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Abstract—Global navigation satellite system denied scenarios
such as urban canyons or indoors cause a need for alternative
precise localization systems. Our approach uses terrestrial signals
of opportunity in a multipath-assisted positioning scheme. In
multipath-assisted positioning, each multipath component ar-
riving at a receiver is treated as a line-of-sight signal from a
virtual transmitter. While the locations of the virtual transmitters
are unknown, they can be estimated simultaneously to the user
position using a simultaneous localization and mapping (SLAM)
approach. An essential feature of SLAM is data association.
This paper addresses the data association problem in multipath-
assisted positioning, i.e., the identification of correspondences
among physical or virtual transmitters. If a user recognizes a
previously observed transmitter, it can correct its own position
estimate. We generalize a previous version of our multiple
hypothesis tracking scheme for data association in multipath-
assisted positioning and show by means of simulations how data
association improves the positioning accuracy.

Index Terms—Channel-SLAM, data association, multipath-
assisted positioning, simultaneous localization and mapping

I. INTRODUCTION

The vision of autonomous cars is driving a lot of research

efforts on precise positioning of road users. Though, the

knowledge of a road user’s location is a requirement not only

for autonomous cars, but for a huge number of conceivable

services. The accuracy of global navigation satellite systems

(GNSSs) is often sufficient for classical navigation applica-

tions when a clear open sky condition is met. However, urban

canyons, tunnels or parking garages are examples for scenar-

ios where positioning using GNSS might show a drastically

decreased performance or even fail completely due to signal

blocking or multipath propagation, for example.

In contrast, various terrestrial based radio frequency (RF)

signals of opportunity (SoOs) offer high coverage, often with

a high received signal strength. In particular, cellular networks

are available in virtually every urban area. Though, multipath

propagation affects also terrestrial signals. Especially in GNSS

denied areas such as in urban canyons or indoors, a high

multipath propagation can be expected causing a bias in range

estimates using standard correlator based methods. Standard

approaches to mitigate multipath effects at the receiver include

the estimation of the channel impulse response (CIR) and the

removal of the influence of multipath components (MPCs)

on the line-of-sight (LoS) path. However, MPCs themselves

contain information on the position of a user, which can be

exploited in a multipath-assisted positioning approach.

Multipath-assisted positioning schemes have been proposed

for example for radar or indoor ultra-wideband (UWB) sys-

tems in [1] and [2], respectively. In both cases, the environment

and hence the location of physical and virtual transmitters

is assumed to be known. The authors of [3] have presented

an algorithm called Channel-SLAM where no such prior

information is required. Each MPC of a terrestrial SoO is

regarded as being sent by a virtual transmitter in a pure LoS

condition to the user. In a general setting, the locations of

both the physical and the virtual transmitters are unknown,

but can be estimated in addition to the user position. This

problem has the structure of a simultaneous localization and

mapping (SLAM) problem [4], where the user position and

the locations of landmarks are estimated simultaneously. In

Channel-SLAM, landmarks correspond to transmitters.

A critical part in SLAM is data association, which is to

identify correspondences among landmarks as the user travels

through a scenario. In multipath-assisted positioning, we can

regard this problem as to find which signal components, or

transmitters, correspond. Data association is also of impor-

tance when several users travel through the same scenario.

Then, information about physical and virtual transmitters can

be exchanged among users, for example using local dynamic

maps (LDMs) in an intelligent transportation system (ITS)

context. Correspondences among the transmitters in such a

map and transmitters observed by the user need to be found.

In [5], we presented a first solution to the data association

problem in Channel-SLAM based on a method introduced in

[6] with the constraint that no more than one transmitter is

initialized at each time instant. Within this paper, we present

an extension to the results of [5] to overcome this constraint,

and discuss data association when users exchange maps.

This paper is structured as follows: In Section II, we derive

the Channel-SLAM algorithm in its current state. We present

the data association method for Channel-SLAM from [5] and

extend it in Section III. Evaluations based on simulations in an

urban scenario are presented in Section IV. Finally, Section V

concludes the paper.

II. MULTIPATH-ASSISTED POSITIONING

A. Virtual Transmitters

The idea of multipath-assisted positioning is to regard every

MPC arriving at the receiver as a signal from a virtual
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Fig. 1. The signal from the physical transmitter Tx is received by a mobile
user via two different propagation paths. The user considers the received MPC
reflected by the surface as being transmitted by the virtual transmitter vTx1,
and the MPC scattered at the punctual scatterer as being transmitted by the
virtual transmitter vTx2.

transmitter in a pure LoS condition as illustrated in Fig. 1.

