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Abstract

As an unavoidable factor of the aeroacoustic study in the open-jet wind tunnel,
the free shear layer induced by the nozzle performs significant effects on the sound
propagation. These effects include the direction alteration and the amplitude reduc-
tion (caused by the mean flow gradient and the turbulence), as well as the spectral
redistribution (caused by the turbulence) of the original incident sound wave. To
eliminate the misunderstandings and incorrect conclusions drawn from the measure-
ment data in the open-jet wind tunnel, a reliable correction method for the shear
layer effects is necessary. The thesis focuses on the numerical investigation of the
free shear layer effects under various situations: the variation in the shear layer
thickness, in the shear layer shape, in the flow speed, in the source frequency and
in the flow type (averaged mean flow including non parallel flow effects or turbulent
flow). In this way, a systematical and detailed analysis of the free shear layer effects
is provided with the evaluation of the state of the art correction method (Amiet’s
approach).

Using a hybrid Computational AeroAcoustics method, the mean flow gradient
effects and the turbulence effects were treated separately to study their influences
on both two-dimensional and three-dimensional sound propagation. The numerical
results indicated a slight influence from the shear layer thickness and the source
frequency in the 2D averaged shear flow, whereas the accuracy of the correction
method can be improved by applying a modified model in the curved shear flow. In
the 3D averaged planar shear flow, the correction method showed a good agreement
with the numerical results. A ’dangerous area’ was identified in the 3D rectangularly
shaped shear flow, where the correction method failed to handle the shear layer ef-
fects appropriately. Moreover, the spectral broadening effects due to the turbulence
was observed in both 2D and 3D as expected. The results indicated a stronger am-
plitude reduction with increasing source frequency, flow speed as well as the shear
layer thickness.

These results offer insights into the variation of the shear layer effects with each
parameter. The correction method (Amiet’s approach) is proven to be efficient in
2D and specific 3D (source-observer plane perpendicular to the shear layer) situa-
tions. The error due to the shear layer shape in 3D can be avoided by locating the
microphones outside the aforementioned ’dangerous area’. The position of such a
’dangerous area’ is found to be related to the size of the nozzle geometry. Moreover,
primary studies of the turbulent shear layer effects illustrate severe spectral broad-
ening and amplitude reduction (at the tone frequency) as the source frequency, the
flow speed, the shear layer thickness increases.





Zusammenfassung

Unvermeidbar bei akustischen Untersuchungen in einem Windkanal mit offener
Messstecke ist die signifikante Veränderung der Schallausbreitung beim Durchgang
durch die freie Scherschicht. Die Effekte sind Richtungsänderungen und Amplitu-
denänderungen der Schallwellen (verursacht durch die mittleren Strömungsgradien-
ten und zu einem kleinen Teil durch die Turbulenz), sowie die spektrale Umverteilung
(verursacht durch die Turbulenz) der ursprünglich einfallenden Schallwelle. Um die
Messdaten aus offenen Messstreckken richtig interpretieren zu können, ist ein zuver-
lässiges Korrekturverfahren nötig zur Kompensation der Scherschichteffekte. Diese
Arbeit konzentriert sich auf die numerische Untersuchung Effekte der freien Sch-
erschicht auf den Schalldurchgang. Folgende Parameter wurden dabei betrachtet:
Scherschichtdicke, Scherschichtform, Strömungsgeschwindigkeit, Quellfrequenz, sta-
tionäre und turbulente Strömung. Auf diese Weise wird eine systematische und
detaillierte Analyse der Effekte der freien Scherschicht auf die Akustik möglich. Die
Ergebnisse werden mit der Korrekturmethode von Amiet verglichen, welche zur Zeit
der Stand der Technik ist.

Genutzt wurde ein hybrides ’Computational Aeroacoustics’-Verfahren bei dem
die Effekte durch mittlere Strömungsgradienten separat von den Effekten durch
zeitaufgelöste Turbulenz betrachtet werden kann. Untersucht wurden sowohl zwei-
als auch dreidimensionale Schallausbreitung. Es stellt sich heraus, dass sowohl die
Grenzschichtdicke als auch die Quellfrequenz bei 2D stationärer Strömung nur einen
geringen Einfluss auf die notwendige Korrektur haben. Jedoch kann die Berücksich-
tigung der Krümmung der Scherschicht die Korrektur verbessern. Bei einer drei-
dimensionalen quasi 2D Scherschicht stimmt die Korrekturmethode gut mit den
numerischen Ergibnissen. Eine rechtwinklige Düsenscherschicht lässt die Korrek-
turmethode in lateralen Bereichen sogar vollständig versagen (Kritischer Bereich).
Bei Untersuchungen des Einflusses der zeitaufgelösten Grenzschichtturbulenz ist
sowohl in 2D, als auch in 3D ein Umverteilung der Schallenergie in zum Ton be-
nachbarte Frequenzbänder beobachtet worden (’Spectral Broadening’), sowie eine
zeitgleiche Reduktion des Tonschallpegels. Die Amplitudenreduktion steigt mit
zunehmender Quellfrequenz, Strömungsgeschwindigkeit und Scherschichtdicke.

Die erzeugten Ergebnisse bieten Einblicke auf den Einfluss der Scherschicht auf
Schalldurchgang abhängig von unterschiedlichen Scherschichtparametern. Die Kor-
rekturmethode nach Amiet hat sich für 2D Probleme und für den Schalldurchgang in
der Mittelebene in 3D bewährt. Messfehler bei rechtwinkligen Scherschichten können
vermieden werden durch Meidung von stark lateralen Messpositionen. Die Lage des
âkritische Bereichsâ ist abhängig von den Abmessungen der Düse. Erste Ergebnisse
des Einflusses der instationären Turbulenz zeigen eine starke spektrale Aufweitung
(’spectral broadening’) bei gleichzeitiger Tonamplitudenreduktion. Der Einfluss
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wird stärker mit steigender Quellfrequenz, steigender Strömungsgeschwindigkeit und
dickerer Scherschicht.
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Chapter 1

Introduction

1.1 Background

Aeroacoustics is a relatively young subject in the branch of the aerodynamics. It
met its golden age in the early 1950s, since Lighthill published his famous Lighthill’s
analogy [M. J. Lighthill 1952, M. J. Lighthill 1954]. So-called Lighthill’s analogy is
a rearrangement of the Navier-Stokes equations into an inhomogeneous wave equa-
tion, so that all non-linear terms are shifted to the right hand side, which were
explained by Lighthill as the flow source terms. They consist of the changes in flow
velocity, entropy as well as the viscous friction stresses. Based on the assumption of
the source terms in Lighthill’s equation, it is possible to physically understand the
origin of free turbulence induced sound, then to further model them mathematically.

Beside the theoretical studies, experimental studies also play an important role
in the aeroacoustic research. Similar as the studies in the fluid dynamics, most of
the aeroacoustic experiments are usually operated in wind tunnels. Comparing with
full-scale flight test, it can provide valuable data for the development and validation
of aerodynamic design in more controllable manner and at a reduced cost. For
example, aeroacoustic wind tunnel tests can give the source and directivities of
the aircraft noise, which could be used in both validations of numerical methods
and foundations of noise reduction treatment. The aeroacoustic wind tunnel can
be generally classified into two types according to the form of its test section, i.e.
closed and open-jet test section wind tunnels. Both of them are commonly used
for aeroacoustic studies of a variety of flow-induced noise phenomena. The choice
of wind tunnels is usually relevant to the test purpose, model size as well as the
requirement of the flow parameters.

The open-jet test section wind tunnel (refer as open-jet wind tunnel in the fol-
lowing) consists of an anechoic chamber around the test section, which can provide
a near-anechoic environment without wall reflections that occur in a closed-jet wind
tunnel. Besides, this facility can significantly improve the signal-to-noise ratio at
the single microphone via measurement in the farfield out of the flow. This fea-
ture significantly reduces the contamination from the background noise caused by
the flow and its interaction with the supporting system. However, one essential
problem bothering acousticians is the free shear layer effects on the propagation of
sound waves through it in such an open-jet wind tunnel. The free shear layer is
formed due to the velocity gradient between the nozzle flow and the surrounding
quiescent media when the flow travels from the open jet through the test section.
Since the microphones are usually placed out of the jet flow in the farfield, the
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sound waves generated by the test object have to pass through the free shear layer
before reaching the microphones. The sound waves experience complex propagation
effects during the traveling through the free shear layer, including the significant
alteration in the direction, the amplitude as well as the frequency band. If the
corresponding farfield measurement data are used to trace back to determine the
originates and characteristics of the noise source, it can lead to deviations from the
actual situation and finally yield incorrect conclusions if the free shear layer effects
were ignored. Moreover, in the acoustic wind tunnel tests a typical requirement is
to distinguish discrepencies starting from 1 ∼ 1.5dB when assessing aeroacoustic
sources. It means that any systematic errors (e.g. caused by the shear layer) in the
measurement setup, which lead to exceeding this value may be critical.

Regarding the shear layer problem in the open-jet wind tunnel, it is quite nec-
essary to put forward a method to remove the effects from the measurement data.
Many researchers noticed the phenomena since the late 1970s and studied it in ex-
perimental or theoretical ways, which will be presented later in the literature review.
Based on these studies, several solutions were raised up to correct the deviations
caused by the shear layer effects. However, most of the solutions were derived
with some simplifications. An exhaustive understanding of the shear layer effects is
in shortage due to the limitations of the wind tunnel test itself on such a problem.
Such a gap could now be filled with the help of Computational AeroAcoustics (CAA)
methods after its rapid development in the past two decades, which is deemed as
the topic of this dissertation.

In the last two decades, a routine use of CAA was established and has undergone
spectacular progress in the research field. Various computational methods were
extensively developed and utilized to describe the aerodynamically generated noise
and the sound wave propagation in an inhomogeneous flow field. CAA was taken as
an efficient tool in aeroacoustic studies aiming at understanding the physics of noise
generation and propagation, as well as the noise prediction. Either hybrid CAA or
direct noise computation (DNC) has shown good performance in the aeroacoustic
studies. Considering its application in the current topic, CAA can both complement
the experimental work with the numerical database and provide an opportunity
to validate the state-of-the-art correction method under various situations. The
situations could vary in shear layer thickness, shear layer shape, flow speed and
source frequency etc. It is convenient to figure out the influence of the variation
of each parameter independently with CAA methods while excluding the possible
environmental effects occurring in the experiment. With the help of CAA methods
these shear layer effects will be intensively investigated in the current work.

1.2 Free shear layer effects in the open-jet test section
wind tunnel

It is known that the real shear flow is highly unsteady turbulent flow. When the
sound waves pass through it, their characteristic modifications are mainly caused
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by two factors. One is induced by the mean flow gradient while the other is caused
by the turbulence in the shear layer. Fig.1.1 illustrates the typical flow structure
in an open-jet wind tunnel and the test set-up for the measurement. The source is
positioned in the potential core of the open jet flow to minimize turbulence effect
of the jet flow, while microphones are usually placed out of flow in the anechoic
chamber where an approximate quiescent air could be guaranteed. The mean flow
profile indicated by the black vectors is obtained from the time-averaged horizontal
velocity. The time invariant turbulence is represented by the circular vortices. The
effects induced by these two parts are usually treated separately in the acoustical
study.

Figure 1.1: Sound transmission through a free jet shear layer

Considering firstly the influencess of the mean flow gradient alone, it generally
results in two phenomena: sound wave refraction and reflection. Due to the accom-
panying interaction of sound waves with a time-averaged shear flow, a portion of
the power of the incoming wave transmits through the shear layer but radiates in a
modified angle, named as refraction, indicated as solid arrows in Fig.1.1. The other
portion of the power is reflected back into the jet flow, named as reflection. The
strength of the refraction and reflection depends on the flow speed and the incident
angle of sound wave into the shear layer. These effects directly lead to the direction
and amplitude alteration of the original sound waves, which obviously affect the
accuracy of the measurement data outside the shear layer.

Considering the turbulence part in the shear layer, it expresses itself as fluctu-
ations of the properties in the shear flow. When sound waves pass through such
a medium, the interaction between the sound wave and the random fluctuating
medium results in a power loss in the sound wave magnitude and a modification
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(a) Uniform flow
(b) Turbulent shear flow (S.Candel et.al.
[S. Candel 1975])

Figure 1.2: Spectrum at a single measurement point in the uniform flow and turbu-
lent flow.

in the sound wave spectral content. The phenomenon is especially obvious if the
source is a tonal. Standing at a fixed microphone position out of flow, the perceived
signal owns a lower magnitude at the tone frequency compared with that in the
no-turbulence flow. This is due to the scattering of the original sound wave by the
turbulence, as indicated by the thin dashed arrows. Such a scattering is not only in
the magnitude but also in the frequency, which leads to a broadening of the spectrum
into neighboring bands of the tone frequency, as shown in Fig.1.2b. Comparing with
the spectrum at the same position in the uniform flow (refer to Fig.1.2a), Fig.1.2b
illustrates a broader spectral distribution as well as two humps aside the primary
tone frequency, whose corresponding frequencies are flow speed dependent. Such a
phenomenon is referred as spectral broadening or haystacking. Besides, the turbu-
lence could absorb partially the sound power from the primary source while generate
additional noise as an unexpected source. These effects will not be considered in the
current study since they are believed to play a less important role in the open-jet
wind tunnel tests[K. K. Ahuja 1978].

1.3 Literature review

The aforementioned classification of the shear layer effects are exactly extracted
from the previous researches on the subject. In this section, the previous studies
will be introduced according to this classification as well to give a clear view of the
development of corresponding researches.

1.3.1 Studies on the mean flow gradient effect in the free shear
layer

Several analytical and numerical methods have been developed to model the refrac-
tion and reflection of sound waves by the mean flow gradient through the shear
layer. Generally, the free shear layer was approximated with some simplified models
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in these work. In Miles [J. W. Miles 1957] and Ribner’s [H. S. Ribner 1957] work the
free shear layer was modelled as a zero-thickness interface (vortex sheet) between
two relatively moving media. Based on it, they established the relation between
the acoustical parameters of a plane incident wave, reflected wave and transmitted
wave. Although it is an idealized analysis, it provides a feasible way to interpret and
analyze the mean flow gradient effect in the free shear layer. Taking these analyses
and their shear layer model as the base, Gottlieb [P. Gottlieb 1960] derived the far-
field approximation of specified source types later. To further approach the realistic
mean flow gradient between two media, Graham and Graham [E. W. Graham 1969]
approximated the shear layer as two different models and numerically solved the
corresponding equation of the parallel sheared flow. One model contained two plane
zero-thickness interfaces with distance apart and a uniform flow inbetween. The
other was a finite thickness shear layer with a linear velocity profile. This work
provided some basic information on the shear layer thickness effect but was still
restricted to the plane sound wave. Noticing the requirement in the open-jet wind
tunnel for the shear layer correction for more general cases, Amiet posed an ap-
proach for the treatment of the planar shear layer refraction effect by combining
solution of Ribner[H. S. Ribner 1957] and Miles [J. W. Miles 1957] as well as ge-
ometrical acoustics [R. K. Amiet 1975], which is independent of the source type
and the source frequency. The method calibrated both the direction alteration and
the magnitude alteration of the sound wave propagation in a shear flow to that
in a uniform flow. Later the approach was extended by Amiet to applications for
both planar and cylindrical shear layers [R. K. Amiet 1978]. The only limitation
of the method was that the source should be on the jet centerline of the cylindri-
cal nozzle, which was overcome by Morfey and Joseph [C. L. Morfey 2001]. The
approach has been widely applied in the open-jet wind tunnel correction due to
its simplicity and applicability. Several experimental validations were conducted to
examine its reliability and accuracy for the cylindrical shear layer [A. Ozkul 1979]
[R. H. Schlinker 1980] [K. K. Ahuja 1981] and the planar shear layer [C. Bahr 2010]
[C. Bahr 2011]. Since the experimental validations are usually affected by other fac-
tors like the specifics of the employed source, the turbulence in the shear layer and
the background noise, many researchers sought for numerical methods to investigate
the efficiency of the correction approach [L. Koop 2005] [T. Padois 2013] by solving
Linearized Euler Equations (LEE). Additionally, accompanying the common appli-
cation of the method, some modifications were adopted to improve its accuracy in
specified open-jet wind tunnels [W. H. Herkes 1985] [Y. Wang 2015].

In addition to Amiet’s approach, some other methods were provided as well for
the correction of the mean flow gradient effect. During the same period as Amiet,
Tester and Burrin [B. J. Testerand R. H. Burrin 1974] conducted a theoretical study
on the refraction effect while considering the axial variation of the shear layer, of
which the results show qualitative agreement with the experimental data. For fur-
ther study of the shear layer effect, they suggested a more realistic mean flow model
in the theoretical study. Another approach was provided by Morfey and Tester
[B. J. Tester 1976] [C. L. Morfey 1977] for facility-to-flight corrections in the open-
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jet wind tunnel by numerically solving Lilley’s equation on an axisymmetric strati-
fied base flow. In their approach, the deviation brought by the finite thickness and
the spreading shape of the shear layer were examined and compared with geometric
acoustics approximation. However, the application of the approach in the wind tun-
nel tests was limited due to its complexity in the routine use. Another correction
procedure was given by Candel [S. M. Candel 1976] by implementing a first-order
numerical geometrical acoustics solution in a realistically modelled mean shear flow
based on measurements. By comparing with Amiet’s approach, it presented a quite
close agreement except at some extreme measurement angles [J. D. Belleval 1976].

1.3.2 Studies on the turbulence effect in the free shear layer

As another important factor of the free shear layer effects, the turbulence scattering
effect was extensively studied in the theoretical way at the very beginning. Sev-
eral approximation schemes were given to roughly estimate its influences on the
wave propagation. The primary studies were carried out using a frozen turbulence
and the single scattering (Born approximation) assumptions, as done by Lighthill
[M. J. Lighthill 1953]. By using the frozen turbulence assumption, the turbulence
is regarded as inhomogeneities which only vary in space during the time of pas-
sage of an incident wave. The single scattering assumption, as its name implies, is
a reasonable approximation for the situation when incident wavelength is smaller
than the macro-scale of turbulence. Based on these assumptions Lighthill derived
an estimation of the energy scattered per unit time from unit volume of the turbu-
lence. In his deriviation, the mean flow was ignored, while the parameters from the
incident wave and the turbulence were included. He also predicted the directional
distribution of the scattered wave by considering a single scattering process as well
as an uniform (i.e. quite random) directional scattering with the consideration of a
multiple successive scattering. The latter one was more appropriate for the situation
when the incident wavelength is less than the macro-scale of the turbulence. The
frozen turbulence assumption taken by Lighthill simplified the theoretical analysis
since scattered waves were confined to be of the same frequency as incident waves.
As the source frequency increases, the traveling time of the sound wave in the tur-
bulence increases accordingly, in which the turbulence can not be considered ’frozen’
any more. Therefore, Howe [M. S. Howe 1973] examined a multiple scattering of in-
cident waves in a temporally evolving turbulence field without concerning the mean
flow. In the study he figured out the spectral broadening of the acoustic spectrum
by the temporally evolving field, which differs from the spatial scattering mentioned
earlier. This phenomenon was experimentally illustrated in the work by Candel et
al.[S. Candel 1975], followed by the analysis and comparison with the theoretical
study [S. M. Candel 1976] according to geometric acoustics. In their study a broad-
ening of the spectrum was observed at out-of-flow positions from a monochromatic
test source inside the open-jet flow potential core. The received signal out-of-flow
showed spectral broadening with two sidebands (see Fig.1.2b). It was found in their
study that the level and corresponding frequencies of these sidebands were relevant
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with the flow speed, the shear layer thickness as well as the source frequency. Similar
phenomena were observed in many experimental studies carried out subsequently for
the investigation of free shear layer effects [K. K. Ahuja 1978] [K. K. Ahuja 1981]
[A. Ozkul 1979] [R. H. Schlinker 1980] [J. C. Hardin 1981]. In the work by Ahuja
et al.[K. K. Ahuja 1978] [K. K. Ahuja 1981], they found that the turbulence scat-
tering becomes effective only when the ratio between the shear layer thickness and
the acoustic wavelength of discrete tones approaches a value of 10 and the signal
experiences a reduction in the magnitude at the tone frequency. Moreover, these ef-
fects became more significant as the flow speed increased. In Schlinker and Amiet’s
report [R. H. Schlinker 1980], beside the qualitative validation of the scattering con-
trolling parameters in the experiments they derived an estimation to predict the
onset of the turbulence scattering based on the scattered energy equation given by
Lighthill [M. J. Lighthill 1953]. The prediction lost its function at high frequencies
since it was derived from the single scattering assumption. They noted that the
spectral broadening is caused by the Doppler shift of incident wave, in which the
scattered volume shows a Doppler shift to lower frequencies downstream and higher
frequencies upstream of the cross-point of the incident wave with the shear layer.
In the work by Hardin et al.[J. C. Hardin 1981], they believed that the spectral
broadening was entirely relevant with the amplitude modulation of the signal by
the time-varying shear layer, and the frequency shift hypothesis is not necessary
for the explanation of the data. Some experimental work was also carried out by
Ross et al.[R. Ross 1981] [R. Ross 1983] in the German-Dutch wind tunnel (DNW),
who assessed the free shear layer effect using a 1/3-octave analysis. Their work
showed that the turbulence effect correction was only necessary in the case of high
velocity, high frequency and extreme microphone angles as long as the 1/3-octave
analysis was used. Guedel conducted a comparison work between experiments and
theoretical work, in which the latter one was deduced from single scattering models
[A. Guedel 1985]. His work provided some parametric information of acoustic mea-
surements in open-jet facilities as well as the limitation of the theoretical analysis.
The analysis based on the single scattering was proved to be sufficient for the case
when the parameter Mδ/λ is less than 1.5 (where M is the flow Mach number, δ is
the shear layer thickness and λ is the incident acoustic wavelength).

In the recent years, the scattering effect due to the turbulence attracted again
the attention due to the widely application of the open-jet facility as well as the
development of numerical methods, of which the latter enables to have a deeper
understanding of the mechanism of the scattering process. Apart from the experi-
mental work [P. Sijtsma 2014], which basically verified the phenomena observed in
Candel’s study, McAlpine et al. [A. McAlpine 2009] presented an analytical model
with a high-frequency weak-scattering approach for the spectral effect of the turbu-
lent shear layer. The double-humped spectrum in Candel’s test were qualitatively
reproduced by the model, while the quantitative differences were still present. The
CAA method was also adopted to study the spectral broadening effect of the turbu-
lent shear layer, as done by Ewert et al. [R. Ewert 2008]. In their work the turbulent
base-flow was modeled using a stochastic method, by which the general trends of
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the spectrum were well predicted when compared with Candel’s tests.

1.4 Objective and the approach

As one may notice from the above, most studies were carried out either experimen-
tally or theoretically and generally without showing the individual effects from the
two factors in the free shear layer. Although several correction methods have been
provided for the open-jet wind tunnel experiments, a systematical study of the prob-
lem and verification from the numerical field is lacking. Moreover, it is noted that
the shear layer shape may severely affect the accuracy of the correction method if
the microphone-source plane is not perpendicular to the shear layer while a laterally
variation of the microphone position. Such a situation was not seriously treated in
the past. The data corrected by the current methods may not achieve the expected
accuracy due to the simplifications and assumptions introduced in the derivative
procedure, which are to some degree not coincident with the real situation in the
wind tunnel tests.

Therefore, this thesis aims at deeply studying the free shear layer effects in the
open-jet wind tunnel with the help of CAA methods. The variation of several pa-
rameters, such as the shear layer thickness, the shear layer shape, the flow speed, the
turbulence as well as the primary source frequency, are considered. The numerical
results are subsequently compared with the correction method (Amiet’s approach).
By conducting such a strategy, a systematical and detailed understanding of the
free shear layer effects can be achieved, including the transmission characteristics of
the sound wave through the free shear layer as well as the quantitative influence of
each parameter. The efficiency of the correction method under each situation are
also provided. Additionally, the numerical results can be taken as complementary
part for the correction method to improve its accuracy, avoid misinterpretation of
the data and to potentially increase the range of measurement positions in the wind
tunnel.

The entire work is carried out with a hybrid Computational Aeroacoustics
method, in which the sound propagation is simulated by numerical acoustic methods
on a background flow obtained by solving RANS equations. The turbulence feature
is modeled with a 4D synthetic turbulence method, which enables us to separately
study the turbulent effect and the mean flow gradient effect in the free shear layer.

1.5 Outline of the thesis

Chapter 2 gives a general description of the correction method for the mean flow
gradient effects of the free shear layer derived by Amiet. The data obtained from
Amiet’s correction is taken as the theoretical value for the comparisons with numer-
ical results in the following chapter. The basic equations are presented, which are
necessary to describe features and important angles.

Chapter 3 addresses the numerical methods, including the methods of simulating
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sound propagation in a non-uniform flow and the model of the turbulence recon-
struction. A simple introduction of the sound source models applied in the study is
provided together with some acoustic properties used in the future analysis.

