about 18◦S can be observed from the MEI-VCI correlation

pattern (see Figure 5.6, right) and monthly VCI images during and after the ENSO peak

(see Figure 5.8). This is in accordance with the findings of Philippon et al. (2014). The

dipole between a positive (north) and negative relation (south) to ENSO, however, is not

matched by SPI-3, which indicates negative correlation coefficients spanning further north

of 18◦S. In this case, vegetation zones are likely to play a major role for vegetative drought

responses to rainfall deficits, since a transition area between southern shrub- and grass-

dominated vegetation and northern tree-dominated vegetation can be observed near 18◦S
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(see Figures 3.4 and 3.5 in Section 3.4; Philippon et al., 2014). Meque and Abiodun (2015)

highlighted that the correlation between MEI and rainfall is weaker than correlation between

MEI and temperature for this region. Hence, monitoring the influence of ENSO on droughts

over southern Africa by only using rainfall data might underestimate the actual effect, in

which an enhanced evapotranspiration might play a major role than reduced rainfall.

Eastern African rainfall anomalies and vegetation are sensitive to ENSO during both first

(Ethiopian ”meher”, Somalian ”deyr” and Kenyan ”short rains” from October to December)

and the beginning second growing seasons (Ethiopian ”belg”, Somalian ”gu” and Kenyan

”long rains” from February to May) over areas with bimodal rainfall cycles. This is revealed

from observed positive relations of both MEI to SPI-3 and MEI to VCI (r between 0.2 and

0.5) with associated positive time lags (see Figure 5.6) matching the timing of respective

growing seasons (see Figure 5.1, below). These findings were affirmed by Brown et al. (2010)

who identified positive relations between MEI and cumulative NDVI from March to May. A

positive correlation between Niño-3.4 SST index and NDVI anomalies over eastern Africa was

also proven by Anyamba et al. (2002) who, however, highlighted the additional modulating

effect of the Western Indian Ocean on land surface responses to ENSO. However, Philippon

et al. (2014) suggested a remarkably weaker effect of ENSO for the secondary, compared to

the first growing season, based on long-term analysis of NDVI and its sensitivity to ENSO. In

contrast to these large-scale positive ENSO - MEI relation, a negative response of rainfall- and

vegetation-related drought indices to El Niño (negative correlation coefficients) is observed

over central Ethiopia, Uganda and western Kenya prior to the MEI peak. These findings

can be confirmed from Philippon et al. (2014) who identified negative correlations between

NDVI and ENSO for August to November during the onset of El Niño. This in turn could

directly be connected to preceding rainfall deficits during the rainy season from June to

September (Indeje et al., 2000; Preethi et al., 2015). Further, these negatively related areas

mainly coincide with zones of intense agricultural production (Philippon et al., 2014). Thus,

in eastern Africa, drought response to ENSO is dependent on the climate zone and the

corresponding rainfall regime. In this regard, areas showing a bimodal rainfall cycle are more

prone to droughts during La Niña, whereas regions with unimodal rainfall distribution exhibit

drier conditions in the onset stage of El Niño (Schubert et al., 2016).

As seen in the relatively weak correlation coefficients between ENSO and drought indices, it

is by far not sufficient to focus on ENSO as a single explanatory variable for describing the

spatio-temporal pattern of agricultural droughts in Africa. Due to the interplay between global

atmospheric and oceanic circulation and its variable regional effects, various mechanisms can

play an important role for drought occurrence. Funk et al. (2008) revealed a linkage between

enhanced convection over the tropical Indian Ocean and a decrease in continental rainfall

along the eastern seaboard of Africa based on disruptions of atmospheric circulation and

moisture transport from west to east. The crucial role of the Indian Ocean in mediating the

impact of ENSO on rainfall variability was further highlighted by Schubert et al. (2016).

Besides, ecological characteristics and land use may influence the vegetation-based drought

response to ENSO (Hawinkel et al., 2016; Philippon et al., 2014; Propastin et al., 2010).
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6.2.2 Spatio-temporal variability of ENSO-related drought response

By comparing the impact of individual ENSO events on African rainfall anomalies and ve-

getation condition for selected months, it is shown that each El Niño and La Niña event leads

to a different drought pattern. Thus, although the typical continental-scale teleconnection

pattern is broadly confirmed from correlation analyses, no universal ENSO-induced drought

effect can be derived for the African continent, since every event shows its distinct spatio-

temporal drought response pattern. Accordingly, not every El Niño causes severe drought

conditions over southern Africa (as during El Niño 2002/03 and 2015/16), which can be seen

in the case of 2009/10. Likewise, droughts in Kenya and Somalia during La Niña are not

always as pronounced and extensive as in 2010/11.

Recently, an important influencing factor for the differing effects of ENSO on drought pat-

terns has been discussed in the scientific community, which involves different ENSO variants

(Manatsa et al., 2017; Preethi et al., 2015; Ratnam et al., 2014). The so-called ”Modoki”

type of ENSO differs from the conventional canonical ENSO variant in its signature of SST

anomalies over the equatorial Pacific. In this context, El Niño (La Niña) Modoki is associated

with an anomalous warming (cooling) of SST in the central Pacific, in contrast to the canon-

ical event that corresponds to the eastern Pacific (Preethi et al., 2015). Both Manatsa et al.

(2017) and Ratnam et al. (2014) mention the weak effect of ENSO on precipitation anomalies

over southern Africa during the 2009/10 El Niño, which was identified as a Modoki event.

Accordingly, heat-induced tropical circulation and tropospheric stationary wave responses are

different for Modoki events, which may lead to suppressed negative rainfall anomalies over

southern Africa. This might be a possible reason for the revealed poor agreement between

2009/10 and the other studied El Niño events.