A user receives the signal from the physical transmitter Tx

via two different propagation paths. The MPC reflected at

the surface is interpreted as a LoS signal from the virtual

transmitter vTx1, which is located at the apparent origin of

the signal. While the reflection point moves along the wall as

the user moves, the location of vTx1 is static, and it is the

location of the physical transmitter mirrored at the reflecting

surface. Furthermore, the virtual and the physical transmitter

are inherently perfectly time synchronized.

Likewise, the MPC scattered at the punctual scatterer is

regarded as being transmitted by the virtual transmitter vTx2,

which is located at the scatterer’s position. For scattering, we

assume the energy of the electromagnetic wave impinging

against a punctual scatterer to be emitted uniformly in all

directions. Though, in the case of scattering, the physical

and the virtual transmitter are not time synchronized: there

is a delay offset τ0 among the two, which is the actual

propagation distance of the signal from the physical to the

virtual transmitter divided by the speed of light. This delay

offset can be interpreted as a clock offset. The concept of an

RF signal being reflected or scattered once can be generalized

to the case where a signal is reflected or scattered multiple

times by simple geometrical considerations [3].

B. Channel-SLAM

The propagation channel is assumed to be a linear and time-

variant multipath channel. Hence, the CIR is modeled as a su-

perposition of signal components with a certain time of arrival

(ToA), complex amplitude, and angle of arrival (AoA). Fig. 2

summarizes the Channel-SLAM algorithm briefly. Given the

received signal, the parameters of the signal components

arriving at the receiver are estimated. Based on these estimates,

the states of the physical and virtual transmitters and the

user state are estimated simultaneously in a SLAM approach.

Additional sensor data, such as from an inertial measurement

unit (IMU), can be incorporated in the estimation process. As

Channel-SLAM does not differentiate between physical and

virtual transmitters, the term transmitter is used generally to

refer to any of the two in the following.

For the estimation of the signal parameters in the first step of

Channel-SLAM, we use the Kalman enhanced super resolution

Position

Estimation

Parameter

Estimation

Received

Signal

IMU

Position

Estimate

Fig. 2. Overview on the two steps of the Channel-SLAM algorithm.

tracking (KEST) algorithm [7]. KEST estimates parameters of

the received signal components and tracks them over time with

a Kalman filter. In addition, it keeps track of the number of

signal components. Signal parameters can be the amplitude,

phase, ToA or AoA, depending on the available hardware and

the scenario. For Channel-SLAM, the ToAs and AoAs of the

signal components are of interest. The super resolution method

in KEST is necessary as we use a signal with a bandwidth of

100MHz at a center frequency of 1.5GHz in the simulations.

The single signal components are assumed independent from

each other, i.e., we assume they interact with distinct objects.

At each time instant k, we stack the corresponding KEST

estimates for the detected signal components in the vector zk,

zk =
[

d
T
k θ

T
k

]T
, (1)

where dk are the ToA estimates of the NTX signal components,

dk = [d1,k . . . dNTX,k]
T
, (2)

and θk are the corresponding NTX AoA estimates,

θk = [θ1,k . . . θNTX,k]
T
. (3)

Note that each signal component corresponds to one trans-

mitter. When the number of detected signal components

changes over time, the number of transmitters changes as well.

In particular, when KEST detects a new signal component, a

new transmitter is initialized based on the estimate. Likewise,

when KEST loses track of a signal component, the corre-

sponding transmitter is discarded. Nevertheless, for notational

convenience, we drop the time instant index k in NTX.

For the second step in Channel-SLAM, we simultaneously

estimate the state of the transmitters and the state of the user.

The user state vector at time instant k is defined as

xu,k = [xk yk vx,k vy,k]
T
, (4)

consisting of the user position and velocity in two dimensions.

