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Abstract 
Directly generating controller code from models is 
important for advanced model-based design. This 
paper describes how Dymola can generate embedded 
C-code from Modelica models, designed to be easy to 
embed, with care about minimal foot-print, traceability, 
and straightforward integration in embedded platforms 
and gives actual application examples. 

The paper focuses on using Rosenbrock methods for 
index-1 problems (instead of the normal transformation 
to index 0) that allows Dymola to handle stiff systems 
in a way that both is theoretically sound and has an 
upper bound on the execution time per sample. 

The stiff systems in the control system often occur 
due to using an inverse (simplified) model of the real 
plant in the controller. A nonlinear feedforward 
controller and a controller with feedback linearization, 
both applying an inverse model, demonstrate the 
proposed process by using Rosenbrock methods for 
embedded code generation. 
Keywords: Modelica, inverse models, real-time, 
embedded, Rosenbrock methods, inline integration, 
feedforward controller, feedback linearization 

1  Introduction 
Modelica and Modelica tools such as Dymola are very 
well suited to model and simulate complex physical 
systems with primary focus on offline simulation for 
design and assessment, as well as on online simulation 
on special purpose hardware, e.g. for hardware-in-the-
loop simulations. Modelica models have been used in 
controller applications where nonlinear Modelica 
models are part of the real-time control system, see for 
example (Looye et al., 2005). The controller could be 
designed and assessed with Dymola, however, the 
actual real-time controller code had to be re-built 
manually either directly in C or with dedicated 
software for controller code generation. 

There are several activities to extend the tool chains 
for Modelica models for real-time platforms, for 
example (Satabin et al., 2015) for generation of 
certified code of simple Modelica models via the 
SCADE-suite (SCADE, 2017), or (Bertsch et al., 2015) 

for utilizing Modelica code on automotive electronic 
control units. 

This paper describes the steps to generate embedded 
real-time code using a new prototype functionality of 
Dymola. The goals are (a) to generate code that can be 
certified for critical applications, (b) to guarantee an 
upper number of operations so that hard real-time 
constraints can be fulfilled, and (c) to support advanced 
controllers that can utilize nonlinear Modelica models 
in the feedback or feedforward path of the controller, 
which may require solving nonlinear differential-
algebraic equation systems. 

Numerical integration in real-time is a challenging 
task. Explicit integration, such as explicit Runge-Kutta 
methods or explicit multistep methods provide 
integration schemes with a deterministic number of 
numerical operations, but they may fail for stiff 
systems due to stability problems. Choosing a rather 
small step size can help to overcome this issue, but the 
sample rate and the computational power of real-time 
platforms are (strongly) limited. Standard implicit 
methods like implicit Runge-Kutta methods or BDF 
methods are designed for stiff systems with an 
acceptable step size, but nonlinear systems of equations 
have to be solved in each time step. Linearly implicit 
one-step methods, in particular Rosenbrock methods, 
provide a compromise. They can solve stiff problems 
using larger steps than explicit methods at the cost of 
having to solve linear systems. 

The paper describes the new contributions in the 
following order: Section 2 gives an overview of the 
new code generator, Section 3 explains implementation 
of the Rosenbrock methods, Section 4 gives realistic 
application examples, and finally Section 5 gives a 
summary and outlines possible future extensions. 

2 Model-based Embedded Controller 
Development in Dymola 

Controller code intended to be executed in real-time on 
embedded devices is subject to special requirements. 
For example, (Bertsch et al., 2015) discusses these 
challenges in the context of automotive embedded 
applications for the case of FMU source code 

DOI
10.3384/ecp17132517

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

517



generation using Modelica tools. The standard C-code 
generated by Modelica tools is typically designed for 
desktop computer environments, where substantial 
hardware and software resources are available. 
Simulation is offline and without hard real-time 
constraints. Such standard code does not fulfill real-
time system requirements, where code has to be 
deployed on embedded targets. 

The standard C-code generated by Dymola from 
Modelica models is no exception; it is highly optimized 
to cope with several application scenarios including 
offline simulation and hardware-in-the-loop simulation 
of complex plant models on dedicated hardware 
platforms. However, this code includes many features 
not needed (and fails to fulfill constraints) for real-time 
controller code to be executed on embedded targets 
where minimalistic, self-contained, and human 
readable code is required. 

On the other hand, Dymola provides convenient 
tooling for the development of full multi-domain 
system models and their simulation. It would be very 
convenient if embedded code for the controller parts 
also could be automatically generated and evaluated in 
software-in-the-loop simulations. The advantages of 
Modelica regarding complete system modeling and 
simulation are then leveraged also for real-time and 
embedded controller development. 