Chapter 4 includes the simulation results of the shear layer effects. The
mean flow gradient effect is investigated firstly following the sequence from two-
dimensional to three-dimensional, based on the analytical mean flow field with con-
stant thickness and the real wind tunnel flow field without turbulence. They are
followed by the study of 2D shear layer shape effect and the nozzle surface reflection
effect. Afterwards, the sound transmission through a 3D rectangular shear layer
are simulated and analyzed. Finally, turbulence part will be superposed into the
previous base flow to observe its scattering and spectral broadening effects on the
sound propagation.

Chapter 5 comprises the summary of the numerical results and corresponding
conclusions about the free shear layer effects. The possible research directions and
advises for further work are presented as well.





Chapter 2

Amiet’s approach

As mentioned earlier, many methods have been provided for handling the free shear
layer effects in the open-jet wind tunnel. Amongst these, the approach derived by
Amiet [R. K. Amiet 1975] has gained the most attention due to its generality and
easy-applicability. It provides an easy but efficient way to correct the effect intro-
duced by the mean flow gradient through the free shear layer, which can be applied
to any source type since it corrects the alteration of both the amplitude and the
propagation angle of the incident wave. The method is adopted also as the shear
layer correction method in DLR’s Aeroacoustic Wind tunnel Braunschweig(AWB),
of which the shear flow is the main study object of the current research. Considering
its frequent application in the experimental work in the AWB, the method is em-
ployed to offer the reference data as a theoretical solution for the comparison with
the numerical results. Conversely, the numerical results are used to verify the relia-
bility and the accuracy of the approach under various measurement situations. This
chapter presents an introduction of the correction model of Amiet’s approach and a
detailed exploration of the key parameters and features of the correction equations.

2.1 Introduction

Amiet’s approach is derived based on a transmission model by Ribner
[H. S. Ribner 1957] and Miles [J. W. Miles 1957] as well as geometric acoustics. The
transmission model established by Ribner and Miles provides a parametric relation
between the incident wave and the transmitted wave for the sound propagation
through an infinitely thin interface (vortex sheet) between two relatively moving
media. Geometric acoustics helps to build the sound intensity variation while prop-
agating in the uniform flow at both sides of the shear layer. Combining these two,
Amiet constructed a complete approach for the open-jet shear layer correction to
calibrate the mean flow gradient effect. The approach was firstly derived for a pla-
nar shear layer with the source and microphones located in the same perpendicular
plane to the shear layer. Later it was extended to a more general case in which
the microphone locations can vary spatially in 3D. Additionally, the solution was
added for the cylindrical shear layer with an on-axis source. The approach takes
into account both the amplitude and the angle corrections, which can be employed
for the general cases of an unknown source at any frequency.

In the current study, only the corrections for the planar shear layer by Amiet are
involved to treat the rectangularly shaped shear layer in the AWB. The information
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for the cylindrical shear layer can be found in Amiet’s paper [R. K. Amiet 1978] if
interested. Besides, the two-dimensional model is taken in this chapter as the model
for the introduction. A more general correction model is presented in the Appendix
A.

Several assumptions were introduced for simplification in the derivation. Firstly,
the shear layer is modelled as an infinitely thin interface (vortex sheet), which sig-
nificantly simplifies the derivation and makes it possible to derive a relation of the
acoustic perturbation across the shear layer from the specified boundary condition.
In their study, Ribner and Miles assumed continuity of displacement across the inter-
face, which is deemed reasonable in the physical study [L. M. B. C. Campos 1986].
In this way, the intensity variation of the incident sound wave due to the passage
through the shear layer can be determined. This simplification differs from the real
case where the free shear layer has a finite thickness varying axially as the flow goes
downstream. The possible deviation caused by such an assumption will be examined
numerically in the current study with a consideration of varying source frequency.
As in the classical studies, the flow field is assumed uniform at both sides of the
shear layer. The original derivation is obtained for the microphones in a stationary
medium, which indicates a zero flow speed at one side. This assumption can be easily
extended to a more general case, in which the flow speeds are non-zero at both sides
but differ from each other. The fluid density is assumed to be identical at both sides
of the shear layer. Both assumptions are reasonable and conform with the situation
for the most low Mach number open-jet wind tunnels. Since the method aims at
corrections for the mean flow gradient effect, the turbulence scattering is neglected.
This neglect does not meet the reality, but it is reasonable to separately study the
two factors in the free shear layer and present their contributions in the total effects
individually. Furthermore, the reflection of the sound wave by another shear layer
is neglected, although there are upper and lower shear layers in the open-jet wind
tunnel. This neglect is reasonable for the most general situation in the low speed
open jet wind tunnel since the reflected part by the free shear layer is of considerably
smaller amplitude than the transmitted part and will not interfere with the original
incident wave due to both the intensity dissipation and multiple reflections in the
jet flow.

Regarding the acoustic feature of the source, the observer/microphone is as-
sumed to be in both the geometrical and acoustic far-field of the source, which
means that the distance between the observer and the source is significantly greater
than both the source dimensions and the acoustic wavelength. And the reason for
this assumption is that only the far-field part of the source is considered and used
in the derivation.

2.2 Basic idea and the correction model

In this section, the basic idea of the derivation of the method is given with a two-
dimensional model, as shown in Fig.2.1. As aforementioned, the shear layer is
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simplified as an infinitely thin vortex sheet, which is illustrated by a zero-thickness
plane parallel to the flow direction at a distance h away from the source. Below the
shear layer the flow is uniform with the speed U0, which exerts a convective effect
on the wave propagation. This effect is expressed by spatially compressed sound
wave signals upstream and stretched sound wave signals downstream in the figure.
The phenomenon disappears above the shear layer, where the fluid is assumed to
be at rest. The observer/microphone is located at a distance yM from the source,
which is indicated by point M . The dashed line from the source to M forms an
angle θM with the shear layer, representing the measurement angle defined in the
wind tunnel test. The actual sound wave propagation path in the shear flow is
shown by the solid lines from the source to the point C further to M , where C is
the cross point with the shear layer. The sound wave follows the trace from C to
M rather than from C to A since it is refracted by the shear layer. The original
sound wave propagation direction makes an angle θ0 with the shear layer in the
uniform jet flow, which is defined as the radiation angle. After the passage through
the shear layer, the modified wave propagation direction forms an angle θt with the
shear layer, which is named as transmission angle. If the shear layer was absent,
the sound wave radiated from the source would follow the path from the source to
the point C further to point A, which means that the data received at point M in
a shear flow should be measured at point A in a uniform flow without shear layer.
A relation is established between the acoustic parameters at point M and point A
by Amiet. Once the data at the measurement location is known in the wind tunnel
tests, the corresponding corrected data in a uniform flow can be determined. Point
A is named as corrected position.

Figure 2.1: Correction model of Amiet’s approach

Based on the presented model, a reversed derivation procedure is employed by
Amiet in view of known information at the measurement point in the open-jet wind
tunnel test. Firstly, the position of the cross point C needs to be determined, i.e. θ0

should be fixed. For this purpose the geometrical relation between the length and
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angle parameters in the model, as well as the sound propagation characteristic that
the trace wave numbers of the incident and transmitted waves are equal along the
x-axis as across the shear layer is exploited. This forms the basis for the relations
between measurement angle, transmission angle and radiation angle. Then θ0 is
easily derived by an iteration process (e.g. Newton’s method). Knowing the position
of the cross point C, the amplitude of the pressure perturbation measured at point
M can be traced back to point C+ right above the shear layer, which is used to
derive the value at point C− just below the shear layer according to the transmission
relation proposed by Ribner [H. S. Ribner 1957] and Miles [J. W. Miles 1957]. Until
now, the sound wave amplitude alteration resulting from the shear layer has been
calibrated out from the measurement data. The amplitude at point A may easily
be determined from the sound level at C− by the fact that the sound pressure
decays inversely proportional to the distance from the source in the uniform flow.
Similarly, the procedure can be applied to the microphone array to study the acoustic
features of the test object. Additionally, the correction processes are classified in
the current study according to their function as angle correction and amplitude
correction, respectively.

2.3 Angle correction

The angle correction provides the relation among the measurement angle, the ra-
diation angle and the transmission angle, from which the corresponding corrected
location (A) in a uniform flow can be determined for a known measurement position
(M). The equations are derived based on the geometrical relations of the distance
and the angles, as well as the matching of phase speeds between the incident wave
and the transmitted wave (trace-velocity matching principle [A. D. Pierce 1981]).
Below are the correction equations applied in the open-jet wind tunnel,

tan θ0 =

√
(1−M cos θt)2 − cos2 θt
(1−M2) cos θt +M

(2.1)

yM cot θM = h cot θ0 + (yM − h) cot θt (2.2)

where θ0 is the radiation angle, θt represents the transmission angle and θM
indicates the measurement angle. M is the acoustic Mach number of the jet flow,
which is obtained from U0/a∞. yM is the distance from the source to the microphone
line and h is the distance between the source and the shear layer. Their definitions
are illustrated in Fig.2.1.

These two equations can be combined to give an expression for θ0 in terms of
measurement angle θM by eliminating θt, in order to directly generate the corrected
position. However, the current form is more concise and beneficial for the study
of the properties of the equations, including the critical angles when the limiting
situation is achieved, which are presented in the following sections.
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2.3.1 Total reflection

If the sound wave meets the shear layer at such an angle that the corresponding
transmitted wave goes along the shear layer at angle θt = 0◦ or θt = 180◦, then
there is not an actual transmission through the shear layer. The incident wave
is perfectly reflected under such a situation, which is named as total reflection or
perfect reflection. By setting θt = 0◦, the critical radiation angle for the total
reflection is generated as the wave travels in the flow direction, which can be derived
from Eq.(2.1) as

θtot0 = tan−1

√
(1−M)2 − 1

1−M2 +M
(2.3)

When the θ0 6 θtot0 , the sound wave can not go through the shear layer and
forms a silent area just above the shear layer. In the opposite direction, the limiting
case is achieved for θt = 180◦ as the wave propagates against the flow direction.
The corresponding critical radiation angle is

θtot0 = tan−1

√
(1 +M)2 − 1

M2 +M − 1
(2.4)

An identical phenomenon happens as in previous downstream case only except
that it happens while θ0 > θtot0 . One may notice that such a critical angle is only
relevant with the open-jet flow speed (or the flow speeds at both sides of the shear
layer for more general cases), but irrelevant with the distance parameters.

Regarding these expressions for the critical angle of total reflection, it is noticed
in Eq.(2.3) that the total reflection only happens while M > 2, which is not the
situation we are considering in the current study. Obviously, the angle indicated by
Eq.(2.4) represents the limiting case that happens in the current study, which will
be considered as a reference in the following numerical study.

2.3.2 Zone of silence

In order to investigate another characteristic of the sound wave propagation in the
shear flow, a parameter needs to be mentioned, i.e. the incidence angle θi. As
indicated in Fig.2.2a the angle defines the orientation of the wave fronts which only
corresponds to the wave propagation angle θ0 in a medium at rest. When θi = 0◦ or
θi = 180◦, the sound wave propagates parallel to the shear layer, defining the limiting
case where no sound wave transmits through the shear layer. The corresponding
transmission angle θst defines the boundary of an area where no sound wave transmits
into, and the area is called the zone of silence.

Another angle relation between incident and radiation angle is added to the
equation system to obtain θst , which is established by considering the convective
effect by the flow velocity on the sound propagation.

tan θ0 =
sin θi

cos θi +M
(2.5)
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θst can be obtained by eliminating θ0 from Eqs.(2.1) and (2.5). Then the critical
angle downstream is obtained by setting θi = 0◦ as

θst = cos−1 1

1 +M
(2.6)

The area between the angle range 0◦ < θt < θst is free of sound, since any incident
angle satisfies θi > 0◦ would result in a transmission angle θt > θst . Moreover, such
a zone expands with the open-jet flow speed. When the sound wave hits the shear
layer upstream at incidence angle θi = 180◦, the corresponding critical transmission
angle is obtained as

θst = cos−1 1

M − 1
(2.7)

According to the mathematical characteristics of cos-function, this upstream
critical angle only exists as the Mach number is bigger than 2, which is not covered in
the current study. Therefore, the zone of silence is only considered in the downstream
propagation.

2.3.3 Application of the angle correction in the open-jet wind tun-
nel

Knowing the properties of the angle correction, this section gives a practical ap-
plication of it in DLR’s Aeroacoustic Wind tunnel Braunschweig(AWB), which
gives a theoretical overview of the refraction effect. The nozzle of AWB is 1.2m

high and 0.8m wide of rectangular shape. The free stream velocity can reach a
maximum of 65m/s. The maximum flow speed under standard test conditions
is up to 60m/s. A detailed introduction of AWB can be found in the reference
[M. Pott-Pollenske 2008]. In the following study, three typical flow speeds in AWB
are chosen to investigate the shear layer effects in the aeroaoucstic wind tunnel
experiments, which are 40m/s, 50m/s and 60m/s.

Generally, the test object is installed at the nozzle centerline, which indicates a
source-shear layer distance h = 0.6m from the side view of the test section. The
placed microphone line is chosen at the sideline yM = 1.2m in the study, guaran-
teeing enough distance from the shear layer to avoid the flow induced influence.
Inserting these parameters into the angle correction Eqs.(2.1) and (2.2), it is conve-
nient to obtain the curves between the angles by iteratively solving the equations,
shown in Fig.2.2.

Referring to Fig.2.2a, it provides a model of angle definitions for a quick review.
Fig.2.2b gives the transmission angle variation with the radiation angle for the AWB
shear flow at different flow speeds. The transmission wave angle is bigger than the
radiation angle throughout the entire range, which indicates that the incident sound
wave is always refracted by the shear layer to the backward direction, as shown in
Fig.2.2a by solid lines. Such an alteration in the direction becomes evident with the
flow speed, especially at some extreme angles. As the radiation angle approaches
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(a) (b)

Figure 2.2: Angle relations for different flow speeds.

to 0◦, it results in a transmission angle around 30◦, which is the boundary of the
zone of silence mentioned earlier. As the transmission angle approaches to 180◦, its
corresponding radiation angle labels the critical total reflection angle under various
flow speeds. Beyond this angle, no sound wave could transmit through the shear
layer. As the flow speed increases, the total reflection happens at a smaller radiation
angle and the area of the zone of silence is broadened, which evidences a stronger
shear layer effect at higher flow speed as expected. It should be mentioned that any
microphone along the line yM will receive a sound signal in spite of the occurrence
of the total reflection and the zone of silence. Since the entire range of angles up
to θt is reached upstream (see Fig.2.2b) and the incidence angle θi = 0 does never
occur due to the finite dimensions in an actual wind tunnel. However, the range
of the corresponding measurable radiation angles (θ0) is limited by the shear layer
effects, in addition to the limitation by the geometrical obstacles of the wind tunnel
(e.g. nozzle rim).

2.4 Amplitude correction

Providing the wave propagation path in the shear flow, the amplitude of the receiving
signal at the measurement point is corrected to the value at the ’right’ position in the
uniform flow. Basically, the alteration of the amplitude of the acoustic perturbation
results from two factors. One is the change in the propagation path length due to
the deviation from the original direction. The other is the contribution from the
reflection by the shear layer, which causes an energy loss into the reflected part. To
correct these effects away from the measurement data, Amiet gives the following
pressure amplitude ratio for measurement and corrected position.

p′2A

p′2M
=

h2

y2
M

[sin θt + (yM/h− 1)ζ]

sin θt

[
sin3 θt + (yM/h− 1) ζ3

]
sin3 θt

[
ζ + sin θt (1−M cos θt)

2
]2

4ζ2

(2.8)
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where p′2A and p′2M represent the mean square value (temporal average value
of squared pressure perturbation) at point A and point M respectively. ζ =

[(1−M cos θt)
2 − cos2 θt]

1/2. Definitions of other parameters are illustrated in
Fig.2.1.

The equation is easy to follow based on the aforementioned correction procedure
in Sec.2.2. The ray tube spreading from cross point C to point M is indicated by
the second and third term, which compensate the intensity loss in z direction and
xy plane respectively. The intensity jump across the shear layer is considered by the
fourth term, which is caused by the reflection by the shear layer. After recovering
the energy lost, the amplitude change from point C to A is formulated by the first
term. The equation given here is derived for the three-dimensional situation where
the microphone-source plane is perpendicular to the planar shear layer. A more
general amplitude correction equation is presented in the Appendix A, in which the
lateral variation of the sound wave propagation is taken into account.

Similar to the angle correction, a deep understanding of the features of the
amplitude correction is helpful for the numerical investigations, which are presented
in the following section with its practical application in the AWB.

2.4.1 Application of the amplitude correction in the open jet wind
tunnel

Applying the geometric parameters of AWB (h/yM = 0.5), the amplitude correction
curves can be obtained for the shear flow at various flow speeds from the previous
correction equation, plotted in Fig.2.3. It should be mentioned that the second
term in the equation disappears in a 2D shear layer, when also 2D wave propa-
gation is considered since for 2D waves there is not an energy loss in z direction.
The 3D curves were plotted for the situation when the source-microphones plane is
perpendicular to the planar shear layer.

(a) 2D shear layer, line source (b) 3D planar shear layer, point source

Figure 2.3: Amplitude correction at various flow speeds
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Regarding the application in the wind tunnel tests, the correction curves are
plotted against the measurement angle θM . The y axis represents the Sound Pres-
sure Level (SPL) difference between the pressure perturbations at point A and M ,
which indicates the SPL value needs to be added to or subtracted from the mea-
surement data. In both 2D and 3D shear flow, when the sound wave propagates
towards upstream (θM > 90◦), it experiences an energy loss due to both the path
alteration and the shear flow reflection. Therefore, extra SPL needs to be added
to the measurement data. When the sound wave transmits towards downstream at
some angles (θM > 20◦ in 2D and θM > 15◦ in 3D), the energy variation balance
between reflection and path alteration is inverted, so that the correction SPL is
less than 0. There are two particular measurement angles where no correction is
required (p′2A/p

′2
M = 1). One is slightly smaller than 90◦, where the receiving signal

transmits across the shear layer at the incidence angle 90◦ that it does not expe-
rience any effects from the shear layer. The corresponding measurement angle is
less than 90◦ because of the flow convection effect and decreases slightly with the
flow speed. The other special angle around 20◦ in the 2D shear flow (15◦ in the
3D shear flow) is formed due to the energy variation balance caused by the prop-
agation path alteration and the shear layer reflection. The energy loss due to the
reflection balances out the energy addition due to shorter propagation path after
refraction at this point. Comparing the curves at the same flow speed in 2D and 3D,
a bigger correction value is needed in 3D due to the additional ray tube spreading
in z direction. Considering the influence of the flow speed, it is obvious that the
absolute correction value increases with the flow speed for the entire measurement
angle range.

2.5 Summary

The correction approach was briefly reviewed in this chapter. Some features of the
correction equations were mentioned with their applications in the AWB, such as
total reflection, the zone of silence and characteristics of the amplitude correction.
In the considered situation, the total reflection happens when sound propagates
against the flow beyond the critical radiation angle. A zone of silence is formed far
downstream where the sound wave propagates parallelly to the shear layer. More-
over, when the sound wave meets the shear layer perpendicularly, it goes through the
shear layer without any refraction or reflection. Several theoretical critical values
were provided for corresponding phenomena, which can be taken as the guidance
for our numerical study.





Chapter 3

Numerical method

A hybrid approach was adopted in the current study to investigate the free shear
layer effects. The approach is generally conducted in three distinct phases, i.e. com-
putational fluid dynamics(CFD), the sound generation and the sound propagation.
This approach is meant to help saving considerable computational effort in com-
parison to direct noise computation (DNC), although its accuracy might be lower
than that obtained with a DNC method. However, its accuracy is sufficient for our
purpose of the sound propagation through the free shear layer, since we focus on
the propagation of sound waves rather than the generation process. In this chapter,
the methods employed for each phase are briefly introduced, including the CFD
and CAA tools utilized in the process. Additionally, the source models are pre-
sented, followed by the definitions of some acoustic quantities used in the analysis
of numerical results.

3.1 Introduction

The hybrid approach applied in the current study involves firstly the simulation
of the open-jet wind tunnel flow field by solving the RANS equations. The work
[V. Ciobaca 2009] was carried out with DLR’s computational fluid dynamics tool
TAU [N. Kroll 1989]. The flow through the empty anechoic chamber was simulated
on an unstructured grid including parts of the nozzle and the collector for three
typical flow speeds in AWB, i.e. 40m/s, 50m/s and 60m/s. Additionally, the flow
field is provided at 60m/s when a high-lift airfoil is installed in the test section in
order to investigate the effect of the test model induced flow curvature. The corre-
sponding CFD grids can resolve the open jet free shear layers fairly well. Menter’s
SST turbulence model was selected for the simulation of viscous effects and turbu-
lence statistics through the free shear layers. The basic equations are discretized
with a central scheme and the turbulence equations by a second order accurate up-
wind scheme. More details of the description of the CFD solver can be found in the
reference [N. Kroll 1989].

Taking the provided shear flow as a background flow, the simulation of the
acoustic propagation was conducted using DLR’s computational aeroacoustic solver
PIANO [J. W. Delfs 2008]. PIANO is a numerical code designed to simulate the
aerodynamic noise generation and acoustic wave propagation in non-uniform flows.
It is based on the equations governing the inviscid dynamics of perturbations in a
given time-averaged (viscous, turbulent) mean flow field, which is appropriate for
our study of the mean flow gradient effect through the shear layer in the first step.
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When it comes to the study of the scattering effect through the shear layer, the
unsteady fluctuations in the shear layer need to be realized and considered in the
governing equations. In the present study, the unsteady turbulence is modelled with
a 4D synthetic turbulence method developed at DLR[R. Ewert 2011], i.e. the Fast
Random Particle Method (FRPM). The FRPM could reconstruct the turbulence
with all statistical features as predicted by time-averaged RANS. It includes the
convection of the synthetic eddies by the turbulent mean flow as well as the influence
from the turbulence decay. A general introduction of both PIANO and FRPM are
presented in the following sections, including the basic equations and the treatments
of boundary conditions et.al.

3.2 PIANO (Perturbation Investigation of Aerodynamic
Noise)

3.2.1 Governing Equations

As already mentioned, PIANO is able to simulate the aerodynamic sound generation
and acoustic wave propagation in non-uniform flows. It is based on structured,
curvilinear multi-block grids. Several types of governing equations are provided
in the code, which are Linearised Euler Equations(LEE), Acoustic Perturbation
Equations(APE) respectively. The unsteady linearised Euler equations were chosen
to describe the generation and propagation of aeroacoustic sound in the shear flow
due to its capability in supporting vorticity, entropy and pressure waves. Moreover,
since the physics of the unsteady turbulent flow are captured by a corresponding
CFD solver and a stochastic turbulence model, the perturbation equations are just
responsible for the acoustic propagation part of the problem. Therefore, certain
simplifications could be introduced into the governing acoustic equations. The non-
dimensional Navier-Stokes equations for thermally and calorically perfect gas are
listed as below:

∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v =0

∂v

∂t
+ v · ∇v +

1

ρ
∇p =

M

Re

1

ρ
∇ · τ (3.1)

∂p

∂t
+ v · ∇p+ p∇ · v =

M

Re

[
(γ − 1) τ : ∇v − 1

Pr
∇ · q

]
Here, ρ,v, p denote density, velocity and pressure, non-dimensionalized with

ρ∞, a∞, ρ∞a
2
∞ respectively. τ and q represent the viscous stress and heat flux den-

sity, referenced to µ∞U∞/L and k∞a
2
∞/(cp(γ − 1)L) respectively. M = U∞/a∞,

Re = ρ∞U∞L/µ∞ and Pr represent the Mach-, Reynolds- and Prandtl numbers.
Usually the aeroacoustic problems are characterized by small amplitude fluctuations
in a steady mean flow. Therefore, the primitive variables will be written as a com-
bination of a time-averaged steady mean-flow quantity and a fluctuation part, in
which the order of the perturbation is represented by introducing a small number
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ε� 1,

ρ = ρ0 + ερ′, v = v0 + εv′, p = p0 + εp′ (3.2)

In order that the quantities with subscript 0 represent a flow, they have to
satisfy the steady form of Eqs.(3.1). For exterior acoustics problems perturbations
in the viscous stresses and heat flux are negligible, so that τ ≈ τ0 and q ≈ q0.
After three steps i) inserting Eq.(3.2) into Eqs.(3.1), ii) differentiating with respect
to ε, iii) letting ε → 0, the equations describing the linear (inviscid) dynamics of
perturbations are given as,

∂ρ′

∂t
+ v′ · ∇ρ0 + v0 · ∇ρ′ + ρ′∇ · v0 + ρ0∇ · v′ = 0

∂v′

∂t
+ v′ · ∇v0 + v0 · ∇v′ +

1

ρ0
∇p′ + ρ′

ρ0
v0 · ∇v0 = 0 (3.3)

∂p′

∂t
+ v′ · ∇p0 + v0 · ∇p′ + γ

(
p′∇ · v0 + p0∇ · v′

)
= 0

Eqs.(3.3) are solved for (ρ′,v′, p′) for a given mean flow field with ρ0,v0, p0 to
simulate the corresponding acoustic field. Since practical problems require treat-
ments on various curved boundaries and grids, the basic equations are transformed
into a curvilinear coordinate system.