What is more, each ENSO event must be put in relation with its large-scale temporal place-

ment. In this regard, Rojas et al. (2014) revealed that the effect of ENSO events differ if

either El Niño or La Niña years predominate the corresponding temporal cycle. Such cycles

normally consist of several years in which the influence of one ENSO phase overbalances the

other. Thus, an El Niño year taking place during a cycle of La Niña dominance, as it was the

case during 2009/10, shows less drought impact on agricultural areas than anticipated from

previous events being related to El Niño dominance cycles. However, La Niña events during

the dominance of El Niño are attributed to bring about extended agricultural droughts (Ro-

jas et al., 2014). It was observed that vegetation-based drought response showed particularly

high cumulative effects when La Niña years followed after pronounced El Niño episodes (e.g.

1999/2000 revealed from Anyamba et al., 2002), which was the case for La Niña 2010/11.

Strikingly, deviations between rainfall-based and vegetation-related drought signals were re-

vealed for the area of Zimbabwe, Zambia, Malawi and Mozambique during the major El Niño

events. Here, VCI indicates mostly wetter than normal conditions even when pronounced

rainfall deficits are observed from SPI. As an explanation for these deviations, the sensit-

ivity of vegetation to rainfall is dependent on climate zones, which in turn are controlled

by latitudinal bands of mean annual precipitation. Accordingly, areas of arid and semi-arid
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climate zones show higher sensitivity than more humid subtropical zones such as the men-

tioned regions (Hawinkel et al., 2016; Mutowo and Chikodzi, 2014). What is more, vegetation

zones and biomes play an important role on land surface response to rainfall variability. Ac-

cordingly, areas with shrub- and grassland-dominated vegetation such as savannah systems

or cropland exhibit higher sensitivities to rainfall anomalies than tree-dominated vegetation

such as forest and woodland systems, which are located in Zambia and central Mozambique

(see Figure 3.5; Hawinkel et al., 2016). Hence, the vegetation type might be a reason for

the differing drought patterns for these areas. General reasons for major differences between

SPI-3- and VCI-derived drought signals were discussed in section 6.1.

6.2.3 ENSO-induced droughts in the context of climate change

In the context of climate change and the associated warming of the atmosphere, hydrological

cycles will accelerate on the globe. This likely involves an increased occurrence of hydrological

extremes such as floods or droughts and reduces the reliability of water resources over the

African continent (Gan et al., 2016; Niang et al., 2014). According to observations from

Dai (2011), precipitation and runoff have decreased in African rivers from 1950 to 2008.

Further, projections from the Intergovernmental Panel on Climate Change (IPCC) suggest

an increased rainfall variability over eastern Africa and an enhanced risk to severe droughts

over southern Africa during the course of the 21st century. These conditions of deficient

rainfall tend to arise during El Niño events (Niang et al., 2014). Amongst the ENSO-related

agricultural droughts in Africa during the past 16 years, which were assessed in this thesis,

the currently registered El Niño of 2015/16 stands out as the strongest ENSO event with

associated extensive and persistent agricultural droughts over large areas in Africa.

The relation of ENSO and climate change has been a challenging subject for the scientific

community. Global climate models still lack the capability of adequately simulating historic

ENSO events and, consequently, no consensus is reached on a projected change in frequency

of ENSO events in the future (Gizaw et al., 2016). However, current studies suggested a

connection between global warming and an increased occurrence of El Niño and La Niña

episodes (Cai et al., 2015; Santoso et al., 2013). Accordingly, an augmented occurrence of

eastward-propagating warm surface water in the tropical Pacific was projected, which is

associated with extreme El Niño events. In response to the increased frequency of strong El

Niño episodes, the frequency of La Niña events is expected to rise as well (Cai et al., 2015).

This prospect poses new challenges for many African countries, which will be in need of

enforcing adaptive measures, capacity building and drought preparedness in order to mitigate

the possible impact of prospected droughts. Hereby, the implementation of stable crop pricing

policies, promotion of cooperation between governmental institutions and farmers as well as

the build-up of infrastructure and improved production technologies can be mentioned as

practical measures (Gizaw et al., 2016).
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6.3 Regional effects of ENSO-related droughts

The comparison of regional drought severity, based on duration and spatial extent of agricul-

tural droughts, with national crop production reveals partial agreements for each of the focal

regions. The magnitude of index-derived droughts is not always matched by the statistics of

produced crops. In most cases, drought-induced declines in production can only be observed

for particular crop types and dynamics of total production do not fit with revealed drought

severity. The analysed drought years, however, had an impact on national crop production.

The effect of the 2002/03 drought over southern Africa could be observed in anomalously low

production numbers for cereals and pulses in Namibia, roots and tubers in Botswana, cereals,

roots and tubers in South Africa and Swaziland, cereals in Zimbabwe, roots and tubers in

Malawi as well as cereals and treenuts in Mozambique. However, regarding the overall crop

production of 2002/03, distinctive slumps can only be identified for Zimbabwe and Malawi.

Slight downturns of crop production in this period were observed in Botswana and Swaziland,

whereas the drought-related effect on Namibian and South African crop statistics was not as

apparent as expected from the presented index-based analyses (see charts in Figure 5.13).

In eastern Africa, crop statistics largely mirror the revealed results of index-based drought

severity. Accordingly, droughts in 2010/11 had strong effects on cereal production of Somalia

as well as on cereal, vegetable and fruit production of Kenya, where, above all, a considerable

slump in total crop production was observed for the corresponding year. These countries are

located in the core zone of the observed agricultural drought of 2010/2011, which affected

a large portion of cropland and proved to be highly persistent during the growing seasons.

Hence, statistical data and observed index-based drought severity are generally coherent dur-

ing 2010/11 (see charts in Figure 5.14).

However, several factors restrict the validity of the revealed regional drought impact and

its accordance with national statistics on crop production. Firstly, the used relatively coarse

cropland mask (about 10 km spatial resolution) that is based on a rather permissive threshold,

including all areas of more than 0 % of cropland fraction, constitutes a restriction on the

examination of regional impacts of agricultural droughts. As an example, the revealed severity

of the 2002/03 drought is misleading and must be treated with caution in the case of Namibia.

Mixed land use systems of pasture management and small-scale farming are a common feature

of Namibian agriculture (Lange et al., 2012). Here, areas containing a mixture of savannah

grassland, pasture and scattered, small-scale cropland are included in the analyses. Hence,

the indicated drought severity largely includes non-cropland areas, which were affected by

droughts and, thus, tamper the validity of the regional impact of drought on crop production.