Figure 1 summarizes the embedded development 
scenario we like to support. Physical plant models, 
controllers and test inputs for typical use cases can be 
fully modeled (left part) and simulated (right part) on 
system level. Throughout iterative development of all 
components, the whole system can be evaluated using 
standard simulation facilities. Embedded code can then 
be generated for the controller and co-simulated with 
the rest of the system. The results of such a software-
in-the-loop co-simulation are shown on the right. The 
control signal (blue curve) is computed using the code 
generated by the embedded code generator. The red 
curve is the controlled plant output and the green signal 

is a disturbance that becomes active midway through 
the simulation. The embedded code generator to 
support this process is described below.  

2.1 Embedded Development Process 
Given a physical system model in Modelica, the 
experimental Dymola embedded code generator 
considers the following four tasks for the design and 
implementation of controllers for an embedded target: 
(1) Controller modeling: Implement controllers as 
Modelica models with continuous model equation parts 
as done in Modelica since many years. 
(2) Model decomposition: Use the controller models 
in a synchronous environment as described in (Otter et 
al., 2012). Sample and hold blocks are used to 
incorporate the controller inputs and outputs. As 
integration scheme for the clocked blocks the 
Rosenbrock methods presented in Section 3 can be 
used. In Modelica terms, controllers are therefore just 
synchronously clocked sub-models. Their synchronous 
clock models the interval in which the embedded 
environment provides new real-time inputs and queries 
for respective control actions. 
(3) Embedded code generation: To generate the code 
to be embedded for the controller parts, apply the 
embedded code generator on the total model. Dymola 
extracts the synchronously clocked parts and generates 
C-code which is a self-contained, real-time simulator 
of its clocked parts. The code is well-suited for 
embedded deployment. 
(4) Embedded deployment: Adapt, integrate and test 
the generated controller code on a real-time platform, 
like a rapid prototyping platform or embedded device. 

The four tasks can be iteratively performed, in 
interrelation with the development of the model of the 
controlled physical systems. Co-simulation of the 
generated controllers is achieved by binding the 
generated C-code of controllers as external C functions 
to Modelica and calling them at every sample point 

Figure 1. Embedded controller development scenario with Modelica/Dymola.  
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throughout the system simulation. Examples of this 
procedure are given in Section 4. 

2.2 Properties of Generated Code 
In addition to the standard optimizations performed by 
Dymola’s symbolic manipulation facilities (equation 
systems are automatically torn to solve as much 
symbolically as possible, constant expressions are 
folded and shared expressions are eliminated to be 
computed at most once), the controller source code 
generated by the embedded code generator complies 
with the following requirements for execution on 
embedded devices: 
Code Integration 
• All types (model variables, states and records) 

relevant for user code and further code integration 
are encapsulated in header files. 

• Proper C data types are deduced. Substitutions are 
performed to reduce memory footprint. 

• A clear interface (with separate C-functions for 
initialization, output calculations, etc.) enables 
easy integration within external embedded 
environments. 

• A generic interface to a solver for linear equation 
systems enables the usage of solvers tailored for 
specific applications and targets. The code for a 
default LU-solver is provided. 

• The generated code is self-contained, without 
dependencies on further libraries (including the C 
standard library), supporting embedded devices 
without operating system or restricted software 
availability. 

Traceability 
• Comments link the generated code to its Modelica 

model, enabling traceability of computations and 
declarations. An XML file describing all variables 
is generated. 

Real-Time Execution 
• No heap memory allocation or recursion enables 

deterministic static memory allocation and 
therefore memory requirement predictions. 

• The Rosenbrock integration methods described in 
Section 3 are applied to achieve deterministic 
execution times and enable predictable response 
times by preventing iterative loops with unknown 
number of iterations. 

• Equations and variables are only considered when 
relevant for controller outputs; irrelevant 
computations are removed from the code. 

There are also some restrictions on the generated 
embedded code: 
• It does not (yet) fulfill all requirements of the 

MISRA-C standard (MISRA, 2013), which is 
important for safety-critical systems. 

• Simplified event handling is applied. Only state 
events can occur, since the models do not use time 
directly. 

• Nonlinear systems of equations to be solved in 
real-time are currently not directly supported. By 
using linearly implicit integration methods with an 
index-1 formulation these systems are 
automatically avoided, see Section 3.2. 

2.3 A Simple PI-Controller Example 

 
Figure 2. Simple PI-controller with output saturation and 
integer quantization. 

Figure 2 shows a simple linear PI-controller. Since 
the synchronous model decomposition is only required 
to “mark” the controller for embedded code generation, 
but irrelevant for the actual embedded code generated, 
we can ignore the controller’s clock and in- and output 
samplings. Relevant for embedded code generation is 
that the output u of the controller model is declared 
with min and max attributes defining its saturation: 
            Modelica.Blocks.Interfaces.IntegerOutput  

u (min = -500, max = 500) "Controller output"; 
The embedded code generator generates two C source 
code files: a header file defining the controller’s in- 
and output types (dsembedded.h) and its actual 
implementation (dsembedded.c). 

The header file in Figure 3 defines a C struct that 
holds all relevant model variables, each annotated with 
a comment referring to its original Modelica 
declaration and description. Note, that the type of the 
output u is a signed 16-bit integer which Dymola has 
deduced from the min and max attributes declared in 
the controller’s Modelica model. 