3.2.2 Numerical algorithm

Similar as in the CFD simulations introduced in the first section, spatial discretiza-
tion and time integration are essential parts in the numerical solver. The differ-
ential equations are solved numerically in DLR’s inhouse code PIANO on a curvi-
linear block structured mesh. The high-resolution spatial discretization is carried
out based on the dispersion relation preserving (DRP) scheme of Tam and Webb
[C. Tam 1993]. The scheme ensures to minimize the numerical dispersion introduced
by the discretization for a given wavenumber range. The order of the accuracy is
reduced for the spatial discretization from 6th to 4th order as a payment. A sym-
metric 7-point stencil is used in PIANO to approach the first derivative numerically
except at boundaries, where an unsymmetric 7-point stencil is applied alternatively.
The procedure with given DRP-coefficients ensures the 4th-order accuracy of the
spatial discretization. The first derivative on a uniform grid is written as

∂φ

∂x
|i =

1

∆x

3∑
l=−3

clφi+l (3.4)

where ∆x is the grid spacing, cl is the coefficient for 7-point stencils, whose value
can be found in the reference [J. W. Delfs 2008].

The temporal discretization is implemented with a 4th order Runge-Kutta
scheme. A two-step low-dissipation, low-dispersion Runge-Kutta (LDDRK) algo-
rithm proposed by Hu [F. Q. Hu 1996] is employed to minimize the dissipation and
dispersion errors for the wave propagation. The coefficients are chosen to minimize
the dissipation and dispersion errors without compromising the stability limits.
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3.2.3 Boundary conditions

As another key factor in the numerical simulation, boundary condition plays an
important role in the CAA simulation as well. When the boundary condition is
used to introduce the sound wave into the computation domain, it should ensure that
the wave is correctly brought into the domain without distortion or characteristic
alteration. When the boundary condition is applied to let the wave radiate away
from the domain, it should minimize the reflection at the boundary. Considering
the specified problem in the current study, suitable boundary conditions are chosen
for each case.

Radiation boundary condition [C. Tam 1993] is applied at bounding grid
surfaces, where there are only outgoing acoustic waves. The equation is formulated
as

(
1

V (Θ)

∂

∂t
+

∂

∂r
+

1

rc2D

)


ρ′

u′

v′

w′

p′

 = 0 (3.5)

where V (Θ) = |v0| cos Θ+
√
a2

0 − |v0|2 sin2 Θ. c2D is a dimensional coefficient, which
equals to 2 in 2D and equals to 1 for three dimensional simulation. a0 is the local
sound speed, calculated from

√
γp0/ρ0. r = |x− xref | is measured from the center

of acoustic sources. The angle Θ = arccos(r · v0/ |r| |v0|), while r represents the
distance vector from the boundary point to a reference point typically in the center
of the computation domain.

Slip Wall boundary condition is implemented combined with the adiabatic
condition on the grid blocks where the geometry of the open jet nozzle surface is
included. The surfaces are considered acoustically hard. The ghost point concept
from Tam and Dong [C. Tam 1994] is adopted, which introduces an additional com-
putational node beyond the wall (located inside the body). The pressure value at
the ghost point is evaluated such that the non-penetration condition is satisfied at
the boundary.

n · v = 0 (3.6)

where n is the normal vector of the surface. A relation for the pressure at the
ghost point can be yielded by multiplying the momentum equation with the normal
vector n

ρvi
∂vj
∂xi

nj + nj
∂p

∂xj
= 0 (3.7)

Analogy to the derivation of the governing equation, the linearized form of the
equation can be written as

∂p′

∂n
= nj

∂p′

∂xj
= −nj

{
∂v0

j

∂xi

(
ρ′v0

i + ρ0v
′
i

)
+
∂v′j
∂xi

ρ0v
0
i

}
(3.8)
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The value of p′ is evaluated at the ghost point so that Eq.(3.8) is satisfied. Finally,
the density ρ′ is determined by the adiabatic condition ρ′ = p′/a2

0.
Sponge layer boundary condition is adopted in several different ways in the

study to satisfy the specific requirements. Generally, the sponge layer approach can
enforce a given function in the specified layers along the boundary. It subtracts a
supplement term from the right hand side from the LEE equations in the curvilin-
ear coordinate system. The variation of the term is capable of realizing different
functions to be used for the boundaries. Its general form is written as

Q = σ(ξ)(φ′ − φref)

where σ(ξ) is a fading function which is subject to the distance to the boundary.
φ′ represents the various perturbation quantities and φref is its respective forcing
function term. Two types of φref are applied in the current study. Firstly, it is
used to introduce the sound wave located outside of the computation domain into
the domain. Such a setting can help to avoid the possible singularity problem if a
perfect point source is to be represented directly inside the domain. Therefore, the
form of the forcing function φref is relevant to the employed source model, which will
be introduced in the next section. The second form of the sponge layer is used as a
’sponge’ to absorb the outgoing wave in some specific area to eliminate the reflection
from the boundary. Since we have a more confined domain than the real wind tunnel,
some reflections do not happen in the experiment but may potentially arise in the
simulation. An absorbing sponge layer is necessary to avoid the corresponding effects
caused by the reflected wave. More details about the definition of forcing function
and its coefficients can be found in the reference [J. W. Delfs 2008].

3.2.4 Sound source model

Since we aim at figuring out the shear layer effects on the sound propagation at
various frequencies, a tonal source is suitable for the study. This selection also
results from the fact that the scattering effect is not obvious for the broadband
noise according to the previous studies by [S. Candel 1975] [R. H. Schlinker 1980].
For the broadband noise, the energy loss due to the turbulence scattering at one
single frequency will drain into other neigbouring frequency bands by the turbulence
scattering process. Therefore, two periodic sources were utilized to generate single
frequency sound waves in 2D and 3D respectively. The third source model, a non-
periodic pressure pulse, was taken as a complementary source model for validations
under some particular situations to support the results from the former models.

Harmonic source (2D)[J. W. Delfs 2014]
A 2D harmonic source is employed to investigate the sound propagation char-

acteristics in two dimensional shear flow at specified frequencies. Assuming a non-
moving harmonic line mass or heat source located at point ξ0 in a uniform flow of
Mach numberM , its acoustic field produced by D∞θ̇′

Dt with θ̇′ = θ̂p exp(iωt)δ(x−ξ0)



26 Chapter 3. Numerical method

in two-dimension is

p′(x, t) =
ωθ̂p

4
√

1−M23

{[
J0(kr∗0) +

r0Mr

r∗0(1−M2)
Y1(kr∗0)

]
cos(ωt+ kr0

Mr

1−M2
)

+

[
Y0(kr∗0)− r0Mr

r∗0(1−M2)
J1(kr∗0)

]
sin(ωt+ kr0

Mr

1−M2

}
(3.9)

where r∗0 = r0

√
1−M2 +M2

r /(1 −M2), in which r0 = |r0| with r0 = x − ξ0

and Mr = r0 ·M/r0 while er = r0/r0. M is the local acoustic Mach number,
defined as M = U/a0. The expressions of perturbations ρ′,v′ can be found in the
reference[J. W. Delfs 2014].

Point mass or heat source in subsonic flow (3D)
A three dimensional point source (not necessarily harmonic in time) is taken as

the acoustic source terms in 3D simulation, whose form is Qp = D∞θ̇′

Dt . The non-
moving source θ̇′ is assumed to be located at point ξ0 in a uniform flow with speed
U0. The speed of sound and the density of the medium are assumed uniform as
well. The source can be described as θ̇′(ξ, τ) = δ(ξ − ξ0)θp(τ), where θp(τ) denotes
the temporal variation of the source. The sound field as a solution to the convected
wave equation can be written down according to the Green’s function method. The
final expression of the pressure perturbation yields

p′(x, t) = − a0Mrr0

4πr∗30 (1−M2)3 θp |t−r+0 /a∞ +
r+

0

4πr∗20 (1−M2)2

∂θp
∂t
|t−r+0 /a∞ (3.10)

where r+
0 =

[(
1−M2

)
r∗0 −Mrr0

]
/
(
1−M2

)
. The first term represents a di-

rected near field, which decays fast like r−2
0 . The farfield term (the term decaying

slowly like r−1
0 ) is directed by the flow as well, which will be observed in the follow-

ing numerical results. A detailed derivation process and the analysis of the source
directivity could be found in the reference [J. W. Delfs 2014].

Pressure pulse (2D)
The source is a Gaussian distributed non-periodic pulse source. The initial

distribution of the variables are based on Gaussian functions, as

p′(x, 0) = pmax exp

[
− ln 2

(x− xc)2

b2

]
(3.11)

where pmax is the magnitude of the pressure pulse, xc is the coordinate of the
source location, b represents the half-value radius of Gaussian. The density fluctu-
ation is initialised according to isentropy via ρ′ = p′/a2

∞.

3.3 Reconstruction of the turbulence (FRPM method)

In order to study the scattering effect induced by the turbulence in the free shear
layer with the CAA method, the unsteady turbulent fluctuations are modelled with
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a 4D synthetic turbulence method. The averaged turbulence field provided by the
RANS simulation is used as the basis for the realization of the unsteady turbulent
characteristics in the FRPM method. The resulting turbulent field expresses all
the local statistical features as provided by the RANS simulation and is coupled
into the sound propagation equations as additional time dependent parameters.
The time-averaged mean flow is indicated by a steady state RANS solution, while
the additional terms from turbulent fluctuations are modelled using the turbulent
kinetic energy and length scales from the RANS solution. The scattering of the
tonal waves is then resolved by the CAA simulations such that its effect can be
studied numerically.

3.3.1 Governing equations

Before presenting the method for the realization of the turbulent fluctuations, some
modifications need to be carried out for the governing equations in advance. Due to
the participation of the turbulence part in the free shear layer, the original governing
equations shown in Sec.3.2.1 are not suitable for the simulation any more. Their
expressions vary slightly as the turbulence part is added. The part of the description
of governing equations is actually included in the PIANO code, which is presented
here to give a consistent view of the methodology of the numerical realization of the
scattering effect.

The governing equations are in a similar form as in the previous derivation, but
with turbulent fluctuations as additional time dependent parameters. The same
derivation procedure is taken here as before. The primitive variables ρ′,v′, p′ indicate
the acoustic perturbations as usual, but the base flow here is an unsteady fluctuating
flow ρ,v, p. By neglecting non-linear terms and viscous perturbations as before, it
shows that the perturbations satisfy equations that are similar to the LEE, but
with the steady mean flow ρ0,v0, p0 replaced by the unsteady base flow ρ,v, p. The
linearized equations for the perturbations in the unsteady base flow are

∂ρ′

∂t
+ v · ∇ρ′ + v′ · ∇ρ+ ρ∇ · v′ + ρ′∇ · v =0

∂v′

∂t
+ (v · ∇)v′ + (v′ · ∇)v +

∇p′

ρ
− ∇pρ

′

ρ2
=0 (3.12)

∂p′

∂t
+ v · ∇p′ + v′ · ∇p+ γp∇ · v′ + γp′∇ · v =0

Then the unsteady base flow is decomposed into a time-averaged part (with
subscript 0 as before) and a turbulent fluctuating part (with subscript t) as

ϕ(x, t) = ϕ0(x) + ϕt(x, t) (3.13)

where ϕ represents the flow quantities (ρ,v, p). Inserting the decomposition into
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Eq.(3.12), the perturbation equations can be rewritten as

∂ρ′

∂t
+ v0 · ∇ρ′ + ρ0∇ · v′ + v′ · ∇ρ0 + ρ′∇ · v0 +H1 =0

∂v′

∂t
+ (v0 · ∇)v′ +

∇p′

ρ0
+ (v′ · ∇)v0 −

∇p0ρ
′

ρ2
0

+H2 =0 (3.14)

∂p′

∂t
+ v0 · ∇p′ + γp0∇ · v′ + v′ · ∇p0 + γp′∇ · v0 +H3 =0

The form of the equations on the left hand side is identical to the LEE applied for
steady base flow but with addition of extra termsH1,H2, H3. These terms represent
the interaction between the acoustic and turbulent quantities. The interaction terms
up to the first order in the perturbations are

H1 = vt · ∇ρ′ + v′ · ∇ρt + ρt∇ · v′ + ρ′∇ · vt

H2 = (vt · ∇)v′ + (v′ · ∇)vt + 2
∇p0

ρ3
0

ρ′ρt −
∇ptρ′

ρ2
0

+
∇p′ · ρt
ρ2

0

(3.15)

H3 = vt · ∇p′ + v′ · ∇pt + γpt∇ · v′ + γp′∇ · vt

It should be mentioned that Eq.(3.12) form homogeneous equations and that
these terms only describe the interaction, they do not introduce additional sound
sources, which is extremely important. Since the study focuses on the scattering
effects due to the turbulence fluctuations in the base flow rather than the sound
generation, the turbulence generated noise is neglected. Besides, an assumption is
made for the CAA simulations that the scattering is mainly caused by the unsteady
turbulent velocities, as the effect due to turbulent pressure and density fluctuations
are negligible. This assumption is reasonable for the scattering simulation in a cold
jet, such as the situation in the current study. In fact, the importance of this neglect
has been estimated by modelling the pt on the basis of a local linearized Bernoulli
euqation as pt ' −ρv0 · vt. As shown subsequently in Sec.4.4.5, the inclusion of pt
is of minor importance. Moreover, the turbulent velocities are assumed (and conse-
quently modelled) to be solenoidal, i.e. ∇ · vt = 0. According to these assumptions,
the interaction terms have the final forms as below

H1 = vt · ∇ρ′

H2 = (vt · ∇)v′ + (v′ · ∇)vt (3.16)

H3 = vt · ∇p′

Finally, the Eq.(3.14) with Eq.(3.16) compose the governing equations solved
numerically for the scattering effect study.

3.3.2 Modeling of turbulent velocities (FRPM method)

The computation of the turbulent velocities (vt) in the governing equations is con-
ducted by the employment of the Fast Random Particle Mesh (FRPM) method.
The method has already been applied in the previous work [R. Ewert 2007,
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R. Ewert 2009, R. Ewert 2011], which illustrates its good performance in the aeroa-
coustic applications. Its theoretical background is briefly presented in this section.
A detailed description is included in the references [R. Ewert 2007, R. Ewert 2011].

The FRPM method realizes the time-dependent turbulent fluctuations syntheti-
cally from averaged turbulence statistics of the steady state RANS computation, i.e.
local turbulence kinetic energy, length scale and time scale information. Consider-
ing the aforementioned governing equations for the simulation of scattering effect,
the turbulent velocities are of concern in the modeling process. They are deduced
from a fluctuating stream function by vt = ∇ × ψ with two zero components as
ψ = (0, 0, ψ3(x, t))T in 2D. In 3D case they are deduced from a fluctuating stream
function ψ = (ψ1(x, t), ψ2(x, t), ψ3(x, t))T , in which all the components are uncorre-
lated. Subsequently, the generation of the fluctuating stream function is presented.

Analytically, the fluctuating component ψi is generated by the convolution of a
spatial white noise field Ui with a filter kernel,

ψi(x, t) =

∫
V n
S

ÂG(x− x′)Ui(x′, t)dnx′ (3.17)

where G is the spatial filter kernel, n is the dimension of the problem, and V n
s

indicates the source region, which is usually represented by a sub-domain of the
resolved CAA domain, named as ’patch’ in the simulations. Â is a scaling function
to realize the desired variance of ψi, which could be a function of either x or x′.

If a frozen turbulence field is realized, m (m depends on the dimension of the
problem) mutually uncorrelated spatiotemporal white noise fields Ui(x, t) need to
be adopted, which are defined by

〈Ui(x, t)〉 = 0 (3.18)

〈Ui(x, t)Uj(x+ r, t)〉 = ρ0(x)−1δijδ(r) (3.19)
D0

Dt
Ui = 0 (3.20)

where 〈...〉 denotes the ensemble average. D0/Dt = ∂/∂t+v0 ·∇ is a substantial
derivative, by which the convection property is introduced into the fluctuation model
through the convection of the white-noise field in a velocity field v0. δ(r) is the
Dirac delta function, δij is the Kronecker symbol. The density ρ0 follows from the
conservation of mass with the steady velocity field v0, i.e. ∇ · (ρ0v0) = 0.

Eq.(3.20) specifies the property of Ui to be locally frozen if the observer drifts
with the mean flow at velocity v0. If an exponential decay of turbulence needs to
be achieved, each spatial white-noise field Ui is modified with a Langevin equation
[S. B. Pope 2000],

D0

Dt
Ui = − 1

τs
Ui +

√
2

τs
ξi (3.21)

in which τs is the correlation time scale, ξi(x, t) is a source term associated to
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each realized field Ui. It is defined by

〈ξi(x, t)〉 = 0 (3.22)

〈ξi(x, t)ξj(x+ r, t)〉 = ρ0(x)−1δijδ(r) (3.23)

For sufficiently small two-point spatial and temporal separations r and τ , the
Eqs.(3.19) and (3.21) can be written in a compact form as

〈Ui(x, t)Uj(x+ r, t+ τ)〉 = ρ−1
0 (x)δ(r − v0τ) exp

(
−|τ |
τs

)
δij (3.24)

From Eq.(3.17), the cross-covariance of quantity ψi is derived as

Rij(x, r, τ) = 〈ψi(x, t)ψj(x+ r, t+ τ)〉

= Â(x)Â(x+ r)

∫∫
G(x− x′)G(x+ r − x′′)〈Ui(x′, t)Uj(x′′, t+ τ)〉dnx′dnx′′

(3.25)

Inserting Eq.(3.24) into the above equation, applying a Gaussian filter kernel

G(x− x′) = exp

(
−π

2

|x− x′|2

l2s

)
(3.26)

and an incompressible convection field, as well as constant time and length scale
τs and ls, the cross-covariance becomes

Rij(x, r, τ) =
Â(x)Â(x+ r)

ρ0
lns exp

(
−|τ |
τs
− π|r − v0τ |2

4l2s

)
δij (3.27)

which means that the fluctuation components ψi are uncorrelated. From the
cross-covariance the variance of the fluctuations can be derived as

R̂ = 〈ψ(x, t)2〉 = Rij(x, 0, 0) =
Â2(x)lns
ρ0

(3.28)

Then, the definition of Â can be determined for a prescribed source variance R̂
as

Â (x) =

√
ρ0R̂

lns
(3.29)

Here the amplitude of Â is defined as a function of position x. It could be
also defined as a function of x′, which will result in an effectively realized variance
instead of exactly the target variance R̂.

The FRPM approach is conducted on a Cartesian background mesh, i.e. the
aforementioned ’patch’. Numerous particles loaded with random numbers are evenly
distributed over the mesh to approximate the white-noise field U . These particles
drift with the local mean flow velocity. In this way, the approach generates velocity
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fluctuations, which very accurately resolve the local RANS statistics. It means
that the effect of turbulence in the shear layer with locally varying length and
time scales can be realized for the scattering effect study. Additionally, both frozen
turbulence (refer to Eq.(3.20)) and an exponential temporal decay of turbulence
(refer to Eq.(3.21)) are considered to evaluate their influences on the scattering
effect.

3.4 Acoustic quantities

This section presents some acoustic quantities applied in the following chapter. They
are utilized in both theoretical correction and analysis of the numerical results.
Following are their definitions.

The Sound Pressure Level is the most common quantity used in the acoustic
area. It is usually written in the abbreviation form SPL, which is defined as

Lp := 10 lg

(
p̃

pref

)2

dB = 20 lg

(
p̃

pref

)
dB (3.30)

where pref = 2 · 10−5Pa, p̃ is the root mean square value of the sound pressure.
The quantity is used to calculate the SPL deviation between the measurement and
corrected positions in the study, in which the parameter in the bracket in the above
equation is replaced by the pressure ratio of Eq.(2.8). The directivity of the sound
source in the shear flow is shown in SPL as well.

The Sound Intensity I in a potential flow [M.K. Myers 1986] is defined as

I := (v′ +
ρ′

ρ0
v0)(p′ + ρ0v0 · v′) = (v′ +

p′

ρ0a2
0

v0)(p′ + ρ0v0 · v′) (3.31)

If the flow medium is at rest, the expression reduces to the classical definition
of sound intensity I := p′v′. The mean flow and the perturbation are assumed to
be free of vorticity, which means that the conservation of the acoustic quantity in
general fields is not guaranteed. Sound power could get lost in a shear flow due to
the conversion of sound into vortices or be generated when sound waves interact
with the vortical flow. In the current study, the sound vector field is used to trace
the propagation direction of the sound power, which is helpful in the interpretation
of the effects caused by the shear layer, especially in the study of the mean flow
gradient effect.

The Sound Intensity Level is defined by

LI := 10 lg

(
|I|
Iref

)
dB (3.32)

where Iref = 10−12W/m2.





Chapter 4

Numerical Results

This chapter presents the numerical results of the CAA simulations, which consider
separately the mean flow gradient and the turbulence effects by the free shear layer
on the sound propagation. The study is firstly carried out on the influences brought
by the mean flow gradient, which is started from two-dimensional (2D) simulations
then further extended to three-dimensions (3D). As the starting point in the 2D
study, the sound propagation characteristics is investigated in the analytically de-
fined shear flow with linear velocity profile, which is followed by that in the 2D
shear flow of the wind tunnel with an empty test section (Sec.4.1). Next, in view
of a typical measurement situation, the AWB wind tunnel shear flow is considered
which forms if a high-lift airfoil is installed in the test section of the wind tunnel.
In this case the wind tunnel jet flow is deflected and its effect on Amiet’s correction
is assessed (Sec.4.2). Simultaneously, the reflection effect from the nozzle geometry
is analyzed for these conditions. In the 3D study, the sound propagation in both
planar shear layer and real AWB wind tunnel shear layer (shaped as the open-jet
geometry) is considered and compared at various flow speeds (Sec.4.3).

Finally, the turbulence fluctuations in the free shear layer are taken into account
to investigate their influences on the sound propagation in 2D (Sec.4.4) and 3D
(Sec.4.5) flows.

4.1 Sound propagation through analytical shear layers
(2D)

4.1.1 Computational setup

The 2D simulations were taken as a start since it could provide both a basic view
of the shear layer effects and general characteristics of the sound propagation field
in the presence of a shear layer, although it might be less helpful for the practi-
cal application than 3D simulation in the wind tunnel corrections. Moreover, the
performance of the numerical code can be verified under such a relatively simple
situation.

The simulations were begun with the sound propagation in analytically defined
shear flows featuring by linear velocity profiles and constant shear layer thickness, of
which the shear layer thickness varies from 0.1m to 0.5m, 0.2m per step. The core
velocity 60m/s was chosen for the linear shear flow cases since it is the typically
highest test flow speed in the AWB while the shear layer exerts the strongest influ-
ence on sound wave transmission. The computation domain of such a shear flow is
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Table 4.1: Conditions for shear layer mean flow gradient effects (2D).

shear layer flow speed domain size source frequency angle range
type (m/s) (m×m) (kHz) θM (◦)

constant 60 10×2.1 1, 5, 10 15∼165
spreading 40, 50, 60 3×2.1 1, 5, 10 45∼145

(a) Grid (every sixth grid node shown) (b) Sponge layer

Figure 4.1: Computational grid for 2D simulations and sketch of the sponge layer.

not limited by the test section size as that in the open-jet wind tunnel, such that
the domain size can be defined as required. This is quite helpful in the investigation
of the refraction phenomenon at the critical angles, e.g. total reflection and zone of
silence. This analysis is followed by simulations conducted for the relevant 2D slice
through the actual AWB wind tunnel flow, which features a spreading shear layer
whose thickness increases as the flow goes downstream. The background shear flow
was provided [V. Ciobaca 2009] at three typical flow speeds in the AWB, which are
40m/s, 50m/s and 60m/s. Furthermore, three source frequencies were chosen to
figure out the sound field features as the shear layer thickness-to-wavelength ratio
(δ/λ) increases. The basic settings are listed in Tab.4.1. As shown, the computation
domain size for the spreading shear flow is limited to a smaller range in the flow
direction due to the test section size.