What is more, there is no linear relationship between agricultural droughts and crop pro-

duction. The amount of produced crops in a country does not only depend on rainfall and

vegetation condition but also on political and socio-economic factors. In this regard, drivers for

decreased crop production can be national pricing policies, infrastructural problems, conflicts,

trade-related issues, resource mismanagements or administrative changes involving taxes or

land reforms (Funk and Budde, 2009; Funk et al., 2008). The interplay of natural and political
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drivers for food insecurity becomes clear in the case of Zimbabwe. Here, the land reform of

2000 led to a food and economic crisis caused by the almost complete cessation of organized

agricultural activity in formerly commercial farm areas. The resettlement of landless people

on farms without the necessary provision of seeds, tools and know-how led to a heavy decline

in agricultural production after 2000 (Brown and Funk, 2010). Thus, rainfall deficits and

induced vegetative stress in 2002/03 are not the only explanatory variables for the observed

downturn in crop production in 2003 (see chart for Zimbabwe on right panel of Figure 5.13,

bottom page).

Vice versa, drought-induced negative effects on crop production could be mitigated by im-

proved technology and management practices like efficient irrigation or adapted agricultural

measures involving the planting of alternative crops or increases in productivity (Stige et al.,

2006). As an example, Ethiopia registered a steady increase in crop production from 2000 to

2013, which is based on the continuous rise of produced cereals dominating the Ethiopian crop

production (see chart for Ethiopia on right panel of Figure 5.14, top page). Due to an increas-

ing intensification since 2000, yield growth was faster than acreage expansion for Ethiopian

cereal production. Consequently, an increased productivity led to yield improvements causing

production growth (Taffesse et al., 2013). This is indicated in the overall upward trend of

Ethiopian cereal production, which superimposes the possible effects of agricultural droughts

on crop production numbers. Further, the influence of political incentives and macroeconomic

reforms on maize production in Kenya was examined by Onono et al. (2013) who revealed

a lagged positive response of production numbers (1972-2008) to governance reforms and

development expenditures in agriculture.

What is more, the level 1 GADM data set shows significant differences in size for each country,

holding its individual administrative division. This influences the visual pattern of revealed

drought severity in indirectly emphasizing large regions. Hereby, the region-specific percent-

ages of cropland is not apparent in the displayed maps of Figures 5.13 and 5.14, leading to

an inadvertent overrepresentation of larger regions compared to smaller ones. Other factors

restraining the comparison of remote sensing-based indicators for drought severity with crop

production numbers are uncertainties that inhere the underlying methodology of this thesis.

Here, assumptions on used thresholds, the used broad-scale crop mask and a possible error

propagation originating from inconsistencies in remote sensing products are to mention. Fur-

ther, the relatively short reference period of 16 years, which was used for statistical multi-year

analyses, could have led to errors in the extracted average growing season, which in turn was

taken as a basis for the detection of agricultural droughts.

6.4 Potential and limitations

As demonstrated in this thesis, a comprehensive insight into the spatio-temporal dynamics

of large-scale drought patterns is gained by means of the analysis of remote sensing-based

drought indices. Additionally, their corresponding relation to the ENSO mechanism was il-

luminated in form of revealed correlation and response time patterns. On the one hand,
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the applied methodology yields promising results, providing the basis for potential further

research. On the other hand, it has to be considered that the used approach holds certain

limitations.

As a first constraint, the suitability of the used cropland data set is to mention. The relat-

ively coarse EarthStat 2000 data of cropland fraction per pixel (EarthStat, 2008) does not

serve the purpose of accurately delimiting African cropland areas. Thus, no exclusive spatial

focus on cropland but a rather broad assessment of agriculturally relevant areas was given

in the presented analyses. This meets the requirement of providing a broad-scale picture of

agricultural droughts, which was imposed in this thesis. However, the use of a data set with

a higher spatial resolution and accuracy could improve the level of detail for further adapted

studies. However, such data sets do either not cover the whole African continent or contain

limitations in terms of data acquisition and accuracy (See et al., 2015). What is more, the

statistical validity of the applied cross-correlation has to be discussed. Only weak to moderate

linear relations between ENSO and drought indices over Africa could be revealed, whereas

some proved to be non-significant. This relative weakness of the relationships could originate

from conceptual and methodological limitations. Firstly, the correlation was carried out with

the complete time series, regardless of the timing of ENSO events. Thus, all types of ENSO

phases were included in the analyses. However, ENSO teleconnections over Africa are asym-

metrical in nature (Philippon et al., 2014). This may have caused underestimations of the

strengths of correlation between ENSO and drought indices over areas where rainfall anom-

alies or vegetation condition are more (less) sensitive to El Niño and less (more) sensitive to

La Niña. For further research, partial correlation analyses are suggested, separately examin-

ing the relation of drought indices to El Niño and the relation of drought indices to La Niña

events. Secondly, the study period may not be sufficiently long to serve as a reference period

for multi-year statistical analyses. This limits the explanatory power of derived relationships

between drought occurrence and ENSO and further bears on the significance of the used

drought indices. Nevertheless, comparability of all indices is given, due to they are based on

the same reference period.

Here, it must be noted that the availability of MODIS data (from February/March 2000)

accounts for the relatively short study period focussed in this thesis. However, only SPOT-

Vegetation (SPOT-VGT) or Proba-V satellite images can be named as alternatives similar to

MODIS. SPOT-VGT data covers the same study period (available since 1998), but provides

lower spatial resolutions (1 km) than the used MODIS data. Proba-V offers lower (1 km) and

higher spatial resolutions (up to 100 m), but data availability is limited to the period after

2013 (Dierckx et al., 2014; Maisongrande et al., 2004). As mentioned before, AVHRR data

offers a long image record beginning in the early 1980s. However consistent data over Africa

is only available at course spatial resolutions, which limits its application for continental-scale

drought monitoring (Townshend and Justice, 2002).