Figure 4 shows parts of the generated model 
implementation, in this case the start of the routine for 
the calculation of controller outputs. Each calculation 
is preceded by a comment that traces back to the 
original component, class and equation within the 
controller’s Modelica model responsible for the code 
generated. The comments also contain information 
about alias substitutions and deduced array sizes. 

Similar code is generated for model update used to 
provide new sampling inputs and dynamics to compute 
complex simulation steps. Using the code and the types 
provided by the generated header file, the generated 
controller implementation can be integrated in the 
embedded software system actually deployed on some 
target device. More advanced application examples 
combining Rosenbrock integration methods and this 
embedded code generator are given in Section 4. 
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/* dsembedded.h 
 * Model variables for Modelica model PIController */ 
#ifndef _dsembedded_h_ 
#define _dsembedded_h_ 
#include <dse_types.h> 
#include <dsembedded_structs.h>    /* structs for records */ 
#include <dsembedded_prototypes.h> /* function prototypes */ 
 
/* Model variables */ 
struct PIController_variables { 
  /* input Modelica.Blocks.Interfaces.RealInput y 
      "Measured variable" */ 
  real_t y; 
   
  /* input Modelica.Blocks.Interfaces.RealInput y_ref 
      "Reference signal" */ 
  real_t y_ref; 
   
  /* output Modelica.Blocks.Interfaces.IntegerOutput  
      u(min=-500, max=500) "Controller output" */ 
  integer16_t u; 
  ... 
   
  /* parameter Modelica.Blocks.Types.Init  
      integrator.initType (min=1, max=4) =  
       Modelica.Blocks.Types.Init.InitialState 
        "Type of initialization (1: no init,  
         2: steady state, 3,4: initial output)" */ 
  uinterger8_t integrator_initType; 
   
  /* parameter Boolean limiter.strict = false 
      "= true, if strict limits with noEvent(..)" */ 
  boolean_t limiter_strict; 
  ... 
}; 

Figure 3. C header file generated for the PI-controller. 
/* dsembedded.c 
 * Model equations for Modelica model PIController */ 
#include <dsembedded.h> 
#include <dsembedded_codes.c>      /* functions code */ 
 
/* Model outputs */ 
static int model_outputs(PIController_variables* v, 
    PIController_states* s) 
{ 
  /* Component add1 */ 
  /* Class     Modelica.Blocks.Math.Add */ 
  /* y = k1*u1+k2*u2; */ 
  /* y = Ki.u; */ 
  /* u1 = y_ref; */ 
  /* u2 = y; */ 
  v->Ki_u = v->add1_k1*v->y_ref+v->add1_k2*v->y; 
   
  /* Component Kp */ 
  /* Class     Modelica.Blocks.Math.Gain */ 
  /* y = k*u; */ 
  /* u = Ki.u; */ 
  v->Kp_y = v->Kp_k*v->Ki_u; 
   
  /* Component add */ 
  /* Class     Modelica.Blocks.Math.Add */ 
  /* y = k1*u1+k2*u2; */ 
  /* u1 = integrator.y; */ 
  /* u2 = Kp.y; */ 
  v->add_y = v->add_k1*v->integrator_y+v->add_k2*v->Kp_y; 
  ... 
} 

Figure 4. Generated PI-controller implementation. 

3 Rosenbrock Methods 
For real-time applications of stiff systems Dymola has 
historically reduced the model’s equation system to 
index 0 (an ODE system) and used a nonlinear solver 
to handle the implicit Euler discretization by a limited 
number of Newton iterations, see e.g. (Elmqvist, 
Mattsson et al., 2004). 

One main advantage of Rosenbrock methods is to 
directly solve stiff systems using only a linear solver. 

A certain variant of the implicit Euler method doing 
only one Newton iteration per step is equivalent to the 
corresponding Rosenbrock method of order 1. 

In the following subsection Rosenbrock methods are 
introduced for index-1 DAEs which are known from 
the literature. Further, the advantages of the index-1 
formulation and their application on Modelica models 
are presented. Finally, some properties and details of 
their implementation in Dymola are discussed. 

3.1 Rosenbrock Methods for Index-1 DAEs 
The supported Rosenbrock methods consider non-
autonomous DAE systems with index 1 of the form 

𝐸𝐸�̇�𝑦 = 𝑓𝑓(𝑡𝑡,𝑦𝑦) 

where 𝐸𝐸 is a constant and possibly singular matrix.  
The Rosenbrock methods (Hairer, Wanner, 1991) 

are defined by s stages for a single step from 𝑡𝑡0 to 
𝑡𝑡1 ≔ 𝑡𝑡0 + ℎ with the initial state vector 𝑦𝑦0 = 𝑦𝑦(𝑡𝑡0) to 
get an approximation of the state vector 𝑦𝑦(𝑡𝑡1): 