To exclude the possible effect due to the alteration in the density or the blocking
strategy of the CAA grid, two identically structured grids were generated for the
simulations in the analytically defined shear flow and the wind tunnel shear flow
respectively. Both of them have a resolution of 7 nodes per wavelength at 10kHz

in both axial and vertical directions. Fig.4.1a illustrates the grid generated for sim-
ulations in the wind tunnel shear flow (spreading shear layer). The grid for the
simulations of the constant thickness shear layers is just an extension of the one in
Fig.4.1a in the axial direction. The source is located at (1.5m, 0) in the former case
(spreading layer) and at (5m, 0) in the latter case on the nozzle centerline, while the
y = 0 line corresponds to the nozzle centerline in the AWB. The domain is extended



4.1. Sound propagation through analytical shear layers (2D) 35

in y direction to y = −0.6m to eliminate the reflection by the bottom boundaries
since it was noticed that the sound wave reflection induced by the boundary con-
dition may interfere the total reflection occurring upstream. The coordinate of the
(upper) nozzle lip-line is y = 0.6m, which was taken as the shear layer centerline in
Amiet’s correction model. y = 1.2m was defined as the microphone line, where sev-
eral microphones were placed outside the shear layer. It assures sufficient distance
away from the shear layer even when the thickest shear layer is considered.

The arc structure of the grid surrounding the source point was adopted for the
sponge layer boundary condition, whose sketch is shown in Fig.4.1b on top of the
horizontal velocity distribution for spreading shear layer at U0 = 60m/s. The white
curve indicates the extent and the shape of the sponge layer. Here, the sponge
layer is used to introduce the sound wave from outside into the domain, which
has the advantage of avoiding the singularity problem that occurs if the (analytical
point) source is placed inside the domain. Details of the sponge layer condition have
already been presented in the previous chapter, in which a factor σ(ξ) was mentioned
for the controlling of its thickness. The thickness in the current study was always
chosen as half of the wavelength at 1kHz, which guaranteed that the sound wave is
well brought into the domain without distortion at all applied frequencies. Fig.4.2
gives the instantaneous pressure field in an uniform flow as the resulted example of
the computational setup. The analytical source field is smoothly brought into the
domain, and there is no spurious reflections occuring at the boundaries.

Figure 4.2: Instantaneous pressure perturbation field in the uniform flow (U0 =

60m/s).

4.1.2 Characteristics of the base flow

Before looking at the aeroacoustic computation results, some aerodynamic features
of the shear flow need to be introduced. Definitions of some parameters are presented
for the shear layer characteristics, which is quite important in the following analysis
of the computational data.

One of the shear layer characteristics is the shear layer thickness δ, which is an
important factor considered in the current study. The thickness of the analytically
defined shear layer is easy to be determined by the length of the segment where
the velocity profile is linearly distributed, as shown in Fig.4.3a. The linear velocity
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(a) (b)

Figure 4.3: (a)velocity profiles for the constant thickness shear flow; (b) velocity
lines for the AWB shear flow.

profiles are given without normalization, which keeps its centerline fixed at y =

0.6m. These velocity profiles are applied to generate the shear flows with constant
thicknesses respectively. By such settings, the pure thickness effect from the shear
layer can be observed without any other interferences. Besides, they are closer to the
assumptions taken in Amiet’s approach, which provides an opportunity to validate
the method in simple cases.

Regarding the thickness definition in the wind tunnel shear layer, it is not pos-
sible to define its characteristics in exactly the same way as in the linear shear layer
cases since the flow speed outside the shear layer does not exactly equal to zero.
Therefore, the definition of the shear layer thickness used in Schlinker and Amiet’s
report[R. H. Schlinker 1980] is applied here to keep the consistency with Amiet’s
theoretical correction. The inner and outer boundary of the shear layer are defined
by the 90% (U/U0 = 0.9) and 10% (U/U0 = 0.1) velocity lines, respectively. The
distance between these boundaries is defined as the local shear layer thickness δ,
which varies from 0.01m to 0.5m in the applied wind tunnel shear flow. Theo-
retically, the half-velocity line (U/U0 = 0.5 ) should be taken as the shear layer
centerline. These velocity lines are plotted for each flow speeds in Fig.4.3b with the
velocity profile plotted at x = 1.5m. It is easy to observe that the spreading shape
of the shear layer in the wind tunnel flow is nearly linear, whose thickness grows
significantly downstream. The dashed black curve in Fig.4.3b indicates the nozzle
lip-line position, which is quite close to the half velocity lines with maximum 15%

deviation. Since it is not convenient to determine the half-velocity line in the wind
tunnel experiments, the nozzle lip-line is deemed to be the shear layer centerline in
the following study as well as in the correction approach.

The velocity profiles of the wind tunnel shear flows are given against a sim-
ilarity parameter η to carry out the comparison of the velocity profiles at vari-
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(a) 40m/s

(b) 50m/s (c) 60m/s

Figure 4.4: Similarity of velocity profiles at different axial sections.
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ous axial sections. The parameter is extracted from Schlinker and Amiet’s exper-
imental study [R. H. Schlinker 1980], in which η is defined as η = (y − y1/2)/δ,
where y is the local coordinate, y1/2 is the half-velocity line position. The nor-
malized velocity profiles are plotted at three stations along the flow direction for
different open-jet velocities in Fig.4.4. The black curve represents the standard
hyperbolic tangent analytic curve for two-dimensional plane shear layers from the
report[R. H. Schlinker 1980], which is taken as a reference here. Its mathematical
expression is U/U0 = 0.5 [1− tanh (2η)]. The normalized velocity profiles at various
sections show a very good collapse onto a universal distribution, whereas the hyper-
bolic tangent model does not quite capture the non-symmetry of the actual shear
layer.

4.1.3 Sound propagation through constant thickness shear layers

Beginning with the sound propagation through the constant thickness shear lay-
ers, the role of the thickness in shear layer effects was investigated while different
thickness-to-wavelength ratios (δ/λ) were regarded. As mentioned in Chapter 2,
Amiet’s approach takes the assumption of an infinitely thin shear layer, which does
not agree with the practical situation in the open-jet wind tunnel (refer to Fig.4.3b).
Therefore, the shear flow with linear velocity profile and constant thickness is suit-
able for the investigation of the pure effect of the shear layer thickness on the sound
propagation. Such a simplified shear flow is supposed to help verifying the correc-
tion method as well as to enable finding the systematics of the sound propagation
behavior in a finite thickness shear layer. Three thicknesses are chosen, which are
δ = 0.1m, 0.3m and 0.5m. The latter two correspond to the thickness in 2D wind
tunnel shear flow at x = 1.5m and x = 3.0m, respectively. The corresponding
thickness-to-wavelength ratios are listed in Tab.4.2. The flow speed is 60m/s.

δ/λ 1kHz 5kHz 10kHz

0.1m 0.29 1.47 2.94
0.3m 0.88 4.41 8.82
0.5m 1.47 7.35 14.71

Table 4.2: Thickness-to-wavelength ratio of constant shear layer simulations (2D).

The computations were carried out with a harmonic source at different frequen-
cies as listed in the tables. Fig.4.5 shows the instantaneous pressure perturbation
field of periodic sound waves through the δ = 0.1m shear layer, whose velocity profile
is plotted on the left side by the red curve correspondingly. The perturbation field
is given for source frequencies 1kHz and 10kHz to compare their various features
as the ratio δ/λ significantly increases. An instant is plotted where all transients of
the simulation have left the domain so that the solution is strictly periodic at all
positions of the domain.
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(a) f = 1kHz

(b) f = 10kHz

Figure 4.5: Instantaneous pressure perturbation field through δ = 0.1m shear layer.

Looking at Fig.4.5, the most evident feature is the total reflection occuring up-
stream, which generates strong reflected waves. These waves interact with the orig-
inal waves from the source, inducing an interference pattern below the shear layer.
The total reflection feature was discussed in Sec.2.3.1, where a theoretical expres-
sion of the critical total reflection angle was derived. According to the expression,
a total reflection happens upstream of the source in the flow situations considered,
which is coincident with the simulation results. Another accompanying feature of
the total reflection is the low perturbation area (dark shadow area in Fig.4.5) near
the shear layer in the upstream direction. The area is formed by the phase shift
across the shear layer between the sound waves below and above the shear layer,
which can be slightly observed in Fig.4.5a. In the lower side of the shear layer,
the sound waves travel slower due to the effect of the flow speed than that in the
upper side, which will induce the aforementioned phase shift. This phase shift is
spatially slowly varying because the wavelengths in the upper and lower domain
differ slightly. Moreover, the strong bending of incident waves around the critical
point of the total reflection at about x = 4m causes the sound ray tubes to spread
stronger (with a respective decay in amplitude) as the refracted wave fronts travel
more upstream.

In Fig.4.5 a light interference pattern could be observed in downstream domain
as well, especially in the contour at 10kHz. This pattern also results from the
interaction of the reflected wave. When the sound wave meets the shear layer at
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any other radiation angles but θi = 90◦, a portion of the wave experiences reflection,
the amount of which is dependent upon the angle as the sound wave hits the shear
layer, as discussed in Sec.2.4.1. Another common feature of the perturbation field is
the convection amplification by the flow speed, which is clearly expressed as a higher
perturbation magnitude upstream than downstream at the same distance from the
source point. This feature will be further discussed in the following section when
the source directivity is examined.

To gain a deeper understanding of the sound propagation properties, the time-
averaged intensity level distribution is given in Fig.4.6 for both 1kHz and 10kHz

in the δ = 0.1m shear flow. The intensity related values are given based on the
equations mentioned in Sec.3.4. The intensity distribution itself was generated ac-
cording to Eq.3.31 and averaged for several wave periods (> 20 periods at the source
frequency and after transients have travelled out of the domain). The shear layer
region is marked with solid lines (shear layer boundaries) and dashed lines (shear
layer centerline) in the figure. First of all one can observe that in contrast to the
sound pressure the intensity contours do not show any convective amplification ef-
fect as expected. Since accordingly the intensity field in a uniform flow would be
circular centering at the source point, one may appreciate the massive deviations
from this circular structure due to the presence of the shear layer.

The interference due to the total reflection is characterized by a non-
homogeneous intensity area with magnitude leaps upstream. The similar serrated
pattern is found downstream corresponding to the slight reflection by the shear
layer. Moreover, several low-intensity areas appear neighbouring the shear layer up-
stream, which correspond to the low disturbance area mentioned before due to the
phase shift. The area is smooth at low frequency since the phases of the upper and
lower sound waves match again after travelling certain distances, which is hard to
distinguish at 10kHz due to the short wavelength. In Chapter 2 the zone of silence
was mentioned as another feature of the sound propagation through the shear layer,
which is not clearly shown in the current case since θi = 0◦ is not achieved. However,
a low-intensity level area is noticed near the right boundary, since the sound wave is
always refracted to the upstream direction leaving less intensity for the downstream
area.

As the intensity vector distribution is available, it is easy to plot the intensity
propagation line at different radiation angles, which are shown as arrowed black
curves for shear flow and blue lines for the corresponding uniform flow in Fig.4.6.
The propagation traces are plotted for four radiation angles θ0 = 45◦, 80◦, 135◦ and
142◦, amongst which the last one is the critical total reflection angle calculated
from the equation in Sec.2.3.1. The critical angle obviously matches with the nu-
merical results according to the intensity propagation direction, which indicates a
backward intensity propagation direction towards the open-jet flow. The radiation
angle 80◦ is chosen since it corresponds to the angle value 90◦ of both incidence an-
gle and transmission angle, which represents a no energy loss propagation through
the shear layer. Comparing the intensity traces in the shear flow and the uniform
flow, the alteration of the sound wave propagation direction by the shear layer is
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(a) f = 1kHz

(b) f = 10kHz

Figure 4.6: Intensity level distribution through δ = 0.1m shear layer.

clearly shown, which demonstrates the most obvious deviation as sound wave radi-
ates towards upstream. Beside the traces from numerical results, the transmitted
directions for given radiation angles are shown as red deltas for the predictions ob-
tained from the angle correction of Amiet’s approach. They are in good agreement
with the computations. It indicates that the angle correction of Amiet’s approach
has a good performance in such a linear thin shear flow and can revise the direction
change of sound waves by the shear layer extremely well.

Turning to the distinction brought by the frequency variation, it is found that the
sound wave experiences similar effects at both low and high frequencies through a
thin shear layer δ = 0.1m. The angle correction performs well for both frequencies,
which is reasonable since the case is quite close to the infinitely thin shear layer
assumption taken in Amiet’s approach. Its performance is further examined for a
thicker shear layer δ = 0.3m flow in the following.

Fig.4.7 shows the instantaneous pressure perturbation field in the δ = 0.3m

shear flow. Comparing with Fig.4.5, the features at 1kHz do not show distinctive
variation, while the total reflection at 10kHz happens more gradually in a thicker
shear layer. This illustrates the fact that the total reflection is relevant with the
variation rate of the mean flow gradient in space, leading the development from a
total reflection point to a less focussed ’smeared-out’ total reflection. Moreover, the
shadow zone caused by the phase shift increases in size in the vertical direction,
which appears to be proportional to the thickness. Its validation will be further
checked as the thickest shear layer (δ = 0.5m) is considered.
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(a) f = 1kHz

(b) f = 10kHz

Figure 4.7: Instantaneous pressure perturbation field through δ = 0.3m shear layer.

Fig.4.8 gives the intensity level distributions for the δ = 0.3m shear flow. The
total reflection point appears to be pushed forward with the low-intensity level area
moving upstream as well. It is clear that the interference pattern below the shear
layer moves away from the source at 10kHz and shows a higher intensity level
than in the δ = 0.1m shear flow. This may be caused by the gradually occurring
total reflection, which induces the interference among several reflected waves. By
comparing the serrated distribution downstream below the shear layer, a weaker
reflection is seen as the thickness increases. To quantitatively investigate the feature
of the reflection by the shear layer, the directivity of the source in the shear flow
will be presented later.

Regarding the intensity propagation path, a very good agreement between the
computations and the theoretical predictions is observed as before. As listed in
Tab.4.2, δ/λ is around 8 at 10kHz. The local ratio is even bigger than that as the
sound hits the shear layer obliquely. The good agreement between the computations
and the theoretical predictions under such a situation indicates that the shear layer
thickness plays a less important role in the alteration of the propagation direction
of the sound. To learn more about the thickness effect, the case with δ = 0.5m was
finally considered in this part.

Fig.4.9 shows the instantaneous pressure field for the δ = 0.5m shear flow, which
shows quite similar characteristics as in the previous cases. The interference pattern
due to the total reflection slightly moves forward and shows a more gradually trend.
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(a) f = 1kHz

(b) f = 10kHz

Figure 4.8: Intensity level distribution through δ = 0.3m shear layer.

The area of the low signal strength caused by the phase shift expands with the
thickness, which obviously results from the enlarged mean flow gradient area in
vertical direction. This verifies that the total reflection by the shear layer is a
gradual procedure, whose characteristics vary with the thickness of the shear layer.

Again, the intensity level contour is given in Fig.4.10. Obviously, a weaker re-
flection occurs downstream than in previous cases, which indicates that more energy
of the sound wave is kept and transmitted through the shear layer rather than being
reflected back to the jet flow. Moreover, the low-intensity area due to the phase
shift moves further upstream compared to the other cases. When the propagation
direction is considered, it shows weaker agreement between the computations and
the theoretical predictions. The correction method predicts a slightly bigger trans-
mission angle upstream and a smaller transmission angle downstream. This phe-
nomenon may result from the convective effect by the flow speed through the shear
layer. When the sound wave travels through a thicker shear layer, it experiences
the convective effect in longer time compared with a thin shear layer. Therefore,
its transmission angle is slightly changed by the flow speed, which is similar to the
convection effect in the jet flow. Besides, it is interesting to note that particularly
the simulation for the thick shear layer shows, that the occurrence of the total re-
flection is a function of the overall speed difference across the complete shear layer
only. Fig.4.10b almost perfectly demonstrates this feature when considering the ray
leaving the source under the theoretically predicted critical radiation angle for the
total reflection. The propagation direction reverses in the vertical direction right at
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(a) f = 1kHz

(b) f = 10kHz

Figure 4.9: Instantaneous pressure perturbation field through δ = 0.5m shear layer.

the vertical position where the shear layer ends.

As final observation it is noted, that the intensity lines leaving the source under
the theoretical critical angle of total reflection turn parallel to the shear layer at
more upstream positions not only as the shear layer thickness grows but also as the
frequency decreases.

So far the basic characteristics of the sound propagation through constant thick-
ness shear layers were introduced. Based on these qualitative comparisons for dif-
ferent source frequencies, it is found that the shear layer thickness affects the sound
wave propagation characteristics in the extreme area, such as total reflection. The
sound intensity distribution seems not to be affected too much far from the shear
layer. However, it should be noticed if microphones are set in the region in front of
the source near total reflection area. The angle correction in Amiet’s approach can
be applied to give the critical total reflection angle to avoid such a problem. The
performance of the angle correction was validated and proved to be efficient as δ/λ
approaches to a big value. Next section will present the quantitative study of the
sound field in the constant thickness shear flow as well as the comparison with the
theoretical corrections.
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(a) f = 1kHz

(b) f = 10kHz

Figure 4.10: Intensity level distribution through δ = 0.5m shear layer.

4.1.4 Alteration of the sound wave amplitude through constant
thickness shear layers

By observing the instantaneous pressure field and the intensity field, the features of
the sound propagation through shear layers were exhaustively investigated. Nextly,
to define exactly by how much the shear layer changes the sound pressure level re-
ceived by the microphones as a function of the shear layer thickness, the pressure
perturbation amplitude at receiver’s position needs to be analysed. For this pur-
pose, the pressure magnitude at specified microphone positions is extracted from
the computational results, which record the root mean square pressure values. The
perturbation data are later translated into sound pressure level (SPL) as mentioned
in Sec.3.4. As already introduced in Sec.4.1.1, the position at yM = 1.2m is chosen
as the microphone line for the investigation, which corresponds to a h/yM value
of 0.5 in theoretical corrections. The SPL data along the line is extracted for the
analysis and comparison with the theoretical values.

Fig.4.11 presents the sound pressure level for the specified microphone line at
the source frequency 1kHz. The x-axis represents the horizontal coordinate of the
microphones, which correspond to the measurement angle θM in the range 15◦ ∼
165◦. x = 5m indicates the position right above the source position, where θM =

90◦. The SPL curves for various shear layer thicknesses match extremely well at the
positions near x = 5m, in the angle range around θM = 39◦ ∼ 141◦ (corresponding
to the coordinate range x = 3.5m ∼ 6.5m). In this range, the SPL of the transmitted
wave will not vary with the shear layer thickness in the current background. This
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illustrates an ignorable thickness factor as the mean flow gradient effect is considered.
Beyond this angle range, the deviation brought by the shear layer thickness increases
with the distance from the source point, which achieves a maximum of about 1dB

deviation between shear flows with thickness δ = 0.1m and δ = 0.5m. It is noticed
that in the upstream positions the deviation increases slowly and show a smaller
deviation than downstream between δ = 0.3m and δ = 0.5m. The reason for
this better coincidence is not clear yet. Generally, the SPL value at the receivers’
positions is higher in a thicker shear flow, indicating a larger transmission portion
through the shear layer. In other words, the thickness of the shear layer tends to
stretch the SPL distribution longitudinally about its maximum. This agrees with
the weaker reflection observed in Fig.4.10 for δ = 0.5m.

Figure 4.11: Sound pressure level distribution along microphone line yM = 1.2m.

In Fig.4.11 the SPL value at the same receivers’ positions in a uniform flow (U0 =

60m/s) is given as well, from which the convective amplification effect by the flow
speed is quite clear. This curve can be taken as a reference to illustrate the amplitude
variation induced by the shear layer. It shows a stronger alteration by the shear
layer as the distance between the receiver and the source increases, which indicates
the maximum deviation around 8dB at the most upstream located measurement
position. The curves are given only for 1kHz since the SPL distributions at higher
frequencies show the identical trend, whose SPL distributions are presented in the
Appendix B.

By the previous comparisons, it is clear how much influence the shear layer has
on the amplitude of transmitted waves in the shear flow with different thickness.
Since the pressure amplitude along the same microphone line is known in both the
shear flow and the uniform flow, it is convenient to plot the amplitude ratio curve
as in Amiet’s approach (refer to Fig.2.3). With the help of the angle correction,
the coordinate of the corrected position A for each receiver at point M could be
easily determined. Then the pressure amplitude data at the corrected position can
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be extracted from the black curve in Fig.4.11. Finally, its ratio to the amplitude
value at M is calculated. In this way, the performance of the amplitude correction
could be validated in constant thickness shear flow, which is helpful for our further
study in the real wind tunnel shear flow.

(a) angle definitions (b) amplitude ratio

Figure 4.12: Comparison of pressure amplitude ratio between computations and the
theory for constant thickness shear layers (f = 1kHz).

Fig.4.12b gives the pressure amplitude ratio curves against the measurement
angle θM . The corresponding angle definitions, as well as the position of measure-
ment and corrected points, are sketched in Fig.4.12a. The black curve is obtained
from the amplitude correction of Amiet’s approach for the corresponding measure-
ment angle, in which the Mach number is 0.18 and the distance ratio h/yM equals
to 0.5 for the considered cases. The curves extracted from computational results
at the source frequency 1kHz for different thicknesses are given in colored curves.
Amongst these, the curve for δ = 0.1m shows the closest distribution to the theo-
retical values as expected. In the angle range θM = 40◦ ∼ 145◦ the pressure ratio
shows quite nice agreement between computations and theoretical predictions with
maximum deviation around 0.2dB. Looking at the data at extreme angles very up-
stream and downstream, the amplitude correction could well predict the shear layer
effect with less than 1dB deviation from the computational results. This means
that the mean flow gradient effect caused by the shear layer could be perfectly cor-
rected by Amiet’s approach for the constant thickness cases. The amplitude ratio
at the source frequency 10kHz is only presented for δ = 0.5m since it shows a quite
close distribution as that at 1kHz. This indicates a weak frequency relevance in
the amplitude correction for the constant thickness shear flow, which is a positive
circumstance for the following study. The characteristics will be further validated
for the actual wind tunnel flow in the following sections.

Until now we have implemented both qualitative and quantitative studies on
the sound transmission through constant thickness shear layers for various source
frequencies. The study gives a basic view of the sound propagation through the
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shear layer and shows the deviations caused by the shear layer thickness and the
source frequency. Amiet’s approach was primarily validated in simplified shear flows
as well. In the previous sections, the computational results are mainly given for
frequency 1kHz and 10kHz for comparisons. Other results for source frequency
5kHz may be found in the Appendix B.

4.1.5 Sound propagation through wind tunnel shear layers

Sec.4.1.2 presented some basic information of the 2D wind tunnel shear flow of
AWB, which illustrates a spreading shaped shear layer (Fig.4.3b) as well as a non-
linear velocity profile (Fig.4.4). By the primary study of the thickness effect in
previous sections, it could be assumed that the thickness rarely brought deviation
to the amplitude and direction of the signals received by the microphones. This
conclusion is drawn for the specified shear flow with linear velocity profile, which
actually differs from that in a real wind tunnel shear flow introduced in Sec.4.1.2.
To further investigate the sound propagation characteristics and the performance
of Amiet’s approach, the computations were implemented in a more realistic wind
tunnel shear flow. As already introduced in Sec.4.1.2, three typical wind tunnel
flow speeds in the AWB were chosen, i.e. 40m/s, 50m/s and 60m/s. The influences
induced by the flow speeds was taken into account by such a setting.

Fig.4.13 shows the instantaneous pressure field in the wind tunnel shear flow
with U0 = 40m/s, in which the shear layer shape and its position are indicated by
the red curves. The red curves are generated according to the definitions mentioned
in Sec.4.1.2, which define the upper and lower boundaries of the shear layer in the
flow field. The pressure contours show very similar features as those of the previous
cases. The total reflection happens near the left boundary, which identifies as high-
pressure amplitude through the shear layer. The corresponding interference pattern
below the shear layer is not as clear as in previous cases due to the shrunk domain
size. It should be mentioned that the critical total reflection angle increases as
the flow speed decreases, which indicates a total reflection happens at the more
upstream position.

Fig.4.14 plots the sound intensity level distribution as well as the propagation
direction in the wind tunnel shear flow with U0 = 40m. The level range differs with
the source frequency, but the interval and the overall increment of the contour are
kept the same for both frequencies, i.e. 1dB and 10dB respectively. The distribution
shows obvious protrusion to upstream caused of the total reflection, whose critical
angle is indicated by θtot0 . The difference in the results for the frequency variation
is not distinctive except the serrated distribution near the left boundary at 10kHz.
Such a distribution might be caused by the nearby boundary condition, which does
not entirely lead the sound wave to propagate farther outward but generates slight
reflection back into the domain.

Considering the intensity propagation directions in Fig.4.14, the satisfying agree-
ment is still kept at both frequencies between Amiet’s correction and computations
in the context of the spreading shear layer. The only mismatch of the intensity prop-
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(a) f = 1kHz (b) f = 10kHz

Figure 4.13: Instantaneous pressure perturbation field in U0 = 40m/s wind tunnel
shear flow.