Other restrictions originate from the used remotely sensed data as proxy for rainfall- and

vegetation-based droughts. The TRMM data set, which was used for calculating the SPI,

includes uncertainties that lead to errors in rainfall estimates. For Africa, uncertainties are
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mainly related to areas with complex topography or humid climate (Dinku et al., 2007;

Naumann et al., 2012). Further, calculations of VCI are based on NDVI as an index for ve-

getation vigour. However, NDVI holds certain limitation. As an example, the sensitivity to

soil moisture leads to soil-related effects on NDVI over sparsely vegetated areas. Other weak-

nesses of NDVI are its tendency of saturation in densely vegetated areas as well as observed

atmospheric interferences related to aerosols and clouds (Zargar et al., 2011).

What is more, studying the relation between rainfall- and vegetation-based droughts over

Africa and the underlying sensitivity of vegetation to rainfall deficits lies beyond the scope

of this thesis and merits further research. Moreover, validation and an uncertainty analysis

remain outstanding issues, which could possibly be assessed in a larger study framework.

Furthermore, for examining the relation between ENSO and agricultural droughts over Africa,

additional influencing factors should be considered. Here, multiple regression analyses and

testing for non-linear relations are suggested in order to quantify the connection between

ENSO and rainfall deficits.

As a strength of this work, the applicability of drought indices SPI and VCI for monitoring

agricultural droughts on a continental scale was proven. Hereby, the usage of remote sensing

data as a basis for rainfall- and vegetation-related drought detection accounted for consistent

and comprehensive information on the dynamics of drought patterns during the average grow-

ing seasons of 2000-2016. Feasible and coherent results were revealed on a both spatial and

temporal scale, showing a general agreement with recorded data and findings from related

previous works. Furthermore, the usage of two different drought indices illuminated both

rainfall as the main trigger and vegetation as a land surface response to drought. Therefore,

agricultural droughts could be assessed from two complementary perspectives.

Moreover, the complex relation between agricultural droughts in Africa and ENSO could be

illuminated in its fundamentals. For significantly correlated areas, the directions and strengths

of correlation are in general accordance with previous studies. It was shown that droughts

stand in relation to ENSO dynamics over certain regions of Africa. The findings and informa-

tion drawn from this analyses can contribute to a better understanding of drought occurrence

in connection to ENSO on the African continent. Such knowledge is crucial and forms the

basis for implementing strategies of drought hazard mitigation. In particular, analyses of re-

mote sensing time series, as carried out in this work, provide a more continuous monitoring

of agricultural droughts on large scales and may contribute to improved drought prediction.

The forecast of future droughts depends on accurate retrospective monitoring and becomes

increasingly important for taking measures to reduce the impacts of severe droughts on soci-

ety. On this basis, precautions could be made by local authorities and timely humanitarian aid

can be given to drought-affected regions in case of extensive crop failures and food shortage.
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Chapter 7

Conclusion

In the course of this thesis, the spatio-temporal evolution of agricultural droughts over Africa

and their connection to ENSO events during the last 16 years were examined by apply-

ing two different drought indices. Based on remotely sensed rainfall anomalies (SPI) and

surface reflectance data related to vegetation condition (VCI), large-scale patterns of agricul-

tural droughts affecting the average growing season could be identified. Further, the relation

between drought indices and ENSO could be described in its fundamentals. The analysis

was based on a pixel-by-pixel cross-correlation between the time series of each drought index

and the ENSO index MEI. In doing so, the response times of agricultural droughts to ENSO

events were analysed.

In general, droughts are recurrent phenomena over most African regions. These were mon-

itored in terms of drought severity, expressed as the mean drought index, and the relative

duration of droughts during the average growing seasons per year. For eastern Africa, 2009

and 2011 could be revealed as major drought years, whereas southern Africa was affected

by particularly severe droughts in 2003 and 2015/16. Additionally, numerous regional-scale

droughts could be detected. The findings are in broad accordance with major recorded drought

events, either officially registered or revealed from previous related studies. The applicabil-

ity of SPI and VCI as indices for comprehensive drought monitoring on a continental scale

was proven in this work. Differences between the drought signals derived from each of the

used indices could be explained by the complex relationship between rainfall anomalies and

vegetation condition, which by itself is influenced by multiple environmental parameters.

Regarding the connection between droughts and ENSO, revealed correlation patterns exhibit

generally low to moderate relations between MEI and drought indicators over Africa. Hereby,

a tendency of droughts during El Niño could be deduced from the observed negative correl-

ation coefficients over large parts of southern Africa. A meridional dipole pattern between

extensive, negatively correlated southern areas and a smaller, positively correlated northern

part was identified over the region. Here, the effect of ENSO on vegetation condition could

mainly be explained through the influence of rainfall. In contrast, eastern Africa exhibits a

correlation pattern with an indicated east-west dipole: Zones with bimodal annual rainfall

cycles over eastern Kenya, southern Ethiopia and Somalia tend to respond with droughts
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to La Niña events, whereas drought tendencies during the onset of El Niño were revealed

for areas with unimodal rainfall cycles in central Ethiopia, Rwanda and Uganda. In both

southern and eastern Africa, major deviations between rainfall-related and vegetation-based

responses to ENSO are controlled by climate and dominant vegetation cover.

By studying drought patterns for each of the major ENSO events from 2000 to 2016, it could

be concluded that every El Niño and La Niña episode shows its distinct signal of rainfall-

and vegetation-related droughts. All in all, no universal spatio-temporal drought response to

a certain ENSO phase could be derived. In this regard, the effect of different ENSO variants

(modoki and canonical events) as well as the influence of multi-year cycles with either El

Niño or La Niña dominance were discussed as possible explanations for the differing drought

responses.

The impact of the selected drought years 2002/03 (El Niño) and 2010/11 (La Niña) on agri-

culture was analysed by comparing the index-based duration of droughts and the extent of

drought-affected cropland with national statistics of annual crop production in the corres-

ponding focal regions. Thereby, the 2002/03 droughts were related to southern Africa, whereas

impacts of the 2010/11 droughts were shown for eastern Africa. Decreases in production num-

bers of major crop types could be linked to the effect of agricultural droughts for some of the

major drought-affected countries. However, crop production is also regulated by political and

socio-economic factors, which limits the direct comparison of observed regional-scale drought

severity with national statistical data.