𝑦𝑦1 = 𝑦𝑦0 + �𝑚𝑚𝑖𝑖

𝑠𝑠

𝑖𝑖=1

𝑢𝑢𝑖𝑖 , 

𝐽𝐽𝑖𝑖 =
1
ℎ𝛾𝛾𝑖𝑖𝑖𝑖

𝐸𝐸 − 𝑓𝑓𝑦𝑦(𝑡𝑡0,𝑦𝑦0), 

𝐽𝐽𝑖𝑖𝑢𝑢𝑖𝑖 = 𝑓𝑓(𝑡𝑡0 + 𝛼𝛼𝑖𝑖ℎ, 𝑦𝑦0 + �𝑎𝑎𝑖𝑖𝑖𝑖

𝑖𝑖−1

𝑖𝑖=1

𝑢𝑢𝑖𝑖)  + 𝐸𝐸�
𝑐𝑐𝑖𝑖𝑖𝑖
ℎ

𝑖𝑖−1

𝑖𝑖=1

𝑢𝑢𝑖𝑖 

 + 𝛾𝛾𝑖𝑖ℎ𝑓𝑓𝑡𝑡(𝑡𝑡0,𝑦𝑦0)        (𝑖𝑖 = 1, … , 𝑠𝑠). 
Fixed method coefficients are 𝛾𝛾𝑖𝑖𝑖𝑖 ,  𝑎𝑎𝑖𝑖𝑖𝑖 , 𝛼𝛼𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖 , 𝛾𝛾𝑖𝑖 and 
𝑚𝑚𝑖𝑖. To compute the stage vectors 𝑢𝑢𝑖𝑖 a linear system of 
equations has to be solved in each stage. Especially 
interesting are methods with 𝛾𝛾 ≔ 𝛾𝛾𝑖𝑖𝑖𝑖  (𝑖𝑖 = 1, … , 𝑠𝑠), 
because then the iteration matrix 𝐽𝐽𝑖𝑖 of the linear system 
is the same in each stage – and we can drop the index. 
So, only one decomposition of the iteration matrix 𝐽𝐽 is 
required in each time step. Rosenbrock methods 
require the evaluation of the Jacobian 𝑓𝑓𝑦𝑦 and the 
derivative with respect to time 𝑓𝑓𝑡𝑡. 

For systems with input variables 𝑢𝑢 (which must not 
be mixed up with the stage vectors 𝑢𝑢𝑖𝑖): 

𝐸𝐸�̇�𝑦 = 𝑓𝑓(𝑡𝑡,𝑦𝑦) ≔ 𝜑𝜑�𝑡𝑡,𝑦𝑦,𝑢𝑢(𝑡𝑡)� 

this means 𝑓𝑓𝑡𝑡 = 𝜑𝜑𝑡𝑡 + 𝜑𝜑𝑢𝑢�̇�𝑢 with the derivatives �̇�𝑢 of the 
external input signal 𝑢𝑢 to be provided.  

There exist coefficients of Rosenbrock methods with 
convergence orders from 1 to 4 with different stability 
properties. In (Lubich, Roche, 1990) an L-stable 
Rosenbrock method of order 3 with 𝑠𝑠 = 4 stages is 
developed for index-1 systems. In (Rang, 2013) the 
coefficients of Rosenbrock methods are improved to 
get methods without order reduction for (very) stiff 
problems. 

Rosenbrock methods are interesting for real-time 
simulation of stiff systems, because the computational 
procedure for a step includes the solution of linear 
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systems but not of nonlinear systems. For linear 
systems a fixed number of computations guarantee 
finding the numerical solution in contrast to the 
iteration process for solving nonlinear systems. 

3.2 Linear and Nonlinear Systems of 
Equations 

In comparison to the ODE representation of a Modelica 
model, the index-1 formulation in Section 3.1 has some 
advantages in combination with Rosenbrock methods. 
Consider the example system of index 1 

�̇�𝑥 = 𝑓𝑓(𝑡𝑡,𝑥𝑥, 𝑦𝑦), 
0 = 𝑔𝑔(𝑡𝑡, 𝑥𝑥, 𝑦𝑦), 

where a possibly nonlinear function 𝑔𝑔 couples states 𝑥𝑥 
and algebraic variables 𝑦𝑦. The typical transformation to 
ODE form would lead to 

�̇�𝑥 = 𝑓𝑓�𝑡𝑡, 𝑥𝑥,𝑦𝑦(𝑥𝑥, 𝑡𝑡)�, 
𝑦𝑦 = 𝑔𝑔−1(𝑥𝑥, 𝑡𝑡). 

Here, maybe a nonlinear or at least a linear system 
of equations has to be solved when inverting the 
function 𝑔𝑔 with respect to 𝑦𝑦. This can be avoided, if 
the index-1 formulation is used: 

�𝐼𝐼 0
0 0��

�̇�𝑥
�̇�𝑦� = �𝑓𝑓(𝑡𝑡, 𝑥𝑥, 𝑦𝑦)

𝑔𝑔(𝑡𝑡,𝑥𝑥, 𝑦𝑦)�. 