The state vector of the jth transmitter contains its location in

two dimensions and its clock offset τ
<j>
0,k , namely

x
<j>
TX,k =

[

x
<j>
TX,k y

<j>
TX,k τ

<j>
0,k

]T

. (5)

Hence, the combined state vector xk consisting of the user

and the NTX transmitter states is expressed as

xk =
[

xu,k
T

xTX,k
T
]T

=
[

xu,k
T

x
<1>
TX,k

T
. . . x<NTX>

TX,k

T
]T

. (6)

The overall goal is to find the posterior probability density

function (PDF) of the state vector x0:k at all time instants

up to k given the available measurements z1:k from Eq. (1),

i.e., p (x0:k|z1:k). We can factorize the posterior PDF into a
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product of the user and the transmitters state posterior PDFs,

namely

p (x0:k|z1:k) = p (xTX,0:k,xu,0:k|z1:k)

= p (xu,0:k|z1:k) p (xTX,0:k|z1:k,xu,0:k) . (7)

With the assumption of signal components and hence the

transmitters being independent from each other, we can further

factorize the conditioned transmitters posterior PDF to

p (xTX,0:k|z1:k,xu,0:k) =

NTX
∏

j=1

p
(

x
<j>
TX,0:k|z

<j>
1:k ,xu,0:k

)

, (8)

where z
<j>
1:k = [dj,1:k θj,1:k]

T
is the measurement for the jth

transmitter.

We use Bayesian recursive estimation to actually estimate

the PDF in Eq. (7). In general, Bayesian recursive estimation

schemes work in two steps. In the prediction step, the state

estimate for the next time step is predicted based on a

movement model. In the update step, the state estimate is

updated based on the measurements.

As we consider a static scenario, where the locations of

physical transmitters and objects reflecting and scattering the

RF signals do not change, the locations of virtual transmitters

are static as well. Hence, in the prediction step for the jth

transmitter, we define the transition prior as

p
(

x
<j>
TX,k|x

<j>
TX,k−1

)

= δ
(

x
<j>
TX,k − x

<j>
TX,k−1

)

. (9)

For the transition prior for the user, we assume to have

heading change rates, or yaw rates, from a gyroscope available

at the user. However, we do not assume to have any additional

knowledge on the users movement, and the user speed is

modeled by a random walk model. A detailed description of

the user transition prior is given in [3], [8].

In the update step in Bayesian recursive estimation, we

incorporate the estimates from Eq. (1) as measurements. The

measurement noise is assumed to be zero-mean Gaussian

distributed for both the ToA and the AoA measurements with

variances σ2
d,j and σ2

θ,j , respectively. The likelihood for the

measurements can then be expressed as

p (zk|xk) =

NTX
∏

j=1

N
(

dj,k; d̂j,k, σ
2
d,j

)

N
(

θj,k; θ̂j,k, σ
2
θ,j

)

,

(10)

where N
(

x;µ, σ2
)

denotes a Gaussian PDF in x with mean

µ and variance σ2, and the predicted ToA and AoA for the

jth transmitter are

d̂j,k =
1

c0

√

(xk − x
<j>
TX,k)

2 + (yk − y
<j>
TX,k)

2 + τ
<j>
0,k , (11)

where c0 denotes the speed of light, and

θ̂j,k = atan2
(

yk − y
<j>
TX,k , xk − x

<j>
TX,k

)

− atan2 (vy,k, vx,k) ,

(12)

respectively. The function atan2 (y, x) defines the four

quadrant inverse tangent function. In the two-dimensional

Cartesian coordinate system, it returns the counter-clockwise

angle between the positive x-axis and the point given by the

Fig. 3. The KEST algorithm detects a new signal component with ToA dk
and AoA θk . It might correspond to any of the old transmitters Txp,Txq , and
Txr , or to a new transmitter. The current state estimates of the old transmitters
are represented by the ellipses.

coordinates (x, y).
Because of the nonlinearities in Eq. (11) and in Eq. (12),

we use a Monte Carlo method, namely a Rao-Blackwellized

particle filter [3], [4] to solve the Bayesian recursive estimation

problem. The user state posterior PDF is represented by a

number of Np particles. The ith user particle is denoted by

x
<i>
u,k and has an associated weight w<i>

k . The user state PDF

is approximated by

p (xu,k|z1:k) =

Np
∑

i=1

w<i>
k δ

(

xu,k − x
<i>
u,k

)

. (13)

Due to the structure of the factorization in Eq. (7) and in

Eq. (8), each user particle has NTX particle filters associated to

itself, that estimate the states of the NTX transmitters. The state

posterior PDF for the jth transmitter of the ith user particle is

approximated by

p
(

x
<i,j>
TX,k |z1:k,x

<i>
u,k

)

=

Np,Tx
∑

l=1

w
<i,j,l>
k δ

(

x
<i,j>
TX,k − x

<i,j,l>
TX,k

)

,

(14)

where Np,Tx is the number of particles representing one

transmitter, x
<i,j,l>
TX,k is the lth particle of the jth transmitter

for the ith user particle, and w
<i,j,l>
k its associated weight.