To overcome the limitations of the underlying methodology, the incorporation of more accur-

ate cropland data as well as enhancements of the correlation analysis in terms of statistical

validity and a separate assessment of El Niño and La Niña periods form subjects of fur-

ther investigation. Moreover, a comprehensive validation and the assessment of uncertainty

would be required for derivative works in a larger framework. Studying the relation between

rainfall-based SPI and vegetation-related VCI over Africa could provide a better understand-

ing of land surface responses to rainfall deficits, which in turn influences the evolution of

agricultural droughts. For accurately describing the relation between ENSO and droughts, a

multiple regression analysis in consideration of additional variables and tests for non-linearity

are proposed.

All in all, a comprehensive insight into spatio-temporal drought dynamics was gained through

this thesis. The usage of remotely sensed input data for drought indices SPI and VCI provided

a complementary perspective on agricultural droughts based on both rainfall and vegetation

condition. Above all, the complex relationship between ENSO and drought evolution over

Africa could be illustrated in its fundamentals. This is regarded essential for better under-

standing the interconnections between global climate oscillations and rainfall anomalies over

Africa, illuminating dependencies of agricultural droughts. Here, the opportunities of drought

monitoring provided by advanced remote sensing techniques and the increased availability of

earth observation data will likely continue contributing to establish a solid knowledge base

related to droughts. Altogether, this lays the foundation for decision making and capacity

building to mitigate the effects of severe droughts and adapt to existent drought hazards.
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Appendix

Figure 1: Location of selected points in focal regions for analysing SPI dynamics (see Figure 2)
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Appendix

Table 1: Overview of used IDL, Python and R scripts

Code File name Short description

CC-01 cellstats mmean fromVRT.py Arcpy script to calculate monthly means from 8-daily
composites in VRT format, output in tiff (requires
Python 2.7 with ArcGIS)

CC-02 cropmask to MODIS res extent.pro Extracts values from coarse cropland images and writes it
to a given 500m-MODIS container – Fitting of crop mask
to MODIS resolution (needed for CC-2)

CC-1 correl spi enso.pro Runs cross-correlation between SPI and ENSO index
with significance test for different time lags – output:
correlation values and significance masks for each time lag

CC-2 correl vci enso.pro Runs cross-correlation between VCI and ENSO index
with significance test for different time lags – considers
agricultural areas: exclusion of non-crop-pixels using a
binary crop mask image - correlation values and
significance masks for each time lag

CC-3 find lag with corr max.py Loads correlation images and binary significance masks
for different time lags, stacks images, retrieves maximum
correlation value and corresponding lag (Python 3.5)

DD-0 seas masks from SOS-EOS.pro Creates monthly and 8-daily composite (DOY) growing
season masks from Start-of-Season and End-of-Season
images, (TIMESAT time steps)

DD-1 droughtstats from SPI per gs.pro SPI-based drought detection: Mean SPI and relative
drought duration (threshold-based) per growing season

DD-2 droughtstats from VCI per gs.pro VCI-based drought detection: Mean VCI and relative
drought duration (threshold-based) per growing season

PH-1 calculate NDVI Median ts.pro Calculates multi-year median per DOY (composite) from
NDVI time series (Input for TIMESAT processing)

PR-1 reproject rasters.py Reproject raster files in tiff format to specified (e.g.
MODIS) projection

PR-2 TRMM to MOD res extent.pro Extracts values from coarse TRMM images, writes it to a
given 500m-MODIS container – fitting of TRMM data to
MODIS resolution

SPI-0 nc to tif.R Converts TRMM rainfall images from netCDF to
GeoTIFF format

SPI-1 trmm calculate SPI.R Calculates SPI for specified level of monthly aggregation
– based on rainfall images

TR-1 Find lag ts MEI-SPI.py Calculates temporal offset between ENSO peak and
minimum drought index time series - for SPI (Python
3.5)

TR-2 Find lag ts MEI-VCI.py Calculates temporal offset between ENSO peak and
minimum drought index time series - for VCI, loop
through folders with tile numbers (Python 3.5)

VCI-0 mod09a1 calculate NDVI VCI.pro Loads time series of MOD09A1 raw data - calculates
NDVI from band 1 and 2 - calculates VCI from NDVI
time series – output: NDVI and VCI images
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Appendix

Figure 2: SPI dynamics for selected points (see Figure 1) during 2000-2016: Orange to red colours represent
drought conditions. Transitions from meteorological (SPI scale of 1-2 months) to agricultural (3-6
months) and hydrological drought (6-12 months) are visualized.
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Table 2: National statistics of crop production (in tonnes) from 2000 to 2013 (FAO, 2016b)

Botswana

Crop types 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Cereals 24,776 23,080 34,674 35,930 26,668 36,841 43,532 31,312 36,782 54,430 50,345 74,024 37,457 19,366
Fibre crops 900 1,191 770 693 732 783 664 499 590 450 400 300 300 300
Fruit 10,600 10,659 11,316 12,200 11,850 11,795 12,130 7,980 7,850 6,000 5,920 6,600 7,100 7,126
Oilcrops 2,518 3,040 3,003 3,249 3,086 3,269 2,808 1,327 3,917 1,313 2,702 6,837 2,614 958
Pulses 17,500 19,800 21,000 24,000 25,000 15,000 7,000 805 2,305 4,313 3,873 4,700 2,285 3,655
Roots & tubers 85,000 92,000 93,000 84,613 101,484 99,714 93,500 94,000 90,000 83,175 92,934 97,037 99,000 99,500
Treenuts - - - - - - - - - - - - - -
Vegetables 16,950 17,873 17,291 16,898 16,708 16,637 23,448 30,501 31,704 25,821 39,834 40,164 40,680 40,316