When applying a Rosenbrock method only the right 
hand side and its derivatives are evaluated. The one 
step method provides an approximation of the solution 
vectors 𝑥𝑥, 𝑦𝑦 just by solving linear systems in the stages 
of the method. So, no nonlinear or nested linear system 
has to be solved. This property is very helpful for real-
time simulation, because nonlinear loops in the original 
Modelica model can be replaced by linear systems in 
this way – leading to predictable computation times, 
see Section 4.1.2 for an example. 

3.3 Rosenbrock Methods in Dymola 
The support of Rosenbrock methods has recently been 
implemented in Dymola. The integration schemes rely 
on the index-1 formulation of the manipulated 
Modelica model equations. By the symbolic 
manipulation algorithms of Dymola, it is structurally 
guaranteed, that the system 𝐸𝐸�̇�𝑦 = 𝑓𝑓(𝑡𝑡, 𝑦𝑦) has index 1. 
Currently, in Dymola four different Rosenbrock 
methods with orders 1-4 are available. The method of 
order 1 is the linearly implicit Euler method. All the 
methods are available as global inline integration 
methods in Dymola, see the menu in Figure 5. 

Further, a Rosenbrock method can be specified as a 
solver method for a clocked part, by setting the 
argument solverMethod of the Modelica Clock 
constructor Clock(c, solverMethod). This functionality 
is then used in the Modelica_Synchronous library to 
define the integration method of clocked equations. In 

the example in Figure 6 the first order Rosenbrock 
method “Rosenbrock1” is used. 

 

 
Figure 5. Menu to select a Rosenbrock integration 
method in Dymola. 

 
Figure 6. Inclusion of a continuous-time controller into a 
clocked environment using Rosenbrock integration. 

To complete the tool chain, the Rosenbrock methods 
are also supported by Dymola’s embedded code 
generator. The symbolic machinery transforms the 
Modelica model equations after index reduction and 
fixed state selection to the form 𝐸𝐸�̇�𝑦 = 𝑓𝑓(𝑡𝑡,𝑦𝑦) and 
generates code for calculating 𝐸𝐸 and 𝑓𝑓. Additionally 
the matrix 𝑓𝑓𝑦𝑦 corresponding to the analytic Jacobian is 
straightforward to construct and generate code for.  

It is more complicated to construct the vector 𝑓𝑓𝑡𝑡. 
The symbolic machinery normally deduces a total 
derivative with respect to time, but for Rosenbrock 
methods a partial derivative is needed. We will explain 
the difference with an example. If for example 
𝑓𝑓(𝑡𝑡,𝑦𝑦) = 𝑡𝑡2 + 𝑦𝑦, the total derivative with respect to 
time would be 𝑑𝑑 𝑑𝑑𝑡𝑡⁄ 𝑓𝑓(𝑡𝑡, 𝑦𝑦(𝑡𝑡)) = 2𝑡𝑡 + �̇�𝑦, but the 
partial derivative is 𝑓𝑓𝑡𝑡(𝑡𝑡,𝑦𝑦) = 2𝑡𝑡. The symbolic 
machinery has also to deal with intermediate variables 
(e.g. 𝑧𝑧, if we rewrite the previous equation as 𝑓𝑓(𝑡𝑡,𝑦𝑦) =
𝑧𝑧 + 𝑦𝑦;  𝑧𝑧 = 𝑡𝑡2; and the partial derivative with respect to 
time should differentiate those, but not the states). 

Moreover, this time-derivative is not used by other 
standard numerical integration methods, and thus some 
Modelica functions do not provide the necessary 
derivatives (this can be handled either by assuming that 
the functions are smooth even if not specified or some 
minor modifications of libraries such as Modelica 
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Standard Library to specify this). This is especially the 
case, if the model follows some time-dependent 
trajectory 𝑟𝑟(𝑡𝑡) – because we need the derivative �̇�𝑟(𝑡𝑡), 
which is not needed for other methods. For input 
dependent models the derivative �̇�𝑢 of the input is 
involved in 𝑓𝑓𝑡𝑡 (as explained in Section 3.1) and could 
be approximated by a difference quotient or the 
influence of �̇�𝑢 could be neglected in the method 
equations (�̇�𝑢 = 0), when we assume that the input 
signal is piecewise constant. But this introduces some 
non-smoothness into the right hand side 𝑓𝑓, which could 
lead to numerical errors especially when applying 
Rosenbrock methods with orders greater than two. A 
more sophisticated solution for such input dependent 
models would require the additional input �̇�𝑢 for the 
model. This approach has not been investigated so far. 

The matrix 𝐸𝐸 is generally sparse or even diagonal 
with just zeros and ones on the diagonal and it would 
be worth to exploit the structure of the matrix when 
generating tailored code for the application of a 
Rosenbrock method to a specific Modelica model – but 
this is not yet realized in the implementation. 