Note that the number of particles may be different for dif-

ferent transmitters of different user particles. Though, we

drop the user particle and transmitter indices in Np,Tx for

notational convenience. For an actual implementation of the

Rao-Blackwellized particle filter including the particle weight

updates, we refer to [3].

III. DATA ASSOCIATION

As the user travels through a scenario, the KEST estimator

may lose and regain track of a signal component corresponding

to a propagation path, and thus, the user loses and regains

track of the corresponding transmitter. We define the set

of transmitters that have been observed earlier, but are not

observed at the current time instant, as old transmitters. Every

time KEST detects a new signal component, a new transmitter

is initialized, and there are two possible cases:

1) the new transmitter is indeed a new transmitter that had

never been observed before, or

2) the new transmitter corresponds to an old transmitter that

had been observed before.

The association problem we face is essentially the question

for which case to decide, and, in the second case, to which
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old transmitter the new one corresponds.

Fig. 3 illustrates an example for the association problem,

showing the posterior PDFs of the three old transmitters Txp,

Txq and Txr. A new signal component is detected by KEST

with ToA dk and AoA θk. The question is if the signal

component corresponds to any of the three old transmitters,

or to a new one. Note that due to a possible delay offset of

the transmitters as in Eq. (5), each of the associations might

be more or less likely.

With correct associations among transmitters, the user state

estimate can be corrected at least to a certain extent. Hence,

data association is essential for the robustness of long-term

SLAM. Though, data association is an underdetermined prob-

lem in our case, since the measurement for a transmitter at one

time step is of less dimensions than the state of a transmitter.

To be able to remove wrong associations at later time instants,

we employ a multiple hypothesis tracking (MHT) tracking

scheme. Every user particle decides for associations among

new and old transmitters on its own. The weights of particles

that have decided for wrong associations are likely to decrease

over time, and these particles are likely not to be resampled

in the resampling step of the particle filter.

In the following, we describe how to decide for associations

for one user particle i. For notational convenience, we omit the

index i from here on in the variables related to associations.

A. Initialization of One Transmitter

Within this subsection, we summarize the results from [5]

where we consider the case where there is at most one new

transmitter to be initialized per time instant, i.e., where KEST

detects at most one new signal component.

The set Υk contains the indices of transmitters that may be

associated with the new transmitter at time instant k. These are

old transmitter that have not yet been associated with any other

transmitter. The association variable nk denotes the index of

the old transmitter that the new transmitter is associated with.

We denote the marginalized likelihood of the measurement

zk at time instant k for user particle i by pnk
, assuming an

association of a new transmitter with the old transmitter nk.

It is defined as [6]

pnk
= ψc (nk,Υk) p

(

zk|nk, Nk−1,x
<i>
u,k , z1:k−1

)

, (15)

where Nk−1 is a set of tuples describing association decisions

up to time instant k − 1. The function

ψc (nk,Υk) =

{

1 if nk ∈ Υk

0 else
(16)

is a consistency function ensuring that the new transmitter can

be associated only with old transmitters that have not yet been

associated.

Following [5], where we use the structure of the Rao-

Blackwellized particle filter and Eq. (14), the marginalized

a

b

c

1

2

3

4

5

(a) (b)

a

1

2

c 5

Fig. 4. The purple nodes on the left side of the bipartite graphs represent
transmitters that are to be initialized, and the green nodes on the right represent
old transmitters. The edges represent possible associations. An association
decision among transmitters b and 4 is made in (a), where the blue thick
arrow shows the association. Following Algorithm 1, the remaining subgraphs
after removing nodes b and 4 from the graph in (a) are depicted in (b). In the
upper subgraph, an association decision among transmitters a and 2 is made.

likelihood pnk
is

pnk
=ψc (nk,Υk)

×

Np,Tx
∑

l=1

w
<i,nk,l>
k p

(

zk|x
<i,nk,l>
TX,k , nk, Nk−1,x

<i>
u,k

)

,

(17)

where x
<i,j,l>
TX,k is the lth particle of the jth transmitter of the

ith user particle, and w
<i,j,l>
k its associated weight.