(a) f = 1kHz (b) f = 10kHz

Figure 4.14: Intensity level distribution through U0 = 40m shear flow.
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agation path is at the critical total reflection angle. The wave path goes beyond
the shear layer instead of propagating backward into the jet flow at the theoretical
critical total reflection angle. This happened also for the previous constant thick-
ness case (δ = 0.1m) but then goes back to the jet flow as it propagates further.
Such further development of the propagation path is not observable here due to the
limited computation domain size. Further simulation is necessary to determine the
propagation path in an extended domain. Another possible reason is the reflection
effect by the left boundary condition (radiation boundary condition Eq.(3.5)), which
disturbs the intensity distribution around the total reflection area and further causes
deviation of the critical total reflection angle.

(a) f = 1kHz (b) f = 10kHz

Figure 4.15: Instantaneous pressure perturbation field in U0 = 50m/s wind tunnel
shear flow.

(a) f = 1kHz (b) f = 10kHz

Figure 4.16: Intensity level distribution through U0 = 50m shear flow.

Similarly, the instantaneous pressure field and intensity level contour are given
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in Fig.4.15 and Fig.4.16 for the wind tunnel shear flow with U0 = 50m. Since
the influences from thickness variation and spreading shape of the shear layer are
proved to be insignificant, the following study will focus on the differences brought
by the flow speed. Comparing Fig.4.15 with Fig.4.13, the 50m/s case presents a very
similar pattern as that for U0 = 40m/s but with a more obvious total reflection as
indicated by the bright color upstream. This is verified by the intensity level contour
in Fig.4.16 with a high-intensity level area appearing near the left boundary around
the shear layer centerline (plotted by the dashed line). Here the total reflection
happens earlier at 146◦ according to Amiet’s approach, which could be the reason
for the clearer pattern. Considering the wave paths, the deviation between com-
putations and theoretical predictions of the sound propagation direction expands
slightly, which may be due to the convective effect through the finite thickness shear
layer as mentioned earlier.

(a) f = 1kHz (b) f = 10kHz

Figure 4.17: Instantaneous pressure perturbation field in U0 = 60m/s wind tunnel
shear flow.

The last contours are plotted for the sound propagation in the wind tunnel
shear flow at U0 = 60m/s in Fig.4.17 and Fig.4.18. A more obvious total reflection
happens upstream, which generates a clear interference pattern below the shear
layer. Since the left boundary corresponds to the position of the nozzle exit plane of
the AWB wind tunnel, this simulation clearly indicates that at 60m/s total reflection
occurs in the shear layer outside the nozzle. The theoretical correction again predicts
a slightly bigger deviation due to the refraction by the shear layer.

By showing the computational results, some characteristics of the sound prop-
agation through the spreading wind tunnel flows were analyzed and investigated.
A stronger mean flow gradient effect was observed with increasing flow speed. By
comparing with the theoretical predictions, it was found that the spreading shape
of the shear layer does not introduce any strong influences. The angle correction
could still correct the mean flow gradient effect accurately. Next, the accuracy of
the amplitude correction will be validated.
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(a) f = 1kHz (b) f = 10kHz

Figure 4.18: Intensity level distribution through U0 = 60m shear flow.

4.1.6 Alteration of the sound wave amplitude through spreading
shear layers

The pressure amplitude distribution for the source frequency 1kHz is given along
the microphone line yM = 1.2m as SPL values in Fig.4.19, in which the solid lines
indicate the value received in the shear flow while the dashed lines represent the data
received in the uniform flow at the same microphone position. The distributions in
the shear flows with various flow speeds show almost identical profiles with only
small differences (max. 0.4dB) near boundaries (x = 0 and x = 3). Considering
the curves in the corresponding uniform flows, they express an obvious directional
distribution due to the flow speed. Such a directivity is eliminated by the refraction
effect of the shear flow and generate a similar directivity for considered flow speeds.
Additionally, one may notice the wavy forms of the solid lines upstream, which are
caused by the numerical boundary conditions rather than the shear layer effect. It
would disappear if the computation domain was further extended upstream.

Another feature in Fig.4.19 is the inverted magnitude sequence at upstream
locations for various flow speeds. In contrast to the sequence in the uniform flow
that a higher magnitude is received in the higher speed flow, the magnitude goes
down as the shear flow speed goes up. This indicates that upstream loss in the
transmitted signal due to a stronger reflection by the shear layer in higher speed
shear flow slightly overcompensates the increase due to convective amplification.
This will be further validated by drawing the directivity at the same distance from
the source in the next section.

Since the SPL in the shear flow and the uniform flow are available, the pressure
amplitude ratio can be given between corrected point (A) and measurement point
(M), as depicted in Fig.4.20. Although the flow speeds varies, the deviation between
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Figure 4.19: Sound pressure level distributions along the microphone line yM =

1.2m. ( shear flow ; uniform flow )

Figure 4.20: Comparison of pressure amplitude ratio between computations and the
theory for wind tunnel shear layers.
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computations and the theory stays in a certain range, i.e. maximum 0.15dB. The
computational results are almost coincident with the theory upstream (θM > 90◦)
where the shear layer thickness is close to 0.1m (approaching the zero-thickness as-
sumption), while the maximum deviation occurs downstream where the thickness
approaches a thickness of 0.5m. Generally, the theory gives a lower correction magni-
tude than computational results, representing an underestimation of the amplitude
at the corrected position in the theory. However, comparing with the amplitude
ratio in the constant thickness shear flow, the overall prediction from the theory
shows a good agreement with computations even when the wind tunnel shear layer
owns a spreading shape.

4.1.7 Source directivity in constant thickness and wind tunnel
shear flows

As introduced in the previous sections, the extraction of the source directivity from
computations in the shear flow is a helpful way to investigate the sound propagation
and reflection characteristics. It is convenient to infer the strength of the reflection
by the shear layer since the numerical simulation can provide the data below the
shear layer. In order to investigate the sound propagation features before and after
the total reflection point, the sound pressure directivity is firstly plotted along circles
at two radii. One radius equals to 1.0m centered at the source point, which is inside
the region just before the total reflection point. The other radius equals to 1.4m

centered at the source point, which is beyond the total reflection point.

(a) r = 1.0m (b) r = 1.4m

Figure 4.21: Sound pressure directivity of point mass/heat flow source in the con-
stant thickness shear flow.

Fig.4.21 shows the source directivity at 1kHz, in which the colored curves rep-
resent the data in the shear flow while the black curve indicates the data in the
uniform flow. The regions, where the microphone line crosses the shear layer, are
marked by the dashed lines with the corresponding color for each thickness. For ex-
ample, the microphones located between measurement angles 33◦ ∼ 41◦ are inside
the shear layer in the δ = 0.1m shear flow, which are labelled by the red dashed
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lines. Looking at Fig.4.21a, before the critical total reflection point, the wavy parts
in both upstream and downstream area indicate the sound wave reflection by the
shear layer. Obviously, a stronger reflection happens in the upstream locations as
well as in the thinner thickness shear flow. This holds also for the distribution if the
microphones are positioned further beyond the critical total reflection point, as given
in Fig.4.21b. The distributions in Fig.4.21b illustrate a severe amplitude fluctuation
upstream, which results from the interference between the reflected wave and the
original sound wave. Such a fluctuation can cause up to 3dB deviation comparing to
the data in the uniform flow. The deviation can not achieve 6dB, since the reflected
wave amplitude decreases in a longer travelling path relative to the original wave.
Additionally, Fig.4.21b demonstrates a stronger reflection by the shear layer since
the corresponding incident wave hits the shear layer at a more shallow incidence
angle.

Similarly, the sound pressure directivity in the wind tunnel shear flow may be
extracted from computations at the same radii for various flow speeds, as plotted
in Fig.4.22. Since the defined shear layer region is quite identical at the considered
flow speeds (refer to Fig.4.3b), the label of the shear layer region is only given at the
flow speed U0 = 60m/s by the red short-dashed lines. The solid curves represent
the values in the shear flow, while the long-dashed curves indicate the values in
corresponding uniform flow.

(a) r = 1.0m (b) r = 1.4m

Figure 4.22: Sound pressure directivity of point mass/heat flow source in the wind
tunnel shear flow.

Next, the distribution in Fig.4.22 is compared with that in Fig.4.21 at U0 =

60m/s. The wavy form resulting from the reflection shows a smoother fluctuation
in upstream direction since the shear layer thickness is bigger than δ = 0.1m around
these microphones. In downstream locations, the level is close to that of the δ =

0.5m shear flow due to the thickness similarity. Considering the variation brought
by the velocity, the reflection shows an increasing trend in strength as the flow
speed goes up, which is coincident with the phenomenon observed in the pressure
and intensity level contours.
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4.2 Sound propagation through the curved shear layer
(2D)

4.2.1 Computational setup

In the previous sections, we focused on the studies of the sound propagation through
a simple analytical parallel shear layer. The corresponding base flow was obtained by
CFD simulations of an empty test section wind tunnel. This ensures that the shear
layer centerline is approximately parallel to the nozzle centerline (see Fig.4.3), which
enables us to validate the correction method conveniently. However, the flow field is
always altered by the test model placed in the test section in the wind tunnel tests,
which can induce a change in the shear layer shape as well as its characteristics. In
order to identify the sound propagation behavior in such an altered shear flow and
further validate the correction method, the 2D flow field around a high-lift airfoil
DLR F16 was considered at a specified geometric angle of attack.

(a) Without nozzle surface (b) With nozzle surface

Figure 4.23: Computation domain for simulations in the curved shear flow.

The computations were firstly carried out in the wind tunnel shear flow with
U0 = 60m/s, which is free of any solid wall, as shown in Fig.4.23a. The range and
the structure of the computation domain are illustrated by the yellow grid structure.
The part around the airfoil surrounded by a circle was removed and a harmonic
source is placed at its center insteadly. Since the current study focuses on the pure
shear layer effects, a harmonic source was considered appropriate and consistent
with the existing study than the broadband noise from an airfoil. The sound wave
from the source is introduced into the domain by a sponge layer boundary condition
along the circle. The domain was extended in the vertical direction to include both
the upper and lower shear layer since the shear layer is not symmetrical as that in
an empty test section. The sound propagation path could vary in such a shear flow,
which results in differences between signals received at the upper and lower side
of the test section. The resolution of the mesh was kept the same as in previous
computations, i.e. 7 points per wavelength.
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The study was later extended to the computations with a bigger domain, as
shown in Fig.4.23b. The domain was extended upstream by 0.9m to include part
of the nozzle geometry. Since it was occasionally noticed that the nozzle surface
may reflect the sound wave originally going upstream, which would disturb the
signals received by the microphones as well. A similar structure was used as the
case without nozzle geometry, in order to reduce the grid influence to some degree.
The left boundary of the grid between the horizontal nozzle walls was treated as an
absorbing sponge layer to avoid the possibility of unphysical reflections. The detailed
structure of the rim at the nozzle exit is enlarged in the view at the top corner,
whose position in the grid is highlighted by the green circle. To be comparable with
the computations in the flow without nozzle surface, a harmonic source at 1kHz

and 10kHz was firstly utilized to observe the reflection from the nozzle surface,
respectively. It was replaced later by a Gaussian shaped pressure pulse, in order to
clarify the surface reflection effect clearly and avoid uncertainties from the potential
spurious effects from the sponge layer used to introduce the sound into the field.
The details of both source models can be found in Sec.3.2.4.

To quantitatively evaluate the deviation of the received signal caused by the
curved shear flow, two regular microphone lines were chosen at yM = 1.1m above
and yM = −1.5m below the test section. The positions were chosen to ensure
that the microphone lines do not cross the shear layer and the h/yM ratio is close
for upper and lower microphone lines in the theoretical correction. The different
distances of the microphone lines from the nozzle centerline result from the fact
that the airfoil is fixed at 0.1m above the nozzle centerline, where the harmonic
source was placed. If the nozzle lip-line is taken as the shear layer centerline, then
h/yM = 0.45 for the upper microphones and h/yM = 0.47 for the lower microphones.

4.2.2 Characteristics of the base flow

As shown in the previous section, the wind tunnel jet experiences a significant
curvature when passing over the lifting airfoil, which results in deviations in the
shear layer boundaries and centerline from those in the standard correction approach
as well as in the empty test section. This section presents the characteristics of such
a curved shear flow, in which the locations of the shear layer boundaries are defined
according to the way in Sec.4.1.2.

Fig.4.24 shows the velocity lines that define the boundaries and centerline of the
shear layer, as well as the horizontal velocity profiles at various sections. Considering
the shear layer centerlines on both upper and lower sides in Fig.4.24a, they illustrate
an obvious downward deviation starting around x = 0.4m from the nozzle lip-
line. The location corresponds to the leading edge of the airfoil. The shear layer
centerlines U/U0 = 0.5 (U is the velocity component in x direction) deviate from the
nozzle lip-line obviously as well. The latter one is usually taken as the shear layer
centerline in the correction procedure. If the nozzle lip-line is still regarded as the
shear layer centerline in the theoretical corrections, a maximum of 40% error will
be brought into the calculation for the value of h. It appears that an oblique shear
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layer centerline paralleling to the U/U0 = 0.5 velocity line will be more suitable
as a centerline. Such a hypothesis will be examined in the following sections with
numerical results. The horizontal velocity contour and its profiles at three sections
are plotted in Fig.4.24b.

(a) Definitions of shear layer boundaries (b) Velocity profiles at different sections

Figure 4.24: Characteristics of the shear flow around the high-lift airfoil.

(a) standard centerline (b) oblique centerline

Figure 4.25: Centerline models for the theoretical correction approach.
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4.2.3 Centerline models applied in Amiet’s approach

As already noticed, the general shear layer centerline model applied previously may
result in deviations in the theoretical correction method if it is applied in a curved
shear flow. Therefore, a modified model was adopted additionally in the theoretical
corrections for such a specified situation.

Fig.4.25 gives the sketches of two centerline models that will be applied to the
considered case in the correction method. Fig.4.25a is the traditional model used
for the previous cases in the shear flow of the AWB with empty test section, in
which the nozzle lip-line is taken as the shear layer centerline. Fig.4.25b depicts a
modified centerline model, which is parallel to the flow direction as observed well
downstream of the position of the source (lifting body respectively). Both of them
originates from the nozzle exit since it is easier to define such a centerline in the
experiments rather than that overlapping with the practical shear layer centerline
(sketched in blue color in both figures). The slope of the oblique model is determined
by the geometric angle of attack of the airfoil model (α), which is easily obtained
since it is provided as an initial parameter in the wind tunnel tests.

The angle and the distance needed in the correction are labelled in Fig.4.25 as
well. Their values vary for the different centerline models at the same measurement
point (M). The corresponding corrected point (A) varies as well. To be comparable
with the standard centerline model, the pressure amplitude at the corrected position
A′ in Fig.4.25b is transformed to the position at equal sideline position in the wind
tunnel coordinate (x− y coordinate) in the following comparisons.

4.2.4 Sound propagation through curved shear layers

Knowing the information of the background flow, the sound propagation character-
istics through the curved shear flow are investigated. As usual, the computation
results are firstly shown as pressure perturbation and intensity level contours to
observe the temporary and the averaged sound field.

Fig.4.26 shows the instantaneous pressure perturbation field and the intensity
level distribution at 1kHz. The pressure contour does not show many distinguishing
features from the previous cases except the convection effect. The convection effect
results in an unsymmetric-pattern if one looks at the vertical direction, which is
caused by curved flow direction. Total reflection is not observable since the source
is located so close to the left boundary that the critical total reflection angle can
not be achieved. The intensity level distribution shows a much clearer view of these
characteristics in Fig.4.26b. The distribution shows an orientational feature as the
reduction of the intensity when the sound wave goes through the shear layer. The
practical centerline of the shear layer by definition is indicated by the black curves.
When the sound wave crosses the shear layer downstream at a relatively big angle,
the intensity shows a strong reduction. This reduction may result from the fact
that sound wave experiences a stronger reflection when a large incidence angle is
achieved.
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(a) (b)

Figure 4.26: (a)Instantaneous pressure perturbation field; (b)Sound intensity level
field in the shear flow around the high-lift airfoil for source frequency 1kHz.



4.2. Sound propagation through the curved shear layer (2D) 61

Regarding the intensity propagation direction in Fig.4.26b, the arrowed lines
represent the propagation path in the curved shear flow, while the blue lines give
the path in the uniform flow for corresponding radiation angle. Contrary to the
phenomenon observed in the flow field of the empty test section where the vertical
velocity is quite small, the radiation paths deviate from the paths in the uniform
flow earlier before reaching the shear layer, which results from the increasing ve-
locity in the vertical direction of the background flow field. The deviation becomes
more obvious in the propagation direction downstream. The symbols indicate the
propagation directions of the transmitted wave derived from the theoretical mod-
els. Both predictions obtain very closely located propagation directions outside the
upper shear layer, in which the modified oblique model predicts a slightly larger
transmission angle. Comparing them with the radiation path in the arrowed curve,
the deviation increases slightly compared to the previous cases. Looking at the
propagation paths on the lower side, the standard model illustrates a surprisingly
good angle prediction compared to the modified model. Values from the oblique
model appear slightly farther away from the numerical results. The possible reason
of these performances is the contribution from the distance ratio h/yM .

Since a quite similar propagation pattern is generated at 10kHz, its sound field
is not shown here repeatedly but can be found in the Appendix B for completeness.

4.2.5 Alteration of the sound wave amplitude through curved shear
layers

After knowing the sound propagation characteristics as well as the performance of
the angle correction for both models, the influences by the curved shear layer and
the capability of Amiet’s amplitude correction can be quantitatively evaluated next.
Fig.4.27 gives the pressure amplitude ratio between corrected position and measure-
ment position. The curves for microphones both above and below the test section
are shown. Due to different definitions of the measurement angle in the adopted
theoretical correction models (see Fig.4.25), the curves are plotted against the hor-
izontal coordinate of the measurement point instead of θM . The y-axis represents
again the correction value in dB that needs to be added to the measurement data.
It needs to be mentioned that the x-coordinate of the corrected point A varies with
the applied correction model.

It is noticed that the angle correction predicts the transmitted wave direction
with some deviations. The common process based on the theoretical angle correction
to obtain the amplitude ratio curve will not be adopted here. Instead, the curve
drawn from the computation results (black curve) is obtained in an entire numerical
way, which can exclude the deviations caused by the angle correction. Firstly,
the intensity propagation paths in both the shear flow and the uniform flow are
determined for the same radiation angle, as that in Fig.4.26b. Then their cross
points with the microphone line (yM = 1.1m or yM = −1.5m) could be fixed,
which correspond to the points M and A in the theoretical corrections respectively.
The pressure perturbation value at these two points are easily extracted from the
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numerical results. Then the pressure ratio is obtained for the measurement point M.
By applying such a process for many radiation angles, the CAA correction curves
in Fig.4.27 could be obtained.

(a) yM = 1.1m (b) yM = −1.5m

Figure 4.27: Comparison of pressure amplitude ratio between computations and the
theory for curved wind tunnel shear layers at 1kHz.

The theoretical curves were obtained once the measurement angle is known,
represented by colored curves. Regarding the microphones located above the test
section (Fig.4.27a), the CAA results illustrate a distribution generally between the
values from the theoretical models in upstream locations, while the correction by
the standard model seems to be closer to the CAA results in downstream locations.
However, the oblique model has an advantage in predicting the trend downstream,
which predicts a downward development rather than an upward trend in the stan-
dard model. It could be further validated if a larger computation domain is available.
Looking at the data for the microphones on the lower side (Fig.4.27b), it is clear that
the data derived from the standard model holds a better agreement with numerical
results than the oblique model in upstream locations, which is reasonable since the
flow curvature in this range is small and the former one is based on a better angle
correction. When the microphone approaches downstream, the oblique model well
predicts the trend of the amplitude ratio alteration, which can help to avoid a maxi-
mum of about 0.5dB error due to the standard correction approach. Although both
models do not show an excellent agreement with numerical results as in previous
cases, they could still correct the curved shear layer effect in a reasonably small error
range. These two models could be applied simultaneously for wind tunnel tests as
currently considered situation, since the theoretical curves drawn from the models
can approximate well the shape of the most accurate correction curve (as the black
curve) and its possible inflection point.
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4.2.6 Sound propagation through the curved shear layer consider-
ing the nozzle rim reflection

As already introduced, the nozzle surface, particularly the nozzle rim can reflect
the wave initially oriented upstream in the wind tunnel tests. The reflected wave
will then interfere with the original wave emitted from the source. Naturally, such
a reflected wave would exert influences on the shear layer correction as well. The
possible deviation caused by it will be investigated in detail in this and the following
sections for the same curved shear flow as in the last case.

To be comparable with the computations without nozzle surface, the same har-
monic source at 1kHz and 10kHz as in the previous case was firstly utilized to
observe the reflection from the nozzle surface. Fig.4.28 gives the instantaneous
pressure perturbation field as well as the intensity level field with the black curve
showing the U/U0 = 0.5 velocity line. Fig.4.28a illustrates a regular interference
pattern above and below the test section, which is expressed as ’finger’ patterns in
the intensity level distribution in Fig.4.28b. All these phenomena indicate a strong
reflection from the nozzle surface, which manifest itself by a 6dB drop in between
the ’fingers’ in the intensity level. Since the reflection from the horizontal nozzle
surface is expected to be very low due to its reflection direction, it is reasonable
to conclude that the reflection is mainly caused by the vertical rim of the nozzle.
Obviously, this reflection can severely affect the accuracy of shear layer correction.
Additionally, it needs to be mentioned that the interference pattern at the left do-
main boundary between the horizontal nozzle surface may not be so ’physical’ since
an absorbing sponge is placed here to avoid reflection from this face.

(a) instantaneous pressure field (b) time-averaged intensity level distribution

Figure 4.28: Sound field at 1kHz through curved shear layers as nozzle surface
included.

As described earlier the analytical sound field of the applied point source model



64 Chapter 4. Numerical Results

needs to be introduced through an annular sponge zone around a circular hole in
the computation domain. When the sound wave is reflected back towards this zone,
it could result in a secondary reflection due to the boundary condition rather than
propagation further downstream. This possible reflected wave could interfere with
the original wave as well. In order to avoid any uncertainty from potential spurious
effects from the sponge zone condition on the nozzle reflection effect, the harmonic
source was replaced by a pressure pulse according to Eq.(3.11) at xc = (0.6m, 0) with
a spatial pulse width of b = 0.09 for the target frequency 1kHz and b = 0.009 for the
target frequency 10kHz respectively. The pressure pulse was placed directly into
the CAA domain without a grid cut-out or a sponge layer, in order to solve an initial
value problem allowing reflected waves to travel freely through the source point. By
comparing the computations with the former ones, one can identify whether the grid
cut-out for the source significantly alters the (reflected) sound field.

A non-periodic pressure pulse with Gaussian distribution (refer to Sec.3.2.4) was
inserted as an initial value into the flow field in the validation computations. The
flow velocity in the area where originally the airfoil was located was replaced by
a constant flow area, whose values were taken from averaging the mean flow data
along the borders of the original grid cut-out. Its numerical results are presented in
the next section as SPL along specified microphone lines.

4.2.7 Alteration of sound wave amplitude through the curved shear
layer as nozzle surface considered

To identify the influences from the nozzle rim reflection, a convenient way is to
compare the data collected along the same microphone lines in the shear flow with
and without the nozzle surface. Fig.4.29 plots the SPL value along the specified
microphone lines at source frequencies 1kHz and 10kHz. The location of the nozzle
surface is indicated at the bottom. The curves are obtained for shear flows with and
without nozzle surface, in which the former one is indicated by dashed lines. The
solid curves behave as fluctuations around the corresponding dashed curve, which
shows a maximum 3dB local increase at 1kHz and about 5dB local increase at
10kHz from the case without nozzle geometry. Note that for this comparison it is
reasonable to quantify the amount of the local increase in SPL only. Theoretically,
the constructive interference of one perfectly reflected plane wave would yield a
maximum increase of 6dB, while a respective perfect cancellation would result in
negative infinite SPL levels. This will be further examined by the numerical results
for pressure pulse source.

Similarly, the SPL distribution is given for the pressure pulse source in Fig.4.30.
Since the source is Gaussian distributed, which can be regarded as a broadband
source, the received pressure fluctuation data was transformed from time domain
to frequency domain. Then the amplitude distribution can be extracted for single
frequencies.

The curve in Fig.4.30 plots the SPL along the microphone line yM = 1.1m with
and without background flow field. The black curves can be taken as the reference
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(a) f = 1kHz (b) f = 10kHz

Figure 4.29: Comparison of SPL along microphone lines for computations with and
without nozzle surface (harmonic source).