Dymola’s implementation of  Rosenbrock is 
generic, and some method-specific optimizations are 
not yet included, e.g. some Rosenbrock methods have 
several rows of the matrix (𝑎𝑎𝑖𝑖𝑖𝑖) that are identical, and 
in those cases we could avoid re-evaluating the right 
hand side 𝑓𝑓. This can intuitively be explained as 
performing exactly two iterations of the nonlinear 
solver for that point.  

There are variations of Rosenbrock methods (W-
methods) that keep the factorized matrices for several 
steps. We have not considered them for real-time 
applications. The reason is that for real-time code the 
goal is to ensure a maximum computation time for 
each sampling point – not for the average one; and we 
will anyway need new factorized matrices after each 
event. If we do not explicitly detect events, the 
problem with W-methods would be more severe since 
the continuity assumptions are silently broken. 

4 Application Examples 
In this section two application examples are given to 
demonstrate how the embedded code generation and 
the Rosenbrock methods can be used to generate real-
time code for nonlinear controller structures with 
guaranteed upper number of operations. 

4.1 Nonlinear Feedforward Controllers 
We consider a continuous-time controller with two 
structural degrees of freedom and an inverse plant 
model in the feedforward path. See (Looye et al., 2005) 
for details on this controller structure and its 
implementation in Modelica. In case the inverse plant 
and the plant model are identical, they start at the same 
initial values and the plant is stable, then the control 

error is equal to zero, so the plant output follows the 
filtered reference input. The feedback controller is used 
to compensate for differences in the plant and inverse 
plant model, as well as for external disturbances, and it 
stabilizes a plant in case it is unstable. 

4.1.1 Implementation in Modelica 
In Modelica an inverse plant model can be constructed 
by using the model component 
     Modelica.Blocks.Math.InverseBlockConstraints 
to exchange inputs and outputs and by connecting a 
filter to the input of the inverse model. As filter the 
model Modelica.Blocks.Continuous.Filter with 
parameters filterType = LowPass and analogFilter = 
CriticalDamping or Bessel can be used, see Figure 7. 
The minimum order of the filter results from the 
structural analysis of the inverse plant model resp. the 
corresponding DAE in order to only provide the input 
u but not derivatives of it. The derivatives of the 
smoothed input signal are computed inside the filter 
model. 

 
Figure 7. Definition of an inverse plant model. 

In order that the controller can be used on a real 
time system, the process of Section 2 is applied. The 
continuous controller model is transformed to a 
clocked system with sample and hold blocks and an 
appropriate inline integrator needs to be selected for 
the clock. In simple cases, an Explicit Euler method 
might be enough. If the controller contains nonlinear 
algebraic equations or if the model is stiff, a 
Rosenbrock integrator has to be selected, see also 
Section 3.3. Note, that the filter might be stiff even if 
the inverse plant model might be non-stiff. 

It follows an application example for the automatic 
construction of nonlinear feedforward controllers that 
can be used in an embedded system. 

4.1.2 Example 1: Slider Crank Mechanism 
with Feedforward Controller 

The following example is a slider-crank 
mechanism that is directed in vertical 
direction. At the top a spring-mass system is 
present. The goal is to move the revolute 
joint of the slider-crank mechanism, such 
that the mass follows a pre-defined path 
without vibrations. 

When kinematically driving the revolute 
joint with constant velocity, then the vertical 
coordinate of the top mass moves as shown 
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in Figure 8. As can be seen, significant vibrations are 
present in the movement of the mass. The goal is to 
develop an embedded controller according to Section 
2. The problem is rather challenging, because the slider 
crank mechanism introduces a nonlinear algebraic 
equation system in the plant, as well as in the plant 
inverse. 

 
Figure 8. Vertical movement of top-mass of the slider-
crank mechanism. 

 
Figure 9. Controlled slider crank mechanism. 

In Figure 9 the overall system including a controller 
is shown. The controller is detailed in Figure 10 where 
for the feedforward path of the controller an inverse 
model of the slider crank mechanism is present such 
that the input of the inverse model is the vertical 
position s of the top mass, and the outputs are (a) the 
reference torque tau for the revolute joint, and (b) the 
reference angle phi for the revolute joint. As filter a 

third order critical damping filter is used. The control 
error is the difference between the reference angle phi 
computed by the inverse slider crank model and the 
measured angle phi from the plant. A simple P 
controller is used in the feedback loop. 

Although a nonlinear system of equations appears in 
the model equations of the inverse slider-crank model, 
it is possible to generate embedded code for the 
sampled data controller according to Section 2 by 
using the newly supported Rosenbrock integrators of 
Section 3. The detailed explanation of this effect is 
found in Section 3.2. A proper step size of the tested 
Rosenbrock methods for the controller is 1 ms. 