To reduce the computational complexity, we regard only

those old transmitters from Υk for associations whose like-

lihood for the new measurement exceeds a threshold ρ. We

denote a set of indices of these transmitters by Γk,

Γk = {j : j ∈ Υk ∧ pj > ρ}. (18)

Two strategies for actually choosing an association are con-

sidered in the following, namely a maximum likelihood (ML)

method and data association sampling (DAS) [5], [6]. The ML

method decides for the association of the new transmitter with

the old transmitter n̂ML,k by

n̂ML,k = argmax
nk∈Γk∪{0}

pnk
, (19)

where p0 is defined to be the probability for deciding for no

association. For DAS, we sample an association of the new

transmitter with the old transmitter n̂DAS,k randomly based

on the likelihoods cpnk
for nk ∈ Γk ∪{0}, where c denotes a

normalization constant. Note again that for n̂k = 0, we choose

not to make an association for the new transmitter. If n̂k > 0,

the tuple of the new transmitter index and n̂k is added to Nk.

B. Initialization of Multiple Transmitters

Within this subsection, we expand the results from Sub-

section III-A to the case where multiple new transmitters

are initialized at the same time instant. Again, each particle

takes its own decision on associations. We apply a greedy

algorithm to decide for associations. We explain this algorithm

exemplarily by Fig. 4, where we have three new transmitters

a, b and c to be initialized, and five old transmitters 1, 2,
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3, 4 and 5 that may be associated. We denote the set of

new transmitters by Mk and hence have Υk = {1, 2, 3, 4, 5},

and Mk = {a, b, c}. The new transmitters from Mk are

represented in the bipartite graph in Fig. 4(a) by the purple

nodes on the left side, while the old transmitters from Υk are

represented by green nodes on the right side.

The association tuple (nk,m) denotes the association

among the old transmitter nk ∈ Υk and the new transmitter

m ∈ Mk. For each possible association (nk,m), we calculate

the marginalized likelihood pnk,m of the measurement z<m>
k

for the new transmitter m similar to Eq. (17), namely

pnk,m =ψc (nk,Υk)

Np,Tx
∑

l=1

w
<i,nk,l>
k

× p
(

z
<m>
k |x<i,nk,l>

TX,k , (nk,m), Nk−1,x
<i>
u,k

)

.

(20)

To reduce the computational complexity, we regard only

those associations for which the likelihood pnk,m exceeds a

threshold ρ. Therefore, the set of possible associations is the

set of tuples

Γk = {(j,m) : j ∈ Υk ∧m ∈ Mk ∧ pj,m > ρ} . (21)

Each edge among a new and an old transmitter in Fig. 4

represents a possible association, i.e., a tuple from Γk. There is

no edge representing the decision for no association drawn ex-

plicitly. From all possible associations, i.e., edges in Fig. 4(a),

we chose one based on the ML method or DAS. For the ML

method, we choose the association with highest likelihood,

(n̂k, m̂)ML = argmax
(nk,m)∈Γk∪{(0,0)}

pnk,m, (22)

where p0,0 denotes the likelihood for no association. For

DAS, an association (n̂k, m̂)DAS is sampled randomly from

the likelihoods cpnk,m for (nk,m) ∈ Γk ∪ {(0, 0)}, where c

is a normalization constant.

In the case that no association has been chosen, we are

done. Otherwise, we remove the two nodes n̂k and m̂ that have

been associated from the graph. In Fig. 4(a), for example, the

thick blue arrow indicates an association of the new transmitter

m̂ = b with the old transmitter n̂k = 4. Thus, after removing

the two nodes, two bipartite subgraphs are left as shown in

Fig. 4(b). We repeat the above steps for the two remaining

graphs, deciding for an association among transmitters a and

2 in the upper subgraph, again indicated by the thick blue

arrow. In the lower subgraph, we decide for no association in

this example, and hence transmitters c and 5 are not associated.

Algorithm 1 sums up the single steps for one time instant in

the general case.