(a) f = 1kHz (b) f = 10kHz

Figure 4.30: Comparison of SPL along microphone lines at yM = 1.1m for compu-
tations with and without nozzle surface (pressure pulse).
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for the others, which represents the original directivity of the sound source in a
non-moving medium free of solid surfaces. The blue curves give the data received
in a same quiecent medium but with the nozzle surface included, which illustrates a
fluctuation around the black curve due to the surface reflection. The data in a shear
flow with surface reflection as in the previous case is expressed as red curves, which
show less fluctuation range in SPL at 10kHz. Regarding the difference between the
black and the corlored curves, the reflection itself again results in a maximum 3dB

local increase for 1kHz and 5dB local increase for 10kHz. Note that these values as
well as the level distribution represented by the red curves correspond remarkably
well to the harmonic point source simulation in Fig.4.29. This agreement shows that
the influence of the internal sponge zone does not significantly disturb the field at
the microphone line considered.

Additionally, some features were noticed during the analysis. The existence of
the shear flow appears to push the interference area farther downstream (compare
blue and red curves in Fig.4.30). From the numerical results one may conclude
that if reflections occur at the nozzle rim, not only the measured amplitude will
vary considerably along the microphone line for harmonic signals but spectra will
be strongly modified since the interference pattern depends on the frequency. This
effect needs to be taken seriously as well if a microphone array is utilized. Another
feature is about the setting in the numerical simulation. One should note that for
proper comparison it is necessary to use a quite small spatial half width for the
Gaussian-distributed source pulse of about a quarter of the wavelength in order to
avoid source-wise non-compactness effects. If the source compactness can not be
guaranteed, the disturbances from the source itself could result in an unexpected
sound pressure level distribution for any specified frequency.

So far the surface reflection due to the nozzle rim was analysed by two different
sound sources. The reflection can result in a fluctuation distribution along the
microphone line for the single frequency. The effect induced by the surface reflection
is closely related to the phase shift between the original wave and the reflected wave.
Since currently available correction methods are frequency independent these can
not be applied to such a situation. This reflection effect needs further experimental
validations as well as numerical studies to obtain appropriate correction.

4.3 Sound propagation through analytical shear layers
(3D)

The mean flow gradient effect has been intensively investigated in 2D as sound waves
get transmitted through a free shear layer. The sound propagation characteristics
were analyzed in detail for various background shear flows. Based on available
numerical results, the reliability of Amiet’s approach was tested and validated, and
further slightly modified according to the practical situation. With this background
information of the mean flow gradient effect through the 2D shear layer, the study
was extended to the 3D computations to explore its influences on the 3D sound
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propagation.
This section aims at investigating the 3D sound propagation through a 2D plane

shear layer and a 3D rectangularly shaped wind tunnel shear layer of the AWB. The
performance of Amiet’s approach was tested at various spanwise locations for both
shear layer shapes. Moreover, the applicable area of the approach can be determined
through such a process.

4.3.1 Computational setup

The computations were implemented for both the planar shear flow and the 3D real-
istic wind tunnel shear flow (rectangularly shaped). The former one was modelled as
an extension of 2D shear flow in the spanwise direction with the velocity in spanwise
direction being 0m/s. The 2D shear flow was generated by extracting the spanwise
symmetry plane along the nozzle centerline in the realistic 3D wind tunnel flow. The
spreading shear layer was chosen as the subject instead of constant thickness shear
layer since quite a small deviation was observed between them in 2D computations
and the spreading shear layer is a more practical sample for the 3D study. The
flow field in the test chamber of the AWB with rectangular jet cross section was
considered with empty test section to provide a realistic 3D shear flow. Both base
flows were obtained at three typical wind tunnel flow speeds, i.e. 40m/s, 50m/s,

and 60m/s. Fig.4.31 gives the horizontal velocity contour at U0 = 60m/s for both
the planar shear flow and the wind tunnel shear flow. Only a quarter of the wind
tunnel flow field was taken as the base flow due to the symmetrical feature of the
nozzle (see Fig.4.32a). Its characteristic variation in the flow direction is illustrated
in Fig.4.32b, which shows a round corner shape with increasing radius as one goes
downstream.

(a) plane (b) AWB (rectangular)

Figure 4.31: Flow field and the computational grids for 3D simulations.

Similar as in 2D computations, a point source (refer to Sec.3.2.4) was placed
outside the domain and introduced into the domain by the sponge layer bound-
ary condition. It results in a block structure as shown in grey color in Fig.4.31.
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(a) position of the extraction plane (b) AWB shear flow structure

Figure 4.32: Sketch of extraction plane and flow structure in AWB shear flow.

The entire domain is constructed by 152 blocks, of which each contains approxi-
mate 200, 000 points. The source is located on the nozzle centerline at coordinates
(1.0, 0.0, 0.0). It is surrounded by a quarter of a cylinder, whose surface is used to
introduce the sound wave into the domain again via sponge layer. The domain size
is shrunk to 2m in the flow direction and to 1.2m in the vertical direction to reduce
the computational effort. The extension in the spanwise direction is chosen to be
1.2m as well. The side surface (z = 0) and the bottom surface (y = 0) is set to be
symmetrical surfaces by the boundary condition. The computations were carried
out at three source frequencies, i.e. 1kHz, 5kHz and 10kHz.

In order to quantitatively determine the amplitude alteration by the shear layer,
the pressure perturbation data on the plane y = 1.15m was extracted from the
numerical results, whose location in the domain is shown in Fig.4.32a. The selection
of the plane guarantees enough distance from the shear layer and from the domain
boundary to minimize the effect of the boundary condition. The SPL distribution
on this plane was provided to observe its variation with the flow speed as well as
the shear layer shape.

4.3.2 Sound propagation through the planar and the realistic wind
tunnel shear layers

Different from the 2D sound propagation through the 2D shear layers, 3D sound
waves generally feature a divergence of the intensity vector field in the spanwise
direction due to the spherical spreading of the sound power. Sound waves emitted
in a plane different from the spanwise symmetry plane continue to propagate in
different planes after passage through the shear layer due to additional refraction
occurring in the spanwise direction. A plane containing both the incident and
transmitted waves can not be extracted as in the case when the sound is emitted
in the spanwise symmetry plane. Therefore, the instantaneous field will not be
presented here. The sound propagation characteristics through the shear layers are
introduced by the time-averaged field of the pressure amplitude.
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Fig.4.33 gives the SPL distribution on the planes near the domain boundaries,
whose position in the computation domain is indicated in Fig.4.33a by the shaded
rectangles. The contour is not given directly on the boundary of the domain since
the applied boundary condition may cause slight deviation. The corresponding root
mean square value of the pressure perturbation was calculated by averaging the
results in thirty wave periods after transients left the domain. Fig.4.33b plots the
reference SPL distribution for the sound propagation in the uniform flow, which
is the target distribution of the shear layer correction in the wind tunnel tests.
Fig.4.33c illustrates the distribution as the sound waves transmit through a planar
shear layer, whose center plane is located at y = 0.6m. Looking at the side plane
(z = −1.15m), the protrusion part towards upstream results from the total reflection
similar as observed in the 2D cases. The same reason leads to the distribution on the
front plane (x = 0.05m). Next, the sound propagation in the real wind tunnel flow
is considered in Fig.4.33d. The shear layer center planes are located at y = 0.6m

and z = −0.4m respectively and intersect along the line (x, 0.6,−0.4). Due to
the multiple effects from these two shear layers, the protrusion pattern due to total
reflection in the planar shear layer does not appear on the lateral side plane. Instead,
it shows a quite distinctive distribution on the front plane, which has a high SPL area
inside the shear layer. This is a result from the total reflection by both shear layers.
Both the upper and the side shear layer would reflect the sound waves back into
the jet flow in particular at this far upstream location. These reflections cause an
interference pattern as observed in the figure. Besides, the total reflection happens
at a smaller polar radiation angle θ0 for the side shear layer than the upper shear
layer, since it corresponds to a smaller h/yM distance ratio.

Another distinctive feature in Fig.4.33d is the protrusive distribution in the
area y > 0.6m on the front plane as well as the similar distribution on the top
plane. Such areas are already beyond the shear layer, which could not be induced
by the total reflection by the shear layer. This characteristic of sound propagation
is relevant with the shear layer shape considered in the current study. As the flow
goes through the AWB wind tunnel, a rectangular shear flow is generated, as shown
in Fig.4.31b and 4.32b. When sound waves propagate through such a shear layer,
the refraction is determined by the superimposed influences of top and side shear
layers. The superimposition expresses a ’focusing’ effect upstream and a ’spreading’
effect downstream, as sketched in Fig.4.34. The sound transmissions through the
upper shear layer are illustrated by solid curves, while the transmissions through
the side shear layer are plotted by dashed curves. This feature is determined by the
directions of shear layer refraction around the corner part. One may notice that the
SPL on the side plane in Fig.4.33d was not altered too much by such a rectangular
shear layer. It could be attributed to the size of the nozzle and refraction direction.
This feature will be discussed in more details in the following section.

Similarly, the SPL distribution on these planes was plotted at the source fre-
quency 10kHz, as shown in Fig.4.35. The sound propagation in the planar shear
flow shows a similar pattern as that at 1kHz. The ’focusing’ effect in the AWB
shear flow results in a more pronounced and sharper distribution as the frequency
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(a) location of the extraction planes (b) uniform flow

(c) planar shear flow (d) AWB shear flow

Figure 4.33: Far-field SPL distribution under various flow conditions at U0 = 40m/s,
f = 1kHz.

Figure 4.34: Sketch of 3D rectangularly shaped shear layer effects.
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(a) planar shear flow (b) AWB shear flow

Figure 4.35: Far-field SPL distribution under various flow conditions at U0 = 40m/s,
f = 10kHz.

(a) planar shear flow (b) AWB shear flow

(c) planar shear flow (d) AWB shear flow

Figure 4.36: SPL distribution on the symmetry plane (z = 0) under various flow
conditions at U0 = 40m/s ( a ∼ b : f = 1kHz; c ∼ d : f = 10kHz).
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increases. The affected area shrinks to a smaller range comparing with 1kHz but
increases in the amplitude.

The SPL distribution is given on the symmetry plane of the wind tunnel test
section as well. The symmetry plane is identical to the plane in the studies of the
sound wave propagation in the 2D shear flow. By observing the distribution on this
plane, the 3D shear layer effect can be identified for the symmetry plane. Fig.4.36
presents the SPL contour in the shear flow with U0 = 40m/s for both the planar
shear layer and the AWB shear layer. Comparing with the 2D cases, the intrusive
structure caused by the total reflection upstream is only slightly observable due to
the shrink of the computational domain. Looking at the distributions at 1kHz, it
shows a weaker total reflection in the AWB shear flow. This could be caused by the
interference betweeen the incident wave and the reflected wave from the side shear
layer.

Fig.4.37 gives the SPL distribution on the surrounding planes in the shear flow
at U0 = 60m/s. Comparing with Fig.4.33, a stronger reflection is observed in the
distribution as the flow speed raises up. This is coincident with the phenomenon
observed in 2D computations. The aforementioned ’focusing’ effect shows up as an
extended high SPL area on the front plane in Fig.4.37b. Fig.4.38 shows the same
trend at 10kHz. By the comparison of these contours, it is concluded that a strong
relevance of the source frequency and the flow speed in the 3D shear layer effect,
which should be further studied.

(a) planar shear flow (b) AWB shear flow

Figure 4.37: Far-field SPL distribution for various flow conditions at U0 = 60m/s,
f = 1kHz.

Similarly, the SPL distribution is given on the symmetry plane, as in Fig.4.39.
The SPL difference around the total reflection is more obvious between the two shear
flow types at 1kHz. The deviation between the distributions in the planar shear
flow and the AWB shear flow indicates again the influences from the side shear layer
in the AWB. The interference between the incident wave and the reflected wave
from the side shear layer could result in an amplitude variation on the symmetry
plane, which is more obvious upstream since the reflection here is stronger.

As done in the 2D analysis, the sound intensity propagation paths can be de-
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(a) planar shear flow (b) AWB shear flow

Figure 4.38: Far-field SPL distribution for various flow conditions at U0 = 60m/s,
f = 10kHz.

(a) planar shear flow (b) AWB shear flow

(c) planar shear flow (d) AWB shear flow

Figure 4.39: SPL distribution on the symmetry plane (z = 0) for various flow
conditions at U0 = 60m/s ( a ∼ b : f = 1kHz; c ∼ d : f = 10kHz).
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termined from the computational results in both the shear flow and the uniform
flow. By comparing them with the theoretical angle correction, the performance of
Amiet’s approach can be evaluated in the 3D applications. Since the transmitted
wave radiates in a different plane from the incident wave, the paths are not given
in the form as in 2D cases but in another way. The path for each radiation angle is
given as the intersection point of the intensity propagation path with the specified
sample plane (y = 1.15m). Once the corresponding radiation angle is fixed, the
position of the theoretical intersection point with the sample plane can be derived
from Amiet’s angle correction. Finally, the deviations between computations and
the theoretical predictions can be identified.

The comparison was carried out simultaneously for both the planar shear layer
and the AWB shear layer, which is helpful in the validation of the correction ap-
proach (for the planar shear layer) as well as the observation of the ’corner’ effect in
AWB wind tunnel flow. Fig.4.40a illustrates the extraction process of sample points
from the computational results, where the orange circles give the location of inter-
section points for each radiation path. The source position projected on the sample
plane is illustrated by the orange circle. The points distribution on the sample plane
is given for open jet flow speed 40m/s and 60m/s in the other two figures. The
traces are plotted for radiation angles distributed at three spanwise locations, which
are z = −0.2m, −0.6m and −1.0m. The colorful symbols in the figure represent the
propagation direction for the same radiation angle in various shear flow, while the
black symbols give the corresponding theoretical locations.

Regarding the trace distribution in the planar shear flow, it shows a good agree-
ment with the predictions of the theory, with the deviation slightly larger in the
spanwise direction. The more the polar angle θ0 differs from 90◦, so does the de-
viation at positions z = −1.0m, especially in the upstream locations. The reason
for this effect on the deviation has been presented in the 2D cases, which is due to
the finite thickness of the shear layer. When the sound wave radiates in a polar
angle different from 90◦, the local distance, which the sound is travelling through
the shear layer increases as well. During the travelling period in the shear layer,
the flow velocity effect are more obvious than that for an infinitely thin shear layer.
This effect is also applicable for the explanation of downstream deviation. The
maximum deviation happens in the upstream location at z = −1.0m in the flow at
U0 = 60m/s, with a value around 0.05m. This value corresponds to a deviation of
the transmission angle of approximately 5◦ (derived by ∆α = ∆r/0.55). Similarly,
the traces in the 3D AWB shear flow are plotted, in which the distribution around
z = −1.0m is in absence since the intensity paths crossing through this part is re-
fracted from the side shear layer instead of the upper shear layer. As the sampling
points move far away from the source point in the spanwise direction, the deviation
between the computations and the theoretical predictions increases sharply in both
upstream and downstream. The sequence at z = −0.6m is around the area where the
focusing effect was observed in the previous contours, where an apparent deviation
is noticed from the other two data series. Obviously, as the sound wave transmits
through a rectangular shear layer, its local propagation direction is altered as well.



4.3. Sound propagation through analytical shear layers (3D) 75

(a) sketch for sample plane (y = 1.15m)

(b) 40m/s (c) 60m/s

Figure 4.40: Comparisons of transmitted wave direction between computations and
theory at source frequency 1kHz.
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In the upstream locations, such deviation could be caused by the aforementioned
’corner’ effect. Since the intensity propagation direction is determined by the local
intensity vector (refer to Sec.3.4), the direction drawn for the trace is actually a
synthesis of two transmitted wave which crossed with each other at this point if the
’corner’ effect happened. In downstream, it is speculated that the deviation could
result from the round shear layer shape.

(a) 40m/s (b) 60m/s

Figure 4.41: Comparisons of transmitted wave direction between the computations
and the theory at source frequency 1kHz in side plane z = −1.15m (AWB shear
flow).

Similarly, another sample plane was chosen to observe the sound propagation
through the side shear layer. The plane is parallel to the side shear layer center
plane, locating at z = −1.15m. By implementing the same approach as above, the
projection of the sound wave propagation trace on the sample plane was derived and
given in Fig.4.41. It illustrates a much better coincidence between the computations
and the theory, even at locations far away from the source. The maximum deviation
is equivalent to that in the correction of the planar shear layer. Such a small
deviation is coincident with the SPL distribution on the side plane in the contour
figures, where the SPL shows a regular distribution without being altered by the
shear layer significantly. This relative insensitivity compared to the considered y-
plane is due to the smaller distance of this shear layer to the source and its larger
size. Looking at the SPL distribution on the front plane in the wind tunnel flow
(Fig.4.33d, 4.35b, 4.37b, 4.38b), it is clear that the aforementioned ’corner’ effect is
limited to a certain angle range, which is relevant to the size of the nozzle shape. If
the observer stands out of this region (as the side sample plane), the received signal
only experiences the regular refraction effect by the side shear layer. This finding
is useful for our analysis of amplitude correction since it provides the ’safe area’ of
Amiet’s correction in the considered wind tunnel flow.

So far the sound wave propagation in the 3D shear layers has been qualitatively
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investigated for a point source, accompanied by the validation of Amiet’s angle
correction. It shows a good agreement with numerical results in the planar shear flow
with the maximum deviation appearing at the farthest spanwise location. Knowing
this information, it is proceeded further to the study of the sound wave amplitude
alteration through the 3D analytical shear layers in the next section.

4.3.3 Alteration of the sound wave amplitude through 3D analyt-
ical shear layers

As mentioned earlier, in order to figure out the amplitude alteration caused by the
shear layer, the SPL distribution on a plane (yM = 1.15m) outside the shear layer
was extracted from the computational results for the sound propagation through
planar shear layers, rectangular shear layers as well as in the uniform flow.

(a) U0 = 40m/s (b) U0 = 60m/s

Figure 4.42: SPL distribution on the extraction plane yM = 1.15m (f = 1kHz).

The SPL distribution is firstly given for the source frequency 1kHz in the shear
flow at two flow speeds, as shown in Fig.4.42. The figures in the first row plot the
distribution for the sound transmission through the planar shear layer, while the
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figures in the second row are the distribution in the corresponding AWB shear flow.
The flow direction is along the x-axis, as indicated in the figures. The focusing
effect due to the 3D shear layer shape can be easily observed in the figures for the
AWB shear flow by the distortion of the level contour lines towards upstream at
about z = −0.5m (indicating level increase). Note that the upstream levels near
the plane of symmetry (z = 0) also change significantly, but here they show a
reduction compared to the planar shear layer. This remarkable effect was already
seen in the upper right corner of Fig.4.37b. First of all, this shows that even in
the symmetry plane z = 0 the three-dimensionality of the AWB shear layer shows
an influence, which can not be captured by a 2D shear layer. Obviously, there
is a reflection of the side shear layer and a corresponding destructive interference
effect at work. This explanation is supported by the fact that this phenomenon
is frequency dependent as a comparison with Fig.4.38b shows. As usual all effects
become more significant as the flow speed increases. Comparing with CAA results at
U0 = 40m/s, more energy is refracted to the upstream direction in the higher speed
shear flow. The spreading effect in the downstream direction seems not so strong as
the focusing effect. Its intensity can be observed in the bottom row of Fig.4.42. It
was obtained by subtracting the SPL distribution in the planar shear flow from that
in the AWB shear flow. The ∆SPL distribution clearly verifies the ’corner’ influence
in upstream and downstream directions as well as the level reduction upstream near
z = 0. Besides, they present the deviation caused by the 3D shear layer effect,
which increases with the flow speeds and approaches to maximum 1.5dB at the
source frequency 1kHz.

The similar distributions can be given at 10kHz as well, shown in Fig.4.43. A
much stronger ’corner’ effect is observed. The deviation between the AWB shear
flow and the planar shear flow increases considerably, up to 3dB at U0 = 40m/s

and 5dB at U0 = 60m/s. The deviation caused by the ’spreading’ effect increases
as well, up to around 1dB. At the same time, it is noticed that the ’focusing’ point
moves outward in the negative z direction as the frequency increases, which could
be related to the phase shift between the intersecting sound waves refracted from
the upper and side shear layers. This feature does not vary with the flow velocity.

The above comparisons provide the basic characteristics of the shear layer shape
effect as well as the affected region. Although the deviation caused by the shear
layer shape increases obviously with the source frequency, the corresponding affected
area becomes narrower. This makes it possible to obtain a reasonable shear layer
correction across a 3D rectangularly shaped shear layer with a proper treatment
around the corner part. This possibility and its application region will be discussed
in the following part of the amplitude correction application.

As done in the curved shear layer case, the independent numerical amplitude
ratio (p′2A/p

′2
M ) was derived without searching for the help of the angle correction.

The same procedure was applied here to plot the numerical amplitude ratio curve:
for a specified radiation angle, its radiation paths in both uniform flow and shear
flow are determined from the intensity field. Then their intersection points with the
sample plane y = 1.15m are fixed, of which the pressure amplitudes can be extracted
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(a) U0 = 40m/s (b) U0 = 60m/s

Figure 4.43: SPL distribution on extraction plane yM = 1.15m (f = 10kHz).
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from computational results to plot the amplitude ratio curve. Such a process avoids
the deviations induced by the angle correction if the corrected position A is given
by the theoretical angle correction.

(a) U0 = 40m/s (b) U0 = 60m/s

Figure 4.44: Amplitude ratio comparison between the theory and the computations
at f = 1kHz through planar shear layers.

Fig.4.44 plots the amplitude ratio at f = 1kHz through the planar shear layers
for the observer’s positions at various spanwise locations. These spanwise locations
are identical to that in the validation of the angle correction. The measurement
positions were chosen at each same spanwise location along the line, which is indi-
cated in the figure as their coordinates in the z-axis. With the increasing distance
from the source point, the correction curves show small variation, while the theory
predicts a slightly stronger shear layer effect in the alteration of the sound wave
amplitude. The deviation goes up with the flow velocity. Generally, the theoretical
curves show a good agreement with the numerical curves.

Fig.4.45 gives the amplitude correction curves for the sound transmission through
the rectangular shear layers, which share the same measurement positions as in the
planar shear flow. When the observer position is chosen close to the symmetry plane
z = 0 (z = −0.2m), where it is essentially out of the affected area by the ’corner’
effect, the deviation between computations and the theory is similar to that in the
planar shear layer. As the observer moves further from the source, the correction
curve from computations shows a quite different distribution from that through the
planar shear layers. The accuracy of the angle correction is part of the reason for
such a phenomenon. Another reason is the ’corner’ effect mentioned earlier. In
the upstream locations, the energy loss due to the effect from upper shear layer
could be compensated by the refracted wave from the side shear layer, then further
reduces the correction value. In the downstream direction, the spreading effect
reduces the local pressure amplitude, which results in a smaller correction value.
Such an obvious deviation in the further spanwise locations are expected since it
was presented that the sound wave propagation through the upper shear layer can
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(a) U0 = 40m/s (b) U0 = 60m/s

Figure 4.45: Amplitude ratio comparison between theory and computations at f =

1kHz through AWB shear layers (top plane).

not be well predicted by the theory. In the following, the amplitude correction
curves are plotted at several vertical locations outside the side shear layer, where the
sound wave did not experience an obvious ’corner’ effect according to the previous
comparisons.

Fig.4.46 plots the amplitude correction curve for the sound transmission through
the side shear layer in the AWB shear flow. As expected, the computational cor-
rection curves show a quite similar trend as that in the planar shear flow, with a
slight difference in the upstream locations. Generally, they show identical features
as observed in the planar shear flow, which illustrate slow variation with the dis-
tance from the source. Therefore, the side plane can be taken as a ’safe area’ out
of the ’corner’ effect, where the measurement data needs only to be corrected for
the shear layer refraction effect under the currently considered situation. It should
be mentioned that the side plane should be chosen at locations h/yM < 0.5, since
beyond this region the measurement data could still be altered by the ’corner’ effect
even at side plane, as observed in Fig.4.33d, 4.35b, 4.37b and 4.38b.

So far the 3D sound transmission through the planar and the rectangular shear
layer have been systematically explored. The pressure amplitude outside the shear
layer was extracted from the numerical results to analyze the role of the flow velocity,
the source frequency as well as the shear layer shape in the shear layer effects.
Additionally, the performance of the correction was examined in both the planar
and the rectangular shear layers. The theory shows an increasing deviation as the
observer moves far away from the source point. The ’corner’ effect was validated
and its affected region was identified, which could help to avoid the corresponding
error in the experimental work. In the following part, another important factor in
the free shear layer will be taken into account, i.e. the turbulence part. As usual,
the work is begun with the 2D computations.
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(a) U0 = 40m/s (b) U0 = 60m/s

Figure 4.46: Amplitude ratio comparison between the theory and the computations
at f = 1kHz through AWB shear layers (side plane).