Some simulation results are shown in Figure 11. The 
Rosenbrock method of order 1 (the linearly implicit 
Euler method) leads to very accurate results with 
respect to the reference solution generated by a highly 
accurate DASSL simulation. The numerical solution of 
the Rosenbrock method with order 3 is also rather 
accurate, only in the torque signal some vibrations are 
visible. One reason could be neglecting the input 
derivatives of s_ref and phi in the integration scheme 
of Rosenbrock methods as described in Section 3.1. 

Experiments show for the Explicit Euler method a 
maximum step size of 0.5 ms can be used; otherwise 
the numerical integration cannot be run due to 
difficulties with solving the nonlinear system. There 
remains still a nonlinear system of equations due to the 
index-0 formulation of the translated model equations. 
This also means that currently no embedded code can 
be generated for this controller example when using an 
Explicit Euler method as integrator. 

There are two advantages of Rosenbrock methods: 
Because they are implicit methods, generally greater 
step sizes can be used than for explicit methods and 
nonlinear system of equations present in the model 
equations can be approximately solved by a 
Rosenbrock solver resulting in only linear systems. 

   
Figure 10. Sampled data controller of a slider crank mechanism consisting of inverse plant model in the feedforward 

path, a filter of order 3 and a P controller in the feedback loop. 
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Figure 11. Simulation results of the slider crank 
mechanism with a nonlinear feedforward path and a P 
controller in the feedback loop. The reference solution 
using the continuous controller in Modelica is generated 
by highly accurate BDF-methods with DASSL (blue 
lines) whereas the embedded controllers contain 
Rosenbrock methods of order 1 (red lines) and order 3 
(green lines) with a constant step size of 1 ms. 

4.2 Feedback Linearization Controllers 
A further important controller structure using nonlinear 
plant models is feedback linearization, see (Looye et 
al., 2005) for more details including the implemen-
tation in Modelica. 

4.2.1 Implementation in Modelica 
The first part of this subsection is a summary of 
material provided in (Looye et al., 2005). The principal 
differences between a controller with feedback 
linearization and a feedforward controller of Section 
4.1 are that for the feedback linearization 
• the inverse plant model is in the feedback part of 

the controller and 
• the states in the inverse model are obtained from 

the actual plant via measurement and/or estimation 
and not via solving a DAE (but algebraic equations 
might need to be solved). 

When deriving feedback linearizing control laws 
manually, the outputs to be controlled are differentiated 

until an analytical relation with a control input is 
found. If the system model is available in Modelica, 
the derivation of the control laws can be automated 
using a similar procedure as described in Section 4.1.1. 
However, instead of a filter with a minimal order, a 
minimal set of integrators is added:  

𝑣𝑣 ∶= 𝑦𝑦(𝑝𝑝) ∶=
𝑑𝑑𝑝𝑝

𝑑𝑑𝑡𝑡𝑝𝑝
𝑦𝑦 (1) 

where 𝑣𝑣 is the new model input corresponding to the 
output with relative degree 𝑝𝑝. We describe the 
procedure for a single output system with the 
controlled output 𝑦𝑦. The desired dynamic behavior of 
the closed-loop system is then imposed by application 
of an additional feedback law: 

𝑣𝑣 =  𝑘𝑘0�𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑦𝑦� −�𝑘𝑘𝑖𝑖

𝑝𝑝−1

𝑖𝑖=1

𝑦𝑦(𝑖𝑖) (2) 

with constant coefficients 𝑘𝑘𝑖𝑖. This feedback law 
requires availability of the (𝑝𝑝 − 1)-th derivative of the 
controlled output 𝑦𝑦. The derivatives may be obtained 
from measurements or from the computed values in the 
inverse model. In case the inverted model exactly 
represents the true system, the closed loop system 
becomes the single output case: 

𝑦𝑦(𝑝𝑝) + �𝑘𝑘𝑖𝑖

𝑝𝑝−1

𝑖𝑖=1

𝑦𝑦(𝑖𝑖) + 𝑘𝑘0(𝑦𝑦 − 𝑦𝑦𝑅𝑅𝑅𝑅𝑓𝑓) = 0. (3) 

A disadvantage of feedback linearization is that the 
state vector of the plant must be fully available from 
measurement and/or estimation. 

In Modelica, the inverse model is built in a similar 
way as for a feedforward controller, see Figure 12: 

 
Figure 12. Definition of an inverse plant model for 
feedback linearization. 

When translating this model with Dymola, typically 
an error message of the following kind is displayed: 
"The model requires derivatives of some inputs as 
listed below: ...". For example if derivatives of order 2 
are required by 𝑣𝑣, then 2 more integrators have to be 
added. 

This inverse model with the integrators of Figure 12 
is placed in the feedback-loop of the controller. If the 
minimal number of integrators are added, then the 
model from 𝑣𝑣 → 𝑦𝑦 has the same number of states as the 
non-inverted plant. These states must be provided from 
measured and/or estimated values of the plant. To 
formulate this, Dymola has introduced an annotation to 
map a sampled input signal, say, xs = sample(xc) to a 
state x, say: 

𝑦𝑦 
 

�̇�𝑦 
 

�̈�𝑦 
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Real xs annotation(useAsInputForState=x); 
The meaning is that 
1. StateSelect.always is defined for variable x. 
2. After the usual index reduction and state selection 

x is deselected as state and the equation x = xs is 
added. Its derivative is set as a dummy derivative. 