C. Prior Maps

When multiple users travel through the same scenario, they

might exchange maps of transmitters. If prior knowledge in

form of such a prior map is available, the above methods may

be as well applied to find associations among new transmitters

and transmitters from such a map. However, the coordinate

systems of the user and the map need to be the same, or

Algorithm 1: Greedy Algorithm for Initializing Multiple

Transmitters with Data Association
Data: new transmitters Mk and old transmitters Υk

Result: list of associations

create the set Γk as in Eq. (24);

create the bipartite graph as in Fig. 4;

if there are possible associations then
decide for one association (ML or DAS) among all

edges;

if decision for no association then

return;

else

add association to list of associations;

remove associated nodes from bipartite graph;

apply this algorithm on all remaining subgraphs

with corresponding subsets of Mk and Υk;

else

return;

their relative offset and rotation need to be known. This is

the case if for example the starting positions and directions

of users are known. We will regard only the case where no

more than one transmitter is initialized at each time instant,

since a generalization to the case where multiple transmitters

are initialized is straightforward following Subsection III-B.

The set of transmitters in the prior map that have not yet

been associated is denoted by Υ̃k, and ñk denotes the index of

the transmitter in the prior map that the new transmitter is as-

sociated with. The marginalized likelihoods can be computed

similar to Eq. (15) as

pñk
=

Np,Tx
∑

l=1

w
<i,ñk,l>
k p

(

zk|x
<i,ñk,l>
TX,k , ñk, Nk−1,x

<i>
u,k

)

× ψc

(

ñk, Υ̃k

)

. (23)

The set Γk for the case that both old transmitters estimated

by the user so far and transmitters from the prior map can be

associated with the new transmitter is similar to Eq. (18),

Γk = {j : (j ∈ Υk ∨ j ∈ Υ̃k) ∧ pj > ρ}. (24)

IV. SIMULATIONS

A top view on the urban simulation scenario with one phys-

ical transmitter and a mobile user is depicted and described

in Fig. 5. The physical transmitter continuously broadcasts

a known signal at a carrier frequency of 1.5GHz with a

bandwidth of 100MHz. With ray-tracing, the received signal

is simulated for every user position. We assume the signal is

reflected and/or scattered at most two times on its way from

the physical transmitter to the user. The signal-to-noise-ratio

(SNR) averaged over all user positions is 7 dB.

The user is equipped with a 2-dimensional antenna array

with nine elements. This allows the KEST algorithm to esti-

mate both the ToAs and the AoAs of the signal components at

the receiver as in Eq. (1). The update rate of the measurements,

or KEST estimates, is 20Hz.
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Fig. 5. The user moves through the urban simulation scenario along the blue
track from START to END with a constant speed of 10m/s. The physical
transmitter is denoted by the red triangle labeled Tx. Thick black lines are
reflecting walls, black dots are scatterers.
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Fig. 6. The user RMSE of the versus the user traveled distance.

In order to define a local coordinate system, we assume

the initial position and direction of the user to be known.

Thus, for initialization, 3000 user particles are distributed

around the true initial position of the user with a variance

of 1m2. Additionally, an IMU is simulated at the user, from

which only heading change rates are used. The speed of the

user is modeled by a random walk model. No prior map of

transmitters is used here, and no prior information on the states

of the transmitters is assumed.

The RMSE for the user position versus its traveled distance

averaged over 300 runs is depicted in Fig. 6. The red curve

shows the RMSE if no associations among transmitters are

made. For the ML method and DAS, the RMSEs are plotted

in blue and green, respectively. As mentioned above, the

initial state of the user is assumed to be known and hence

the RMSE is very low at the initial position. In the case

of no associations, the RMSE increases nearly linearly with

the traveled distance with some fluctuations. As expected,

the red curve coincides with the blue and the green curve

during the first approximately 200m, where no associations

can be made. After a traveled distance of 350 − 400m, the

user observes multiple old transmitters that had been observed

during the first 150m of the run, and the user position estimate

can be corrected. Therefore, the RMSE decreases for both

association methods. While the DAS method shows a slightly

better performance in the region of a traveled distance between

210m and 400m, they show a very similar performance

throughout the rest of the track. At the end of the track, the

user RMSE for both association methods is in the order of

6m, and approximately 17m if no associations are made.

V. CONCLUSION AND OUTLOOK

Within this paper, we have expanded the Channel-SLAM

algorithm by data association using a MHT scheme. We

have proposed an algorithm that can handle the association

among transmitters if multiple new transmitters are initialized

at the same time instant. Beyond, we have incorporated data

association for transmitters in a prior map. Our simulations

in an urban multipath scenario show that data association can

correct the user position estimate and hence decreases the user

RMSE drastically. The ML and the DAS method show similar

performance.
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