4.4 Sound propagation through turbulent shear layers
(2D)

In the previous sections, the study focused on the effects induced by the mean flow
gradient through the free shear layer, in which the turbulence part was ignored. Such
a separate treatment is helpful to identify the respective effect from the mean flow
gradient and the turbulence. The latter one is of concern in this part. As introduced
in the first chapter, the turbulence part plays an important role in the alteration of
sound propagation characteristics, whose effect is usually named as scattering. Its
influences express not only as the change of the sound wave direction and amplitude,
but also in the frequency band. The alteration in the frequency band is referred as
frequency scattering or haystacking. Both effects will be investigated numerically
in 2D in this section. The turbulence part was reconstructed stochastically by
the FRPM method from the RANS results, as introduced in Sec.3.3. In its 2D
application, two components of the velocity fluctuations in the plane of interest
are extracted from the complete stochastic turbulence representation, avoiding the
possible unphysical velocity fluctuations in a 2D ’turbulence’ simulation.

4.4.1 Computational setup

The computations were implemented in two types of the turbulent shear flow. The
first one is the turbulent shear flow with constant thickness, which differs from the
linear shear flow adopted in Sec.4.1. The background flow was generated by the
extension of a slice extracted from the 2D AWB shear flow (U0 = 60m/s) at the
location where the thickness δ = 0.3m. Both the mean flow and the turbulent
data at the slice were applied to give the information for the extended 2D turbulent
shear flow. Such a turbulent shear flow does not physically exist but can help to
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provide the information of the sound propagation through the turbulent shear layer
without any other influences. Besides, the computational domain of such a flow
field is not limited as that of the 2D AWB shear flow, so that the sound propagation
characteristics around the extreme angles could be analyzed. The second type is the
2D turbulent shear flow in the AWB wind tunnel, which owns the same properties
as that in Sec.4.1 but with the turbulence part added.

The computational grid employed for the constant thickness shear layer in Sec.4.1
was again applied for the turbulent shear flow with constant thickness here, whose
domain size is 10m×2.1m. The computational grid for the 2D wind tunnel turbulent
shear flow is the same as that in Sec.4.1 for the AWB shear flow, which has the size of
3m×2.1m. The characteristics of the corresponding mean flow field are not repeated
here. The data of the turbulence part was added to the domain with additional grids,
which is named as ’patch’ in the current study. The patch lies over the previous
CAA grid in the shear layer region, containing the averaged turbulence statistics
from the CFD simulations. Five overlapped patches were generated to represent the
turbulence stochastically. They could be assigned to different processors to reduce
the computation time significantly. Fig.4.47 gives the turbulence kinetic energy
(TKE) distribution for both cases. In the overlapping area, a weighting function
was applied for every two neighboring patches to make sure that the summation of
the TKE in this region equals to the original value from the RANS solution.

The 2D harmonic source used in the previous computations was still applied in
the current cases. It was employed to generate periodic sound waves at three fre-
quencies 5kHz, 7.5kHz and 10kHz. Tab.4.3 lists the conditions considered in the
CAA simulations. The frequencies and the flow speeds were chosen to observe the
variation of the scattering effect with them, as presented in Candel’s experiments
[S. Candel 1975]. The other settings were kept exactly the same as in the previ-
ous study of the mean flow gradient effects. Therefore, the variation of the sound
wave amplitude due to the turbulence can be easily determined by the following
comparisons.

Table 4.3: Conditions for shear layer scattering effects (2D).

shear layer flow speed domain size source frequency
type (m/s) (m×m) (kHz)

constant 60 10×2.1 5, 7.5, 10
spreading 40, 60 3×2.1 5, 7.5, 10

Similar as done in the previous cases, a microphone line was chosen outside the
shear layer at yM = 1.2m to monitor the pressure fluctuation. The spectra of the
received signals was compared with the corresponding data in the uniform flow and
the shear flow without the turbulence part.
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(a) shear flow with δ = 0.3m

(b) 2D AWB shear flow at U0 = 60m/s

Figure 4.47: Structure of the patches with TKE contour.

4.4.2 Characteristics of the turbulence part in the free shear layer

The reconstruction of the turbulence statistics by FRPM is mainly based on two
parameters of the shear flow from the RANS simulation results. One is the turbu-
lence kinetic energy k, as shown in Fig.4.47. The other is the integral length scale
of the turbulence ls, which are calculated from the turbulent kinetic energy and the
specific dissipation rate (ω) of the shear flow.

Fig.4.48 shows the turbulent kinetic energy distribution at three cuts of the
shear flow as well as the local velocity profile. Both parameters were normalized
by the sound speed. The location x represents the distance from the nozzle exit.
The first cut is extracted near the nozzle exit, where the turbulence intensity is
relatively small. As the flow goes further, the turbulence well developed, so that a
typical peak distribution is observed at cut x = 1.5m in the center figure. The flow
parameters at this cut were also used to generate the constant thickness shear flow
to study the corresponding turbulence effect. The last cut is extracted at x = 2.8m,
which is close to the right boundary of the CAA domain. The TKE shows a wider
distribution while its peak stays around y = 0.7m.

Taking the above TKE distributions as the target, the stochastic method FRPM
reconstructed the turbulence statistics in the CAA computations. Whether the
reconstructed distribution meets the original target is an important criterion for
the quality of the stochastic model. It determines whether the scattering effect can
be well realized in the simulations. In the following part, the reconstructed TKE
will be shown as a comparison with the target one to show the effectiveness of the
method and also its influence on the computation results.
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(a) x = 0.1m (b) x = 1.5m (c) x = 2.8m

Figure 4.48: Turbulence kinetic energy distritution at U0 = 60m/s.

4.4.3 Sound propagation through the turbulent shear layer

Before presenting the CAA simulation results, the reconstructed turbulence kinetic
energy is given as the distribution along vertical directions at the specified sections
for both the turbulent shear flow with constant thickness and the AWB shear flow,
as shown in Fig.4.49a. Since the TKE distribution does not vary in the flow direction
in the constant thickness case, its TKE is plotted only at the center cut of the first
patch (refer to Fig.4.47a) in Fig.4.49a, comparing with the original data from the
CFD simulations. The TKE curves are given for the AWB turbulent shear flow at
five sections in the flow direction, as indicated by the top figure in Fig.4.49. The
reconstructed TKE (plotted by the dashed curves) illustrates a slightly smaller peak,
which may result from the filter kernel applied in the current cases. The filter kernel
can cause a wider energy distribution in the vertical direction as indicated by the
dashed curves and a reduced peak value of the TKE. Generally, the TKE was well
reconstructed, which illustrates the turbulent feature of the free shear layer.

Starting with the computations in the turbulent shear flow with constant thick-
ness, the sound propagation characteristics at different radiation angles were exam-
ined. According to the previous study[R. H. Schlinker 1980], the sound wave will
experience an omndirectional refraction by the turbulence through the shear layer,
which is quite different from the refraction observed in Sec.4.1. Fig.4.50 gives the
temporal pressure field of the sound wave transmission through the constant thick-
ness (δ = 0.3m) shear layer at source frequency 5kHz with turbulence considered.
Obviously, the regular refraction pattern is interupted by the turbulence if compared
with the similar case in Fig.4.7. The pressure amplitude outside the shear layer is
enhanced in some area while reduced in other area. Such a phenomenon is also
observed upstream below the shear layer, where the total reflection happens. In the
study of the mean flow gradient, a shandow area was observed right above the shear
layer when the total reflection happened. The amplitude of the pressure perturba-
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(a) constant thickness (b) AWB (c) AWB

Figure 4.49: Reconstructed TKE of the turbulent shear layer at U0 = 60m/s..
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tion increases in this area as the turbulence is included, indicating the scattering
of the sound wave direction by the turbulence. The pattern downstream below the
shear layer does not vary too much from the distribution observed in the study of the
mean flow gradient effect. This indicates a weak reflection effect due to the turbu-
lence. It should be mentioned that the scattering induced pattern varies with time,
which means that the high and low amplitude area is not fixed at certain positions
but closely depends on the intersection between sound waves and the turbulence in
the shear layer. If one checks the time history of the pressure fluctuation at the
single point, it shows a clear stochastic feature.

Figure 4.50: Instantaneous pressure field of the sound transmission through the
turbulent shear layer with constant thickness δ = 0.3m (f = 5kHz, U0 = 60m/s).

(a) U0 = 40m/s (b) U0 = 60m/s

Figure 4.51: Instantaneous pressure perturbation field of the sound transmission
through the AWB turbulent shear flow (f = 5kHz).

Fig.4.51 plots the instantaneous perturbation field for the AWB turbulent shear
flow. The shear layer shape is given by the red curves. The contours show a
very similar scattering pattern as observed in the constant thickness shear flow.
The spreading shape of the shear layer seems not to bring much variation to the
scattering effect. It will be further quantitatively evaluated in the next section.
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4.4.4 Alteration of the sound wave characteristics through the tur-
bulent shear layer

The most apparent feature of the turbulent shear layer effect is the alteration in the
frequency band of the original sound wave. To clearly illustrate this feature, the
narrow band spectra are firstly given in Fig.4.52 for the microphones in the uniform
flow (orange curve), the averaged shear flow in AWB (blue curve) and the turbulent
shear flow in AWB (black curve), respectively. Three microphone locations are
chosen to show the variation with the measurement angle, as shown in Fig.4.52a.
The SPL was normalized by the magnitude of the tone frequency at θM = 90◦ in the
uniform flow. In order to show the amplitude variation of the sound wave through
different flow fields, the magnitudes of the tone frequency in different flow fields are
marked in the corresponding color by the horizontal lines. Obviously, the turbulent
shear flow results in a severe amplitude reduction at the tone frequency as well as
an apparent spectral broadening. The amplitude variation of the sound wave by the
mean flow gradient can be observed as well.

Next, the narrow band spectra are given for the microphones outside the shear
layer as sound waves transmitt through different type of the turbulent shear flow.
These spectra can indicate the variation of the turbulent effects with the shear layer
thickness, the source frequency and the flow speeds. Fig.4.53 plots the narrow band
spectra at three locations along the microphone line yM = 1.2m when the sound
wave propagates through the turbulent shear layer with constant thickness. The
corresponding simulations have a 1.25s real time duration. Obviously, the com-
putations captured the spectral broadening effect by the turbulence. This effect
becomes severer as the source frequency increases. It is coincident with the phe-
nomenon observed in Candel’s work [S. Candel 1975]. Moreover, it can be noticed
that the severity of the spectral broadening varies with the measurement angle. As
the measurement angle deviates from 90◦, the spectral broadening becomes more
obvious. At upstream and downstream locations, the SPL reduction at the tone
frequency is much bigger than that at the location right above the source. However,
the apparent sidelobes observed in Candel’s experimental work (refer to Fig.1.2b)
are not very clearly illustrated in the figure. This may result from the resolution of
the spectra analysis.

Fig.4.54 shows the spectra along the yM = 1.2 line outside the shear layer for
the sound propagation through the AWB turbulent shear flow at U0 = 60m/s. The
shown spectra are normalized in such a way that the tone amplitude is constant.
As above, three locations were chosen to investigate the turbulent effect variation
with the measurement angle, as indicated in Fig.4.54a. Comparing with the spectra
obtained in the shear flow with constant thickness, the sound wave in the AWB
shear flow experiences a weaker spectral broadening as it propagates upstream. This
results from the fact that the local traveling distance of the sound wave through the
AWB shear flow is much smaller than that in the constant thickness shear flow.
Downstream the spectral broadening is more obvious in the AWB shear flow since
the wave travels a longer distance in the turbulent shear layer. The amplitude at
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(a) Microphone position in the computational
domain.

(b)

(c) (d)

Figure 4.52: Spectra comparison in the unifrom flow, averaged shear flow (in AWB)
and turbulent shear flow (in AWB) (U0 = 60m/s, f0 = 10kHz, ∆f = 10Hz).
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(a)

(b) (c)

Figure 4.53: CAA simulated spectra in the turbulent shear flow with constant thick-
ness (U0 = 60m/s, ∆f = 10Hz).
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(a)

(b)

(c) (d)

Figure 4.54: CAA simulated spectra in the AWB turbulent shear flow (U0 = 60m/s,
∆f = 10Hz).
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the tone frequency is almost smoothed out by the scattering effect at 10kHz at the
downstream location. Again, the sidelobes due to the ’haystacking’ effect were not
well captured in the simulations.

Figure 4.55: CAA simulated spectra in the AWB turbulent shear flow at f = 10kHz

( ∆f = 10Hz).

To illustrate the variation of the spectral broadening effect with the flow speed,
the spectra at the tone frequency 10kHz were plotted for the AWB turbulent shear
flow with various flow speeds, shown in Fig.4.55. The observer’s position was chosen
right above the source. As the flow speed increases, an obvious wider spectrum was
obtained with two small observable sidelobes near the tone frequency.

In order to analyze the amplitude reduction at the tone frequency outside the
turbulent shear flow, the SPL value at the tone frequency was calculated from the
corresponding spectra in the uniform flow, the time-averaged shear flow, and the
turbulent shear flow. The SPL value at the single observer’s position was obtained by
integrating the area around the tone frequency in the length ∆f from the spectrum.
Applying the process to several observer’s positions along the line yM = 1.2m, the
SPL curve similar to that in the mean flow gradient study can be obtained. Fig.4.56
gives the curves in the shear flow with constant shear layer thickness, comparing
with that in the uniform flow. The horizontal axis represents the observer’s position
in the computation domain, in which x = 5m is the position right above the source
point. Different from the sound propagation in the time-averaged shear flow, the
sound propagation through the turbulent shear layer shows an obvious relevance
with the source frequency. The maximum amplitude reduction at the observer’s
position increases from 1.5dB at 5kHz to 5dB at 10kHz. A common feature noticed
in the figures is the bigger deviation between the curves for the time-averaged shear
flow and the turbulent shear flow in the downstream locations. This may be caused
by the additional convective effects from the turbulence part.

Similarly, the SPL curves were plotted for the sound propagation in the AWB
turbulent shear flow at U0 = 60m/s in Fig.4.57. Comparing with the previous con-
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(a) f = 5kHz

(b) f = 7.5kHz (c) f = 10kHz

Figure 4.56: The SPL value along the microphone line yM = 1.2m at the tone
frequency in the shear flow with constant thickness (U0 = 60m/s).



94 Chapter 4. Numerical Results

stant thickness shear flow, the turbulence induced deviation decreases to a smaller
value in the upstream location. This can be attributed to the thin shear layer thick-
ness upstream. Correspondingly, the deviation in the downstream locations goes
up significantly, resulting from the thicker shear layer in this part. The turbulence
effect could cause an amplitude reduction up to around 7dB at 10kHz. In the mean
time, one may notice that the curve in the turbulent shear flow overlaps to that
in the time-averaged shear flow in some areas at 7.5kHz. This could be caused by
the cancellation between the scattering effect and the turbulence convective effect.
Fig.4.58 plots the identical distribution in the shear flow at U0 = 40m/s, indicating
a smaller reduction in the amplitude at the tone frequency downstream as the flow
speeds decreases.

(a) f = 5kHz

(b) f = 7.5kHz (c) f = 10kHz

Figure 4.57: The SPL value along the microphone line yM = 1.2m at the tone
frequency in the AWB shear flow (U0 = 60m/s).

So far the scattering effect by the free shear layer was investigated, with the



4.4. Sound propagation through turbulent shear layers (2D) 95

(a) f = 5kHz

(b) f = 7.5kHz (c) f = 10kHz

Figure 4.58: The SPL value along the microphone line yM = 1.2m at the tone
frequency in the AWB shear flow (U0 = 40m/s).
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analysis of its inducing deviation from the situation when only the mean flow gra-
dient was considered. The spectral analysis shows the coincident phenomena with
that in Candel’s experiments. However, the sidelobes in the spectra due to the scat-
tering effect was not well established, which may be relevant to the frequency band
resolution in the analysis.

4.4.5 Role of turbulent pressure fluctuation in the scattering ef-
fects

In the previous study of the scattering effects, the pressure fluctuation of the tur-
bulence was neglected. In this part, the role of the pressure fluctuations in the
turbulence will be examined. The turbulent pressure fluctuation (pt) was roughly
estimated on the basis of a local linearized Bernoulli equation as pt ' −ρv0 · vt.
To keep the consistency of other parameters with the previous study, the identical
computational setup was adopted as the simulations of the 2D study in the AWB
shear flow with U0 = 60m/s with the source frequency f = 10kHz. Besides, the
same parameters were utilized in the spectra analysis.

Fig.4.59 gives the spectrum at three specified measurement locations as in the
previous investigations. The magnitude was normalized by the SPL at θM = 90◦ in
the original simulation when pt was not considered. Apparently, the participation
of the turbulent pressure fluctuations do not bring a significant deviation into the
spectra distribution at the considered flow speed and the source frequency. The
spectrum upstream show a slightly wider distribution due to the broadening effects
by the turbulence; the reverse effect is seen downstream. The effect of the turbulence
related pressure perturbation therefore can result in a tonal amplitude variation less
than 1dB. If the observer stands right above the source outside the shear layer
(θM = 90◦), a very similar spectrum was generated without obvious tonal amplitude
reduction.

4.5 Sound propagation through turbulent shear layers
(3D)

As the last part of the numerical investigations of the shear layer effects, the sound
propagation through the 3D turbulent shear layer was simulated and analysed. The
3D shear flow of the AWB wind tunnel at U0 = 40m/s and U0 = 60m/s were chosen
as the background flow field in this part.

4.5.1 Computational setup

The CAA domain of the computations was kept the same as that in the study of the
3D mean flow gradient effects (refer to Sec.4.3.1). It is a 2m× 1.2m× 1.2m domain
with the source surrounded by a quarter cylinder. The patch area was limited to
include only the upper shear layer in the wind tunnel since the computational effort
increases significantly in 3D as the turbulence was considered. Five overlapped
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(a)

(b) (c)

Figure 4.59: CAA simulated spectra in the AWB turbulent shear flow (U0 = 60m/s,
∆f = 10Hz).
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patches were generated to store the turbulence statistics. The overall length of the
patches is 2m long in the flow direction and 0.4m long in the span-wise direction.
Their lengths in the vertical direction vary with the shape of the shear layer, similar
to that in the 2D applications. Fig.4.60 gives the location of the patches in the wind
tunnel test section and the turbulence kinetic energy distribution at U0 = 40m/s.

Figure 4.60: Location of the patches with TKE contour at U0 = 40m/s.

Fig.4.61 plots the turbulent kinetic energy at three cuts along the flow direction
at U0 = 40m/s. The rectangular shape of the shear layer is also illustrated in the
TKE distribution, with part of the shear layer corner included. A high TKE area is
found downstream near the intersection corner of the shear layer, which might exert
strong effects on the sound wave. In this area, the mixture of the flow at the wake of
the corner generates more turbulence. The TKE distribution at U0 = 60m/s shows
a similar feature as that at U0 = 40m/s. Its contour will not be repeated here.

The identical point source at 10kHz as in the 3D mean flow gradient study
at the frequency 10kHz was chosen in this part. Three microphone circles with
radius r = 1.2m were placed outside the shear layer to monitor the variation of
the signals by the turbulent shear layer. By this arrangement, the difference is
easily observed between the measurement data experiencing the scattering effects
(through the upper shear layer) and the data without experiencing the scattering
effects (through the side shear layer). The time length of the collected data at the
microphones achieves 0.625s real time duration. Moreover, another phenomenon
needs to be mentioned is the instability in the simulations. The instability problem
was found on the z = 0m plane, which was set to be a symmetrical plane. This
problem was solved by increasing the local damping on the symmetrical plane. A
detailed description of the instability and its solution can be found in the Appendix
C.
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Figure 4.61: TKE distribution in the flow direction at U0 = 40m/s.

(a) U0 = 40m/s (b) U0 = 60m/s

Figure 4.62: Instantaneous pressure field through the 3D turbulent shear flow (f0 =

10kHz).
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4.5.2 Sound propagation through the turbulent shear layer

In order to give a straightforward view of the 3D sound transmission through the
turbulent shear layer, the instantaneous pressure field is given at three sections
perpendicular to the flow direction at two flow speeds, as shown in Fig.4.62. The
distorted wavefront pattern in the first section (x = 0m) in both figures results from
the mean flow gradient effect discussed in the previous section, which becomes more
obvious with the flow speed. The turbulence effect does not show a dominant effect
at this section since the TKE in this part is in a low level. But its influence becomes
stronger with the flow speed. At the middle section (x = 1.0m), the scattering
effects become more obvious, especially in the high speed turbulent flow. The last
sections (x = 2.0m) illustrate the strongest scattering effect, where the original
sound wave pattern was completely destroyed and scattered to other directions.
This is coincident with the phenomena in the 2D study that the scattering is more
severe as the shear layer thickness (and correspondingly the TKE) or the flow speed
increases.

4.5.3 Alteration of the sound wave characteristics through the tur-
bulent shear layer

As another effective tool to study the feature of the scattering effects, the spectra
at several microphone positions are plotted, as shown in Fig.4.63 and Fig.4.64.
Three microphone circles were positioned outside the shear layer to collect the data.
The circles center at a specified position on the x− axis, indicated by xM . Each
microphone on the cirle is defined by the angle φM , as plotted in Fig.4.63a and
Fig.4.64a. In the analysis, three microphones were chosen to observe the scattering
effect: φM = 90◦ represents the reference point where the sound wave does not
experience the scattering effect, and φM = 0◦, 30◦ give the indication when the
sound wave goes through the turbulent shear layer but at different angles. The
magnitude of the spectra was normalized by the amplitude at the tone frequency
itself, such that the peak of the spectrum locates exactly at 0dB. It is convenient
for observation of analysis of the spectral broadening effect.

Fig.4.63 shows the spectra in the turbulent shear flow at U0 = 40m/s. The sound
wave experiences a weak scattering effect upstream (xM = 0.2m) due to the low in-
tensity of the turbulence and the thin thickness of the shear layer. The scattering
effects become stronger as the sound wave transmits through a thicker shear layer
with higher turbulence intensity (xM = 1.0m, 1.8m). The microphone at φM = 30◦

was firstly chosen to examine whether the scattering effects will be more obvious
around this area due to the higher turbulent kinetic energy (see Fig.4.61). However,
the spectrum does not support this hypothesis as expected at upstream location. A
possible reason for such phenomena might be the mean flow gradient effects. The
tonal amplitude reduction caused by the upper turbulent shear layer may be com-
pensated by the refracted wave from the side shear layer (refer to Sec.4.3). Fig.4.64
illustrates the spectra in the turbulent shear flow at U0 = 60m/s. Wider spectra
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are observed at each section than those at U0 = 40m/s, especially at downstream
location (xM = 1.8m). This indicates a stronger scattering effect at higher flow
speed and severe amplitude reduction at the tone frequency, which can be clearly
observed in the following SPL analysis at the tone frequency.

(a) Sketch of the microphone position (b) xM = 0.2m

(c) xM = 1.0m (d) xM = 1.8m

Figure 4.63: CAA simulated spectra in the AWB turbulent shear flow (U0 = 40m/s,
∆f = 12Hz).

The above interpretation can also be supported by the SPL at tonal frequency
along the mirophone circles, as shown in Fig.4.65. These curves were obtained by
the same way as in the 2D analysis (refer to Sec.4.4.4). The SPL value at the single
observer’s position was obtained by integrating the area around the tone frequency
in the length ∆f from the spectrum. The solid curves represent the data obtained
in the averaged shear flow (without turbulence). The dash dot curves indicate the
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(a) Sketch of the microphone position (b) xM = 0.2m

(c) xM = 1.0m (d) xM = 1.8m

Figure 4.64: CAA simulated spectra in the AWB turbulent shear flow (U0 = 60m/s,
∆f = 12Hz).
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(a) U0 = 40m/s (b) U0 = 60m/s

Figure 4.65: The SPL value along the microphone circle at the tone frequency
(f0 = 10kHz) in the turbulent AWB shear flow.

data obtained in the turbulent shear flow. As the microphones were chosen in the
same plane with the source (xm = 1.0m, red curves), the receiving signals through
the turbulent shear layer (φM = 0 ∼ 30◦) illustrates a scattering induced amplitude
reduction at the tone frequency. This reduction increases with the flow speed. As
the upstream microphones are examined (xM = 0.2m), an obvious amplitude peak
was noticed at φM = 30◦, resulting from the aformentioned ’focussing’ effect of
the rectangular shear layer. This effect becomes more obvious as the flow speed
goes up. The turbulent scattering induces only slightly amplitude variation at this
section. At downstream location (xm = 1.8m), there is an amplitude valley around
φM = 30◦, caused by the aforementioned ’spreading’ effect. In the turbulent shear
flow, a deeper valley in this area is noticed. This might be related to the stronger
scattering by the thick, high intensity turbulent flow around this part.