Ethiopia

Crop types 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Cereals 8,019,830 9,585,753 9,000,335 9,532,780 10,140,082 12,749,986 12,672,350 12,235,743 13,259,750 15,534,229 17,761,202 18,809,963 19,651,152 21,575,457
Fibre crops 34,450 32,153 41,243 41,072 41,954 43,563 68,215 62,778 56,064 47,987 36,763 41,615 44,215 52,215
Fruit 382,902 351,328 405,470 429,204 460,943 648,638 697,125 740,538 554,781 642,747 680,543 729,234 672,293 671,638
Oilcrops 66,544 84,918 79,941 105,281 118,117 193,119 183,719 188,033 234,142 247,490 251,924 280,115 279,752 271,165
Pulses 996,051 1,159,794 1,085,221 982,990 1,248,465 1,340,884 1,373,951 1,572,816 1,774,338 1,890,842 1,965,761 2,268,383 2,690,165 2,784,100
Roots & tubers 4,713,277 4,978,778 5,073,421 5,524,423 5,664,210 5,721,405 5,943,760 6,290,408 5,656,357 6,011,286 6,223,422 6,275,069 8,366,131 8,961,256
Treenuts 70,000 75,000 72,000 74,000 69,057 76,000 54,842 65,314 72,004 55,968 53,051 63,194 64,500 64,500
Vegetables 846,818 869,602 968,162 1,009,846 1,210,771 1,334,739 1,213,954 1,090,966 1,390,755 1,669,699 1,802,667 1,787,208 1,929,685 1,889,500

Eritrea

Crop types 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Cereals 124,549 219,052 54,530 105,944 108,798 335,563 377,202 461,996 105,788 226,899 243,594 258,135 275,000 265,000
Fibre crops - - - - - - - - - - - - - -
Fruit 3,800 4,000 4,500 4,757 5,059 4,770 5,000 4,953 4,946 5,323 5,389 5,296 5,000 5,000
Oilcrops 5,129 6,850 4,709 8,490 6,008 12,170 6,628 10,502 4,666 5,107 4,455 4,175 4,554 4,657
Pulses 34,172 46,005 41,172 34,763 38,752 40,423 34,992 30,362 23,896 37,654 37,786 41,559 42,505 42,590
Roots & tubers 131,431 107,415 94,246 105,850 112,196 90,867 114,674 73,169 76,798 79,546 65,150 64,075 62,150 63,150
Treenuts - - - - - - - - - - - - - -
Vegetables 27,000 27,191 25,000 29,700 27,000 30,000 37,576 41,545 40,051 47,833 55,774 52,491 55,000 48,552
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Kenya

Crop types 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Cereals 2,591,351 3,370,458 3,045,518 3,351,497 3,199,022 3,585,080 3,937,106 3,614,399 2,866,388 2,898,900 4,347,437 4,058,581 4,711,585 4,536,942
Fibre crops 23,237 25,175 30,044 31,091 31,646 32,449 33,817 33,071 27,101 23,978 27,862 34,804 31,711 32,200
Fruit 2,179,528 2,357,350 2,326,383 2,044,302 2,280,182 2,474,509 2,451,047 2,540,497 3,107,383 3,147,769 3,174,964 2,549,110 2,773,388 2,857,395
Oilcrops 40,409 46,396 36,528 36,812 41,056 40,335 41,706 45,266 42,179 40,782 36,731 41,512 48,282 62,132
Pulses 478,308 482,126 671,477 607,503 440,277 530,415 746,609 625,782 416,568 592,527 593,933 773,863 935,880 1,046,534
Roots & tubers 1,642,847 2,338,545 1,995,532 2,264,167 2,327,674 3,683,690 3,827,206 3,424,471 4,573,668 4,176,330 3,896,594 3,831,494 4,734,181 3,889,688
Treenuts 24,147 24,224 23,868 23,144 24,332 24,424 24,349 29,002 36,000 37,683 37,438 44,596 53,026 54,200
Vegetables 1,557,563 1,675,351 1,634,299 1,841,360 1,508,727 1,947,891 1,956,475 2,178,985 1,839,275 1,971,548 2,527,284 1,961,057 2,105,983 2,389,880

Malawi

Crop types 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Cereals 2,631,034 1,865,675 1,710,577 2,143,179 1,717,993 1,302,379 2,786,281 3,440,138 2,845,840 3,807,971 3,610,283 3,924,971 3,832,659 3,892,310
Fibre crops 9,790 9,999 10,107 10,306 14,762 14,124 16,128 18,132 20,633 19,101 8,019 14,137 65,137 42,538
Fruit 755,498 763,835 822,279 878,539 936,099 941,724 985,563 1,004,507 1,027,749 1,062,614 1,061,419 1,053,662 1,089,243 1,115,867
Oilcrops 42,041 52,350 53,699 70,699 62,241 56,235 79,774 100,778 95,168 109,500 109,839 121,667 160,629 156,554
Pulses 250,485 332,170 316,906 360,486 284,915 251,225 364,128 408,085 387,139 442,287 444,393 542,879 563,618 621,613
Roots & tubers 4,832,199 6,214,736 2,944,299 3,619,559 4,715,032 3,683,860 5,141,920 6,098,087 6,485,354 7,251,499 7,674,874 7,872,928 8,844,743 9,349,991
Treenuts 1,900 2,100 2,300 2,500 2,700 2,800 2,850 3,394 3,742 2,909 2,757 3,284 3,284 3,294
Vegetables 275,150 285,227 297,272 312,963 321,472 329,254 336,697 342,860 264,700 311,662 364,479 378,780 388,200 396,620