As a result, the inverse model is no longer a 
differential-algebraic equation system, but only an 
algebraic equation system. In case this system is 
nonlinear, the Rosenbrock method from Section 3 is 
used to solve it during run-time with a fixed upper 
bound on the number of operations. 

 
Figure 13. Modelica block to apply the new annotation 
useAsInputForState. 
A corresponding Modelica block has been 
implemented to use the annotation, see Figure 13. The 
main line of code in the block is 

RealInput xs  annotation (useAsInputForState=x); 
to enforce, that the state x is set to the input xs 
according to the above logic. 

In the next subsection an application example 
demonstrates the general tool chain for the automatic 
construction of feedback linearization controllers that 
can be used in an embedded system. 

4.2.2 Example 2: Mixing Reactor with Feedback 
Linearization Controller 

We use a mixing reactor model that is explained in 
detail in (Looye et al., 2005) – including different types 
of controllers for it. The reactor shall be controlled by a 
feedback linearization controller. For the feedback 
linearization it is assumed that the two system states, 
the concentration 𝑐𝑐 =:𝑦𝑦 of the chemical substance, as 

well as its temperature 𝑇𝑇, are measurable. 
With the approach of Figure 12 it is determined that 

two integrators are needed. By Equation (3) we get the 
following feedback law: 

𝑣𝑣 = �̈�𝑐 = 𝑘𝑘0�𝑐𝑐𝑟𝑟𝑅𝑅𝑅𝑅 − 𝑐𝑐� − 𝑘𝑘1�̇�𝑐 (4) 
whereby 𝑐𝑐 is available from measurement and �̇�𝑐 is 
computed from the inverse model (which in turn means 
that it is computed from the measured 𝑐𝑐 and 𝑇𝑇). The 
following feedback coefficients are selected: 

𝑘𝑘0 = 4.39e-4, 𝑘𝑘1 = 0.0419.  
The complete model including the controller and the 
controlled plant is shown in Figure 14. The controller 
is according to (4) and includes the “input to state” 
blocks for the states of the inverse plant model: the 
concentration 𝑐𝑐 and the temperature 𝑇𝑇. As explained in 
the previous subsection this is necessary to provide the 
measured states to the inverse model of the feedback 
linearization controller. 

Figure 15 shows the response of the closed loop 
system using the embedded controller generated 
according to the process described in Section 2. The 
simulation results are generated with Rosenbrock 
methods of order 1-4. It is obvious that the results are 
rather identical for the used step size of 5 s. It is also 
possible to use the Explicit Euler method, but then a 
step size of 1 s is necessary to achieve similar accuracy 
as the Rosenbrock methods do. 

The main novelty of this example is the support of 
the newly introduced annotation useAsInputForState 
within a clocked system. This feature enables the user 
to develop and test a controller with feedback 
linearization in a purely Modelica environment. 
Previously (see Looye et al., 2005) this was only 
possible by exporting the inverse model to for example 
Simulink and building the controller in this 
environment. The additional support by the embedded 
code generator completes this feature. 

   Figure 14. Mixing reactor controlled by a feedback linearizing controller. The “input to state” blocks are used to 
provide the states of the inverse model. 

𝑐𝑐 ̈ 𝑐𝑐 ̇ 𝑐𝑐 𝑐𝑐𝑟𝑟𝑅𝑅𝑅𝑅  
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Figure 15. Step response of the mixing reactor controlled 
by a feedback linearization controller. 

5 Summary and Outlook 
Directly generating controller code from models is 
important for model-based design. This paper 
demonstrates how Dymola can generate embedded C-
code for Modelica models (with several novel aspects) 
and demonstrates this for application examples. 

By using Rosenbrock methods on the index-1 
problem Dymola can handle stiff systems in a way that 
both is theoretically sound and has an upper bound on 
the execution time per sample. The stiff systems in the 
control system often occur due to using an inverse 
(simplified) model of the real plant in the controller. 

Additionally Dymola's generated embedded C-code 
has been designed to be easy to embed, with care about 
minimal foot-print, traceability, and straightforward 
integration in embedded platforms. 

Finally, a nonlinear feedforward controller and a 
feedback linearization controller have been 
implemented in Modelica for different application 
examples. They show the potential of the whole 
process by generating embedded real-time code for 
these nontrivial examples. 

Future considerations include investigating how to 
handle inputs (piece-wise constant or extrapolation) for 
Rosenbrock methods, and nonlinear systems in 

initialization and event code. Additionally, the choice 
of the specific Rosenbrock methods will be re-
investigated. A possible future extension would be to 
use Rosenbrock methods with step-size control in off-
line mode; one benefit would be to quickly get an 
estimate of the step-size needed for the model. 
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