As the last point, the SPL on the symmetrical plane (z = 0m) in 3D is compared
with the SPL in the 2D simulation at the tone frequency. In the current 3D study, the
flow condition on the symmetrical plane (z = 0m) is identical to the flow condition
in the previous 2D study. The comparison of the SPL at the tone frequency on this
plane would be helpful to identify the deviation between the 2D and 3D simulations.
Fig.4.66 plots the data at two flow speeds. The coordinates (xM ) of the 3D data are
modified according to the distance from the source point to fit the 2D data. The
SPL of the 3D data is adjusted to the same range as the 2D data, since the original
source magnitudes are different in the 2D and 3D simulations. The data illustrates
quite similar trend between 2D and 3D cases. The amplitude decreases as the flow
goes downstream. The most obvious deviation between 2D and 3D cases is the
amplitude variation with the flow speed. In the 2D case, the amplitude shows an
apparent amplitude reduction as the flow speed increases. In 3D case, the amplitude
varies slightly with the flow speed at the available three locations. The data on more



104 Chapter 4. Numerical Results

Figure 4.66: Comparison of the SPL at the tone frequency between 2D and 3D
simulations.

microphone positions are needed to identify the 3D variation trend with the flow
speed.



Chapter 5

Summary, conclusions and outlook

5.1 Summary

A numerical investigation was conducted to study the free shear layer effects in the
open-jet wind tunnel. The research was performed with a hybrid CAA method,
which includes the simulation of the shear flow (done by TAU), the simulation
of the sound propagation (done by PIANO) and the realization of the turbulence
(reproduced by FRPM).

For simulations focused on the investigation of the mean flow gradient effects, a
harmonic source was employed at 1kHz, 5kHz and 10kHz to observe its frequency
relevance. Free stream velocity in the wind tunnel varied from 40m/s to 60m/s.
Three types of the shear flow were chosen in 2D, i.e. the constant thickness shear
layers with linear velocity profile, the wind tunnel shear layer with spreading shape
and the curved shear flow around a high lift airfoil. Sound propagation direction
and amplitude changes across the shear layer were extracted from the computational
results, which illustrated a severe alteration in both the propagation angle and the
source directivity as comparing with those in the uniform flow. These numerical re-
sults were compared with the state-of-the-art correction method (Amiet’s approach)
for the mean flow gradient effects.

Good agreement was obtained between the correction method and the numerical
results over the considered shear layer thickness, flow speed, source frequency, mea-
surement angle range and the shear flow type. Such a consistency indicated that the
angle and amplitude changes induced by the shear layer refraction are independent
of the source frequency, shear layer thickness as well as the shear layer divergence. It
should be mentioned that the decrease of the accuracy of the correction method in
the curved shear flow can be supplemented by adjusting the correction model based
on the flow curvature. Additional -and quite considerable- reflection effects at the
nozzle rim were found and the computation of the harmonic source was confirmed by
using additionally a pressure pulse source. The alteration in the receiving pressure
amplitude at the measurement point showed a maximum of 5dB.

A planar shear layer and a rectangularly shaped shear layer (formed by the nozzle
geometry in the AWB) were applied to investigate the 3D sound wave propagation
through the shear layer. Both the angle correction and the amplitude correction
show a brilliant performance in the planar shear layer correction. Their accuracy
showed a degenerated trend as the receiver located around the corner area in the
AWB shear flow. In the AWB shear flow, a ’focusing’ and ’spreading’ effect due to
the shear layer shape was found and analyzed. The resulting ’dangerous area’ was
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identified for source frequencies 1kHz and 10kHz by comparing with the results in
the planar shear flow. The performance of the correction method was examined for
these cases as well.

For the simulations focused on the investigation of the turbulence effects, the
same harmonic source was applied with the frequency varying from 5kHz to 10kHz

in 2D. A constant thickness (δ = 0.3m) shear flow and the AWB shear flow were
adopted for the simulations. The reduction of the tone amplitude and the spectral
broadening were observed. These features were found to be stronger at a higher
source frequency or a higher flow speed. A stronger scattering effect was also ob-
served at downstream locations in the AWB shear flow, while the source needs to
pass through a thicker shear layer. The similar phenomena were noticed in the
3D sound propagation through the turbulent shear layer as well. The contribution
of the turbulent pressure fluctuation was analyzed in 2D to figure out its role in
the scattering effects. In this context it is important to note, that the turbulence,
considered for the scattering in 2D was not turbulence from (unphysical) 2D vortex
dynamics, but equivalent to respective 2D component of a 3D turbulence realization.

In the primary study of the sound propagation through the 3D turbulent shear
layer, the AWB turbulent shear flow (U0 = 40m/s, 60m/s) was utilized to study
the 3D scattering effects. The spectral broadening effect was realized and analyzed.
The variation of the effect with the flow speed and the shear layer thickness was
observed and analyzed. The reduction of the sound wave amplitude outside the
turbulent shear layer was investigated and compared with that in the averaged
shear flow.

5.2 Conclusions

Based on the numerical study of the shear layer effects in both 2D and 3D sound
propagations, the following conclusions can be drawn for the open-jet wind tunnel
shear layer effects.

Through the 2D time averaged shear flow, the alteration of the sound wave
direction and amplitude due to the refraction of the shear layer is of only slight
relevance with the shear layer thickness, divergence and the source frequency. The
induced deviation is less than 0.5dB. The main affected region is around the total
reflection area, located at the upstream position at the considered flow velocities.
Over the considered range of the measurement angle and the flow velocity, Amiet’s
approach can correct the deviations due to the mean flow gradient effects with a
high accuracy. This high performance is weakened in the applications in the curved
shear flow, but can be supplemented by an adjustment of the correction model
according to the flow curvature. Such an adjustment can help to aviod a maximum
of 0.5dB error in the considered angle range. In the similar study but with the nozzle
geometry included, the nozzle rim was proved to reflect the original sound waves
to produce an obvious interaction pattern around the measurement area. Such a
phenomenon should be seriously treated in the experiments.
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For the 3D time averaged shear flow, the alteration of the sound wave direction
and amplitude are closely related to the shear layer shape. Different from the regular
refraction of the sound wave by the planar shear layer, sound waves passing through
the rectangularly shaped shear layer (the AWB shear flow) may experience a ’corner’
effect. This results in unreliable measurement results in certain areas (’dangerous
area’) and difficulties in the correction of the shear layer effects. This area is formed
by the coupling of refractive sound waves from two intersected shear layers. The
direction and amplitude alteration of the 3D sound wave can be well predicted by
Amiet’s approach through the planar shear layer. Through the rectangularly shaped
shear layer, the prediction of the directional alteration can still give satisfying results
by Amiet’s approach. However, the correction method fails to predict the shear layer
effects correctly in the amplitude change in the aformentioned ’dangerous area’.

From the primary study of the turbulence effects in both 2D and 3D, the scat-
tering effects are found to be closely related to the source frequency, the flow speed
and the shear layer thickness. The spectral broadening and the amplitude reduction
becomes more severe as the source frequency, the flow speed and the shear layer
thickness goes up. It is found that quantitatively the scattering may change the
amplitudes more than the pure refraction. By the comparison of the integrated SPL
at the tone frequency in 2D and 3D, it is noticed that the amplitude shows a similar
trend in the variation with the streamwise location but a different characteristic in
the variation with the flow speed. More data is needed to draw a conclusion about
the 2D and 3D comparison.

5.3 Outlook

Current work provides some basic information and analysis of the shear layer effects
as well as the evaluation of Amiet’s approach. Based on these analyse, the following
orientation of the further study is advised.

Considering the mean flow gradient effects through the shear layer, the ’corner’
effect through the rectangular shear layer may be further investigated by extending
the simulations to non central source positions and to other wind tunnels with
rectangular nozzle. The relationship between the ’corner’ effects (focussing and
spreading) and the size of the nozzle geometry could be established for the correction
in the aforementioned ’dangerous’ area. Furthermore, a correction method, capable
of dealing with the effects around this area, may be developed.

Considering the turbulence effects through the free shear layer, 3D simulations
including the entire shear layer would be an important part to study the scattering
effects in the AWB shear flow. Moreover, the comparison between numerical results
and the experimental data or theoretical haystacking models is necessary.





Appendix A

Derivation of Amiet’s approach

The derivation of Amiet’s approach [R. H. Schlinker 1980] [J. W. Delfs 2015] is pre-
sented here. Fig.A.1 shows the basic geometry and coordinate used in the following
derivation. The basic idea has been presented in Chapter 2, which will not be given
here.

Figure A.1: Sketch of the 3D correction model.

A.1 Refraction angle change

The incident wave is treated as a plane wave as passing through the shear layer.
This assumption is reasonable as long as the incident wave length is smaller than
the source to shear layer distance. The incident wave pressure can be written as

pi = ei(ωt−kxx−kyy−kziz) (A.1)

where kx, ky and kz indicate the wave vectors in the x, y and z directions.
Substituting the above expression into the convective wave equation

(
D2

0

Dt2
− a2
∞∇2)p = 0 (A.2)
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it can be obtained

k2
zi = (

ω

a∞
−Mkx)2 − k2

x − k2
y (A.3)

where a∞ is the sound speed in standard atmosphere,M is the flowMach number
calculated by M = U0/a∞.

The normal direction to the wave front at the cross point can be given by taking
the gradient of the phase of the incident wave as

ne =
kxi+ kyj + kzik

ω/a∞ −Mkx
(A.4)

Due to the existence of the flow speed, the normal vector is relevant to the
retarded source position, which deviates from the original source position with a
vector iM . Therefore, the energy propagation direction from the source to the cross
point C can be expressed as

ni =
ne + iM

|ne + iM |
=

[
ωM/a∞ + (1−M2)kx

]
i+ kyj + kzk√

ω2/a2
∞ +M2 [(ω/a∞ −Mkx)2 − k2

x]
(A.5)

Similarly, the pressure of transmitted wave above the shear layer at the cross
point can be given as

pt = Tei(ωt−kxx−kyy−kztz) (A.6)

where T is the transmitted wave amplitude. By substituting the above expression
into the wave equation in stationary flow, it gives

k2
zt =

ω2

a2
∞
− k2

x − k2
y (A.7)

The normal vector to the wave front is

nt =
a∞
ω

(kxi+ kyj + kztk) (A.8)

The wave vector kx and ky stay the same for as the incident wave, since the
phase of the incident and transmitted waves should be equal across the shear layer
[A. D. Pierce 1981]. To translate the relation into the angle relations between inci-
dent and transmitted wave, the coordinates at the cross point C is written as

xC = r1 cos θ0

yC = r1 sin θ0 sinφ0 (A.9)

zC = r1 sin θ0 cosφ0

The normal vector along the radiation path r1 can be written in the angle form
as

ni = cos θ0i+ sin θ0 sinφ0j + sin θ0 cosφ0k (A.10)
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Comparing Eq.A.5 with A.10, the wave vectors can be expressed by the radiation
angles as

kx =
ω

a∞(1−M2)

(
cos θ0√

1−M2 sin2 θ0

−M

)
(A.11)

ky =
ω

a∞

sin θ0 sinφ0√
1−M2 sin2 θ0

(A.12)

kzi =
ω

a∞

sin θ0 cosφ0√
1−M2 sin2 θ0

(A.13)

The normal vector along r2 can be written in the transmitted angle form as

nt = cos θti+ sin θt sinφtj + sin θt cosφtk (A.14)

Comparing the above equation with Eq.A.8, the wave vectors expressed in the
transmitted angles are

kx =
ω

a∞
cos θt (A.15)

ky =
ω

a∞
sin θt sinφt (A.16)

kzt =
ω

a∞
sin θt cosφt (A.17)

Then, the relation between incident wave angles and transmitted wave angles
are established as

cos θt =
1

1−M2

(
cos θ0√

1−M2 sin2 θ0

−M

)
(A.18)

sin θt sinφt =
sin θ0 sinφ0√
1−M2 sin2 θ0

(A.19)

The above equations can determine the shear layer refraction effect in the wave
propagation direction, once the original radiation angles (θ0, φ0) are known. The
angle correction equation 2.1 used in Chapter 2 is another form of Eq.A.18.

In the open jet wind tunnel tests, the measurement positions (θM , φM ) are usu-
ally provided instead of radiation angles. To apply the angle correction practically,
some additional angle relations need to be given.

zM
cosφM

cot θM =
h

cosφ0
cot θ0 +

zM − h
cosφt

cos θt (A.20)

zM tanφM = h tanφ0 + (zM − h) tanφt (A.21)

The combination of above equations with Amiet’s angle correction (Eq.A.18,
A.19) can help to define the shear layer refraction effect for a given measurement
position. When the obsever stands in the the same plane with the source perpendic-
ular to the shear layer, Eq.A.20 degenerates to Eq.2.2 as the azimuth angles (φM , φ0

and φt) equal to zero.
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A.2 Refraction amplitude change

The sound wave amplitude variation is determined by the ray tube divergence.
Firstly considering the ray tube above the shear layer from the cross point C to the
measurement point. The pressure amplitude ratio between these two points can be
expressed as

p′2C

p′2M
=
dFM
dFC

(A.22)

where dFM and dFC represent the cross-section area of the ray tube with the
shear layer and the measurment plane respectively. Since the distance variation in
the x− direction and y− direction can be related to the transmission angles as

dxMdyM
dθtdφt

= JM =

∣∣∣∣∣∂xM∂θt ∂xM
∂φt

∂yM
∂θt

∂yM
∂φt

∣∣∣∣∣
dxCdyC
dθtdφt

= JC =

∣∣∣∣∣∂xC∂θt
∂xC
∂φt

∂yC
∂θt

∂yC
∂φt

∣∣∣∣∣ .
The cross-section area ratio can be written as

dFM
dFC

=
JM
JC

(A.23)

To derive the pressure amplitude ratio, the expressions of the coordinates at
the cross point needs to be given in the form of θt and φt. The expressions are
derived from the geometric relationship and the angle correction equations in the
last section.

xC =
h
[(

1−M2
)

cos θt +M
]√

ζ2
t − sin2 φt sin2 θt

(A.24)

yC =
h sin θt sinφt√
ζ2
t − sin2 φt sin2 θt

(A.25)

where ζ2
t = (1−M cos θt)

2−cos2 θt. Similarly, the expressions of the coordinates
at the measurement point are presented as

xM = xC +
zM − h

cosφt tan θt
(A.26)

yM = yC + (zM − h) tanφt (A.27)

Based on the above equations, the cross-section area can then be derived as a
function of the transmission angles (θt, φt), which is further used to calculate the
pressure amplitude ratio. Nextly, the energy lost of the sound wave across the shear
layer needs to be identified. Since the sound wave was treated as a plane wave as
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it crosses through the shear layer, the velocity potentials of the incident, reflected
and transmitted waves could be written as

Φi = ei(ωt−kxx−kyy−kziz)

Φr = RΦe
i(ωt−kxx−kyy+kziz) (A.28)

Φt = TΦe
i(ωt−kxx−kyy−kztz)

where the subscript i, r, t represent the incident, reflected and transmitted wave,
respectively. The expression of the wave vectors can be found in the previous angle
derivation procedure. The pressure of the sound wave is derived from the velocity
potential as

p = −ρ0
D0Φ

Dt
(A.29)

At crossing the shear layer, the pressure amplitude and the fluid displacement
needs to be matched on both sides [H. S. Ribner 1957] [J. W. Miles 1957]. The
pressure relation gives

(
ω

a∞
−Mkx)(e−ikziz +RΦe

ikziz) = TΦ
ω

a∞
e−ikztz (A.30)

The fluid displacement is mathed by considering the interface as a rippled surface
by the acoustic wave [H. S. Ribner 1957] [J. W. Miles 1957]. The surface moves in
the x direction with velocity ω/kx. An observer’s position is chosen to move with
the ripple surface. Therefore, the mean flow velocity ouside the shear layer would
be −ω/kx while inside would be U0 − ω/kx. By defining the perturbation velocity
in z-direction as vz and equating the flow slope on both sides, the following relation
is generated

vtz =
viz + vrz

1− U0kx/ω
(A.31)

Since the velocity perturbation can be directly derived from the potential by
vz = ∂Φ/∂z, the above equation can be transformed to

ω

a∞
kzi

(
e−ikziz −RΦe

ikziz
)

=

(
ω

a∞
−Mkx

)
kztTΦe

−ikztz (A.32)

Combining Eqs.A.30 and A.32, the transmission ratio of the transmitted wave
to incident wave through the shear layer can be obtained.

TΦ =
2eiz(kzt−kzi) ω

a∞

(
ω
a∞
−Mkx

)
(

ω
a∞
−Mkx

)2
kzt
kzi

+ ω2

a2∞

(A.33)
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Due to the relation in Eq.A.29, the transmission ratio for the pressure is

T =
ω
a∞

Φt

(ω/a∞ −Mkx) Φi

=
2ω2/a2

∞

(ω/a∞ −Mkx)2 kzt/kzi + ω2/a2
∞

=
2
√
ζ2
t − sin2 θt sin2 φt

(1−M cos θt)
2 sin θt cosφt +

√
ζ2
t − sin2 θt sin2 φt

(A.34)

Until now the measurement data at the point M is traced back to the point C−
just below the shear layer. The pressure amplitude at the corrected point A in the
uniform flow can be determined by multiplying the data at C− with a distance factor
h/zM . The preesure ratio between the corrected point A and the measurement point
M in the squre value form can then be written as

p′2A

p′2M
=

h2

z2
M

JM
JC

[
√
ζ2
t − sin2 θt sin2 φt + (1−M cos θt)

2 sin θt cosφt]
2

4
(
ζ2
t − sin2 θt sin2 φt

) (A.35)
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Figures of the numerical results

(a) δ = 0.1m

(b) δ = 0.3m

(c) δ = 0.5m

Figure B.1: Instantaneous pressure perturbation field through the constant thickness
shear layer at the source frequency 5kHz (U0 = 60m/s).
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(a) δ = 0.1m

(b) δ = 0.3m

(c) δ = 0.5m

Figure B.2: Intensity level distribution through the constant thickness shear layer
at the source frequency 5kHz.
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(a) f = 5kHz (b) f = 10kHz

Figure B.3: The sound pressure level distribution along the mirophone line yM =

1.2m through the constant thickness shear layer.
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(a) U0 = 40m/s

(b) U0 = 50m/s

(c) U0 = 60m/s

Figure B.4: left: Instantaneous pressure perturbation field ; right: Intensity level
distribution through the 2D AWB shear layer at the source frequency 5kHz.
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(a) f = 5kHz (b) f = 10kHz

Figure B.5: The sound pressure level distribution along mirophone line yM = 1.2m

through the 2D AWB shear layer.

(a) (b)

Figure B.6: (a)Instantaneous pressure perturbation field; (b)Sound intensity level
field in the shear flow around the high-lift airfoil for source frequency at 10kHz.
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(a) f = 1kHz (b) f = 10kHz

Figure B.7: Comparisons of transmitted wave direction between computations and
the theory on the top plane (y = 1.15m) in the shear flow with U0 = 50m/s.

(a) U0 = 40m/s (b) U0 = 60m/s

Figure B.8: Comparisons of transmitted wave direction between computations and
the theory on the top plane (y = 1.15m) at the source frequency f = 10kHz.
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(a) f = 1kHz (b) f = 10kHz

Figure B.9: Comparisons of transmitted wave direction between computations and
the theory on the side plane (z = 1.15m) in the shear flow with U0 = 50m/s (AWB
shear flow).

(a) U0 = 40m/s (b) U0 = 60m/s

Figure B.10: Comparisons of transmitted wave direction between computations and
the theory on the side plane (z = 1.15m) at the source frequency f = 10kHz (AWB
shear flow).





Appendix C

Instabilities in the 3D simulation
in the turbulent shear layer

The instability firstly appears in the low speed simulation (U0 = 40m/s) at the time
step when t = 0.29s on one of the symmetrical plane (z = 0m). Fig.C.1a gives the
pressure contour at the corresponding time step, in which an unstable area is found
near y = 0.6m in the upstream direction. A similar situation happens in the high
speed simulation (U0 = 60m/s) at later time step (t = 0.5s), refer to Fig.C.1b. The
initial settings for both cases are exactly the same except the flow speed. On the
contrary to 40m/s, the insatability happens at the dowanstream locations, but still
on the symmetrical plane (where a slip-wall boundary condition is specified).

(a) U0 = 40m/s (t = 0.29s) (b) U0 = 60m/s (t = 0.5s)

Figure C.1: Instantaneous pressure contour in the flow field.

It was speculated [Delfs ] that the instability might be caused by the inappropri-
ate handling of the turbulent flow in the slip wall boundary condition, in which the
turbulent velocity ut is not considered. It would be a time-consuming way to add
the ut to the slip wall boundary condition. Another easy and fast way to obtain a
stable simulation would be adding a local ’Wall Damping’ on the symmetrical wall,
where the slip wall boundary condition was specified.

Therefore, in the following simulation the local ’Wall Damping’ was added, while
the other settings are kept the same as in previous simulations. Fig.C.2 plots the
instantaneous pressure contour at the time step when t = 0.625s. Obviously, the
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layer

instability on the plane z = 0m disappears after the application of wall damping for
both flow speeds.

(a) U0 = 40m/s (t = 0.625s) (b) U0 = 60m/s (t = 0.625s)

Figure C.2: Instantaneous pressure contour in the flow field.

The application of the wall damping may affect the simulation results and brings
deviations into our analysis. To investigate its influences on simulation results, the
following comparison was implemented. Since the simulation only becomes unstable
at t = 0.5s at the flow speed U0 = 60m/s, it is possible to study the effect of the
wall damping before this time point in such a flow field. The simulations were done
with a time duration t = 0.375s. One is implemented with wall damping, the other
is without wall damping. Then the spectra at several microphone positions are
compared to observe the effect of the wall damping.

Fig.C.3 shows the spectra comparison at different microphone locations, whose
position in the computational domain can be found in Fig.4.64a. By such a compar-
ison, it can be found out that the ’Wall Damping’ does not bring obvious deviations
into the spectral analysis. Therefore, the ’Wall Damping’ will be applied in the
3D simulations in the turbulent shear flow to avoid the instability problem on the
symmetrical plane.
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(a) xM = 0.2m

(b) xM = 1.0m (c) xM = 1.8m

Figure C.3: CAA simulated spectra for wall damping effects in the AWB turbulent
shear flow (U0 = 60m/s, ∆f = 12Hz) ( with wall damping ; without wall
damping ).





Nomenclature

Abbreviations

APE Acoustic Perturbation Equations

AWB Aeroacoustic Wind tunnel Braunschweig

CAA Computational AeroAcoustics

CFD Computational Fluid Dynamics

DLR German Aerospace Center

DNC Direct Noise Computation

DNW German-Dutch Wind tunnel

DRP Dispersion Relation Preserving

FRPM Fast Random Particle Method

LDDRK Low-Dissipation, low-Dispersion Runge-Kutta

LEE Linearized Euler Equations

PIANO Perturbation Investigation of Aerodynamic NOise

RANS Reynolds-Averaged Navier-Stokes

TKE Turbulence Kinetic Energy

List of Symbols

a∞ reference value of speed of sound

α geometric angle of attack

ψ stream function

τ non-dimensionalized viscous stress

ξ0 position vector of the source point

I sound intensity

M local Mach number vector

n normal vector

q non-dimensionalized heat flux density



128 Nomenclature

r distance vector

r0 distance vector

U local flow velocity vector

v nondimensionalized velocity

x position vector

xc position vector of the source location

xref position vector at the reference point

∆x grid spacing

δ shear layer thickness,
Dirac delta function

δij Kronecker symbol

θ̇′ source term

η similarity parameter

γ heat capacity ratio

Â FRPM scaling function

θ̂p magnitude of the harmonic source

λ acoustic wavelength

Ui FRPM white noise field

µ∞ reference value of dynamic viscosity

ω circular frequency

p′2A mean square value of the pressure perturbation at the corrected point A

p′2M mean square value of the pressure perturbation at the measurement point
M

φ′ representative of various perturbation quantities

φref forcing function term

ρ nondimensionalized density

ρ∞ reference value of density

σ(ξ) fading function
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τs FRPM time scale

θ0 radiation angle

θtot0 critical radiation angle of total reflection

θi incidence angle

θM measurement angle between shear layer and source-observer line

θt transmission angle between shear layer and sound wave propagation di-
rection above the shear layer

θst critical transmission angle for zone of silence

ζ
[
(1−M cos θt)

2 − cos2 θt

]1/2

a0 local sound speed

b half-value radius of Gaussian

cl coefficient for 7-point stencils

cp specific heat capacity

f frequency

f0 tone frequency

G FRPM filter kernel

h shear layer to source distance

J0, J1 Bessel function of the first kind, zeroth and first order

k wave number

k∞ reference value of heat conductivity

L characteristic length

Lp sound pressure level (SPL)

ls FRPM length scale

LI sound intensity level

M Mach number

p nondimensionalized pressure

pt turbulent pressure fluctuation



130 Nomenclature

pmax magnitude of the pressure pulse

Pr Prandtl number

r radius for directivity plotting (source point as the center)

Re Reynolds number

U flow velocity in x-direction

U0 wind tunnel flow speed

U∞ reference value of flow speed

Y0, Y1 Bessel function of the second kind, zeroth and first order

yM observer/microphone to source distance

y1/2 half-velocity line position
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