Mozambique

Crop types 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Cereals 1,587,548 1,507,208 1,361,336 1,512,504 1,327,853 1,143,200 1,751,507 1,889,656 2,216,414 2,239,000 2,802,582 1,587,548 1,507,208 1,361,336
Fibre crops 15,501 39,541 45,000 31,090 50,118 42,455 57,107 58,900 66,050 66,500 23,360 15,501 39,541 45,000
Fruit 290,768 311,428 337,299 347,500 359,238 390,486 446,409 485,404 529,444 582,982 647,344 290,768 311,428 337,299
Oilcrops 123,868 129,943 112,670 106,769 117,182 140,071 124,341 139,259 139,345 142,591 157,517 123,868 129,943 112,670
Pulses 100,000 105,000 255,500 278,600 302,000 289,500 390,400 418,500 381,100 380,000 415,000 100,000 105,000 255,500
Roots & tubers 5,877,974 6,520,416 6,475,524 7,131,717 7,421,895 5,386,816 6,257,338 5,928,990 5,084,546 6,723,500 10,845,192 5,877,974 6,520,416 6,475,524
Treenuts 57,894 58,000 50,177 63,818 42,988 104,337 62,821 74,395 85,000 64,000 96,558 57,894 58,000 50,177
Vegetables 115,282 131,310 146,529 192,628 225,354 250,598 310,749 343,328 373,798 405,729 449,650 115,282 131,310 146,529
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Namibia

Crop types 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Cereals 120,979 106,919 99,949 97,380 127,535 129,138 182,684 116,183 112,580 111,738 136,500 117,000 165,800 87,000
Fibre crops 1,947 1,265 559 509 3,123 33 78 2 - - - - - -
Fruit 16,413 19,718 24,871 26,543 30,879 35,607 42,140 42,416 39,834 33,342 42,225 43,772 45,872 46,922
Oilcrops 716 577 284 302 1,115 59 86 163 172 194 189 153 172 159
Pulses 13,010 15,146 9,287 15,040 16,060 15,718 17,100 17,626 18,063 21,088 19,130 18,947 19,620 18,610
Roots & tubers 256,000 272,000 288,000 299,000 309,202 320,201 323,769 338,822 341,233 327,136 342,500 357,569 351,500 363,000
Treenuts - - - - - - - - - - - - - -
Vegetables 23,214 26,332 29,272 32,065 32,108 35,644 43,029 54,172 56,158 55,734 60,000 59,927 63,655 66,614

Somalia

Crop types 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Cereals 392,408 429,062 441,871 402,751 366,470 361,182 266,815 196,970 192,634 229,641 356,007 118,913 385,345 383,243
Fibre crops 1,697 1,680 1,764 1,764 1,792 1,848 1,848 1,848 1,848 1,904 1,904 1,904 1,960 1,960
Fruit 194,100 194,383 200,073 202,090 208,350 199,989 216,766 216,031 212,938 226,810 229,975 223,317 218,800 218,800
Oilcrops 12,507 14,894 15,637 16,373 21,874 26,906 25,619 25,324 27,052 31,257 32,148 32,200 38,802 43,127
Pulses 15,000 16,500 14,995 17,500 18,500 20,301 18,000 18,482 16,565 20,972 21,301 25,778 27,000 25,000
Roots & tubers 75,500 81,500 87,133 82,286 93,762 101,479 89,000 80,371 86,181 91,200 87,974 95,331 98,000 98,000
Treenuts - - - - - - - - - - - - - -
Vegetables 76,583 79,545 103,951 88,740 89,100 92,937 83,000 91,846 86,866 98,428 114,422 110,466 112,500 113,891

South Africa

Crop types 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Cereals 14,527,340 10,702,651 13,044,712 11,816,396 12,024,567 14,178,936 9,443,591 9,506,948 15,338,396 14,576,685 14,699,306 12,918,562 14,266,240 14,872,900
Fibre crops 33,253 42,046 23,181 21,031 32,636 22,046 18,813 14,176 13,406 11,873 11,717 22,628 17,610 11,760
Fruit 5,111,405 5,111,422 5,444,040 5,863,420 5,740,129 5,719,016 5,868,886 6,022,571 6,321,493 6,012,953 5,947,691 6,131,595 6,299,879 6,420,778
Oilcrops 312,710 406,213 502,269 348,559 364,610 348,835 334,609 200,066 454,849 474,800 351,530 532,833 432,802 434,101
Pulses 108,160 129,950 80,197 78,498 90,862 91,073 88,419 57,226 83,078 94,487 73,655 63,430 71,595 72,400
Roots & tubers 1,773,053 1,849,210 1,699,377 1,546,129 1,854,420 1,822,070 1,909,850 2,022,989 2,092,496 1,929,602 2,155,994 2,251,175 2,306,073 2,308,000
Treenuts 9,500 10,000 11,500 12,000 13,000 13,500 14,000 14,500 15,985 15,994 16,500 18,000 18,000 18,875
Vegetables 2,108,321 2,216,590 2,156,648 2,279,217 2,243,930 2,236,980 2,006,180 2,162,632 2,453,977 2,363,353 2,619,790 2,607,461 2,746,823 2,764,661
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(Former) Sudan & South Sudan

Crop types 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Cereals 3,259,000 5,339,000 3,714,000 6,372,748 3,516,000 6,193,000 5,806,000 6,691,000 5,269,000 5,552,195 3,562,350 5,598,000 3,026,000 5,947,000
Fibre crops 53,280 78,350 62,120 68,350 85,090 111,189 92,550 88,558 40,650 62,368 19,200 19,200 55,616 26,675
Fruit 1,287,863 1,373,800 1,575,235 1,972,169 2,336,134 2,461,647 2,746,211 2,456,663 2,529,735 2,693,450 2,813,296 2,896,263 2,935,500 2,959,375
Oilcrops 453,200 487,577 520,005 447,350 469,306 342,718 404,352 349,882 432,528 561,686 379,011 605,270 479,350 836,820
Pulses 253,000 240,000 276,000 269,000 278,000 220,270 278,961 287,294 327,900 249,700 289,982 319,721 295,994 338,354
Roots & tubers 530,374 463,706 556,583 605,400 645,309 710,600 621,600 550,369 589,761 679,391 709,615 760,759 882,360 906,217
Treenuts - - - - - - - - - - - - - -
Vegetables 2,117,550 2,310,430 2,569,495 2,981,019 3,325,362 3,251,742 3,237,179 2,989,694 3,045,034 3,037,104 3,017,720 3,090,966 2,999,026 3,110,652

Swaziland

Crop types 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Cereals 113,794 83,279 68,248 69,896 68,699 75,210 67,730 26,907 60,838 57,905 85,610 76,444 83,084 120,696
Fibre crops 3,700 3,000 1,900 600 1,600 1,560 480 360 350 370 590 590 558 558
Fruit 102,243 105,612 116,796 118,754 123,457 109,312 107,820 108,714 111,236 111,163 120,655 125,988 130,580 128,849
Oilcrops 2,417 2,190 1,900 1,425 1,803 1,785 1,387 1,016 1,157 1,214 1,299 1,006 1,036 1,046
Pulses 3,316 3,295 2,655 3,090 3,456 2,870 2,900 2,830 2,945 3,174 3,250 2,868 3,100 3,210
Roots & tubers 53,302 54,151 54,436 50,852 57,052 56,300 54,300 57,554 60,828 63,600 64,800 66,933 69,300 70,600
Treenuts 1,604 1,700 700 500 480 561 750 874 964 964 1,012 1,205 1,250 1,151
Vegetables 10,700 11,117 10,970 10,651 10,919 10,995 9,799 10,680 11,627 11,850 12,450 12,600 13,000 12,882

Zimbabwe

Crop types 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Cereals 2,519,351 1,845,767 908,945 1,329,204 2,168,785 1,256,756 1,948,186 1,273,152 691,669 882,956 1,405,124 1,698,627 1,160,450 998,450
Fibre crops 129,630 130,108 74,623 86,608 101,695 76,817 74,150 82,729 119,660 81,700 91,995 92,298 107,500 97,500
Fruit 230,934 222,481 246,141 261,056 262,801 237,299 257,826 253,579 252,643 220,915 242,820 246,457 254,916 254,916
Oilcrops 124,633 131,907 77,779 90,292 79,221 54,358 69,200 96,068 90,028 72,807 79,336 77,431 84,370 69,810
Pulses 52,350 53,441 58,245 61,268 59,913 24,732 34,114 34,134 31,089 38,951 26,257 30,958 33,250 33,250
Roots & tubers 209,902 216,984 213,020 222,992 238,963 252,623 261,275 243,426 259,948 270,034 265,625 281,480 286,200 291,200
Treenuts 947 1,250 1,399 1,550 1,855 2,166 1,966 2,340 2,580 3,068 4,064 5,076 6,080 7,080
Vegetables 149,008 161,640 160,795 180,711 187,109 174,426 216,174 200,227 144,477 181,832 208,452 208,230 230,790 230,790
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Appendix

Table 3: Regions with highest drought severity (based on relative duration of droughts) in eastern Africa
during 2010/11

Regions with highest drought severity in eastern Africa 2010/11

SPI-3-based VCI-based

Region Drought severity [%] Region Drought severity [%]

Marsabit (KE) 63.1 Isiolo (KE) 65.4

Wajir (KE) 63.0 Marsabit (KE) 63.6

Isiolo (KE) 60.7 Shabeellaha Dhexe (SO) 59.7

Kampala (UG) 55.3 Samburu (KE) 53.9

Garissa (KE) 53.8 Shabeellaha Hoose (SO) 53.3

Nakasongola (UG) 53.7 Al Qadarif (SD) 53.1

Nebbi (UG) 52.7 Wajir (KE) 53.0

Gedo (SO) 52.1 Turkana (KE) 52.1

Wakiso (UG) 49.7 Banaadir (SO) 51.2

Hoima (UG) 49.0 Gash Barka (ER) 51.0

Apac (UG) 48.8 Al Jazirah (SD) 48.8

Tana River (KE) 48.5 Bay (SO) 47.9

Mandera (KE) 47.2 Jubbada Dhexe (SO) 46.7

Jubbada Dhexe (SO) 47.1 Arusha (TA) 46.6

Eastern Equatoria (SS) 46.8 Jubbada Hoose (SO) 45.7

Samburu (KE) 46.7 Afar (ET) 45.3

Bay (SO) 46.3 Gedo (SO) 45.3

Kitui (KE) 45.7 Dire Dawa (ET) 44.0

Sennar (SD) 45.7 Garissa (KE) 43.9

Luwero (UG) 44.3 Mandera (KE) 42.1

Table 4: Regions with highest drought severity (based on relative duration of droughts) in southern Africa
during 2002/03

Regions with highest drought severity in southern Africa 2002/03

SPI-3-based VCI-based

Region Drought severity [%] Region Drought severity [%]

Lubombo (SZ) 64.6 Hardap (NA) 90.7

Shiselweni (SZ) 59.1 Kgalagadi (BW) 84.0

Manzini (SW) 56.6 Ghanzi (BW) 79.9

Hhohho (SZ) 53.8 Khomas (NA) 75.3

Quthing (LS) 49.3 Omaheke (NA) 75.0

Sowa (BW) 44.2 Francistown (BW) 74.4

Selibe Phikwe (BW) 43.7 North-West (BW) 73.0

Gauteng (ZA) 43.0 Sowa (BW) 72.7

North-East (BW) 43.0 Kweneng (BW) 71.7

Mpumalanga (ZA) 42.2 Northern Cape (ZA) 69.6

Limpopo (ZA) 41.4 Kgatleng (BW) 69.4

Hardap (NA) 40.9 Otjozondjupa (NA) 68.7

Khomas (NA) 39.3 North-East (BW) 66.2

Kgatleng (BW) 38.5 Omusati (NA) 62.0

Bulawayo (ZW) 36.2 Kunene (NA) 61.8

North-West (BW) 35.9 Gaborone (BW) 61.0

Francistown (BW) 35.8 Oshana (NA) 59.3

Northern Cape (ZA) 33.6 Kavango (NA) 54.6

Matabeleland South (ZW) 33.3 Selibe Phikwe (BW) 54.1

BW = Botswana, ER = Eritrea, ET = Ethiopia, KE = Kenya, LS = Lesotho, NA = Namibia, SD = Sudan,

SO = Somalia, SS = South Sudan, SZ = Swaziland, TA = Tanzania, UG = Uganda, ZA = South Africa, ZW = Zimbabwe
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