
Model-based Embedded Control using Rosenbrock
Integration Methods

Hans Olsson1 Sven Erik Mattsson1 Martin Otter2 Andreas Pfeiffer2 Christoff Bürger1
Dan Henriksson1

1Dassault Systèmes AB, Lund, Sweden,
{Hans.Olsson, SvenErik.Mattsson, Christoff.Buerger, Dan.Henriksson}@3ds.com

2DLR, Institute of System Dynamics and Control, Germany,
{Martin.Otter, Andreas.Pfeiffer}@dlr.de

Abstract
Directly generating controller code from models is
important for advanced model-based design. This
paper describes how Dymola can generate embedded
C-code from Modelica models, designed to be easy to
embed, with care about minimal foot-print, traceability,
and straightforward integration in embedded platforms
and gives actual application examples.

The paper focuses on using Rosenbrock methods for
index-1 problems (instead of the normal transformation
to index 0) that allows Dymola to handle stiff systems
in a way that both is theoretically sound and has an
upper bound on the execution time per sample.

The stiff systems in the control system often occur
due to using an inverse (simplified) model of the real
plant in the controller. A nonlinear feedforward
controller and a controller with feedback linearization,
both applying an inverse model, demonstrate the
proposed process by using Rosenbrock methods for
embedded code generation.
Keywords: Modelica, inverse models, real-time,
embedded, Rosenbrock methods, inline integration,
feedforward controller, feedback linearization

1 Introduction
Modelica and Modelica tools such as Dymola are very
well suited to model and simulate complex physical
systems with primary focus on offline simulation for
design and assessment, as well as on online simulation
on special purpose hardware, e.g. for hardware-in-the-
loop simulations. Modelica models have been used in
controller applications where nonlinear Modelica
models are part of the real-time control system, see for
example (Looye et al., 2005). The controller could be
designed and assessed with Dymola, however, the
actual real-time controller code had to be re-built
manually either directly in C or with dedicated
software for controller code generation.

There are several activities to extend the tool chains
for Modelica models for real-time platforms, for
example (Satabin et al., 2015) for generation of
certified code of simple Modelica models via the
SCADE-suite (SCADE, 2017), or (Bertsch et al., 2015)

for utilizing Modelica code on automotive electronic
control units.

This paper describes the steps to generate embedded
real-time code using a new prototype functionality of
Dymola. The goals are (a) to generate code that can be
certified for critical applications, (b) to guarantee an
upper number of operations so that hard real-time
constraints can be fulfilled, and (c) to support advanced
controllers that can utilize nonlinear Modelica models
in the feedback or feedforward path of the controller,
which may require solving nonlinear differential-
algebraic equation systems.

Numerical integration in real-time is a challenging
task. Explicit integration, such as explicit Runge-Kutta
methods or explicit multistep methods provide
integration schemes with a deterministic number of
numerical operations, but they may fail for stiff
systems due to stability problems. Choosing a rather
small step size can help to overcome this issue, but the
sample rate and the computational power of real-time
platforms are (strongly) limited. Standard implicit
methods like implicit Runge-Kutta methods or BDF
methods are designed for stiff systems with an
acceptable step size, but nonlinear systems of equations
have to be solved in each time step. Linearly implicit
one-step methods, in particular Rosenbrock methods,
provide a compromise. They can solve stiff problems
using larger steps than explicit methods at the cost of
having to solve linear systems.

The paper describes the new contributions in the
following order: Section 2 gives an overview of the
new code generator, Section 3 explains implementation
of the Rosenbrock methods, Section 4 gives realistic
application examples, and finally Section 5 gives a
summary and outlines possible future extensions.

2 Model-based Embedded Controller
Development in Dymola

Controller code intended to be executed in real-time on
embedded devices is subject to special requirements.
For example, (Bertsch et al., 2015) discusses these
challenges in the context of automotive embedded
applications for the case of FMU source code

DOI
10.3384/ecp17132517

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

517

generation using Modelica tools. The standard C-code
generated by Modelica tools is typically designed for
desktop computer environments, where substantial
hardware and software resources are available.
Simulation is offline and without hard real-time
constraints. Such standard code does not fulfill real-
time system requirements, where code has to be
deployed on embedded targets.

The standard C-code generated by Dymola from
Modelica models is no exception; it is highly optimized
to cope with several application scenarios including
offline simulation and hardware-in-the-loop simulation
of complex plant models on dedicated hardware
platforms. However, this code includes many features
not needed (and fails to fulfill constraints) for real-time
controller code to be executed on embedded targets
where minimalistic, self-contained, and human
readable code is required.

On the other hand, Dymola provides convenient
tooling for the development of full multi-domain
system models and their simulation. It would be very
convenient if embedded code for the controller parts
also could be automatically generated and evaluated in
software-in-the-loop simulations. The advantages of
Modelica regarding complete system modeling and
simulation are then leveraged also for real-time and
embedded controller development.

Figure 1 summarizes the embedded development
scenario we like to support. Physical plant models,
controllers and test inputs for typical use cases can be
fully modeled (left part) and simulated (right part) on
system level. Throughout iterative development of all
components, the whole system can be evaluated using
standard simulation facilities. Embedded code can then
be generated for the controller and co-simulated with
the rest of the system. The results of such a software-
in-the-loop co-simulation are shown on the right. The
control signal (blue curve) is computed using the code
generated by the embedded code generator. The red
curve is the controlled plant output and the green signal

is a disturbance that becomes active midway through
the simulation. The embedded code generator to
support this process is described below.

2.1 Embedded Development Process
Given a physical system model in Modelica, the
experimental Dymola embedded code generator
considers the following four tasks for the design and
implementation of controllers for an embedded target:
(1) Controller modeling: Implement controllers as
Modelica models with continuous model equation parts
as done in Modelica since many years.
(2) Model decomposition: Use the controller models
in a synchronous environment as described in (Otter et
al., 2012). Sample and hold blocks are used to
incorporate the controller inputs and outputs. As
integration scheme for the clocked blocks the
Rosenbrock methods presented in Section 3 can be
used. In Modelica terms, controllers are therefore just
synchronously clocked sub-models. Their synchronous
clock models the interval in which the embedded
environment provides new real-time inputs and queries
for respective control actions.
(3) Embedded code generation: To generate the code
to be embedded for the controller parts, apply the
embedded code generator on the total model. Dymola
extracts the synchronously clocked parts and generates
C-code which is a self-contained, real-time simulator
of its clocked parts. The code is well-suited for
embedded deployment.
(4) Embedded deployment: Adapt, integrate and test
the generated controller code on a real-time platform,
like a rapid prototyping platform or embedded device.

The four tasks can be iteratively performed, in
interrelation with the development of the model of the
controlled physical systems. Co-simulation of the
generated controllers is achieved by binding the
generated C-code of controllers as external C functions
to Modelica and calling them at every sample point

Figure 1. Embedded controller development scenario with Modelica/Dymola.

Model-based Embedded Control using Rosenbrock Integration Methods

518 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132517

throughout the system simulation. Examples of this
procedure are given in Section 4.

2.2 Properties of Generated Code
In addition to the standard optimizations performed by
Dymola’s symbolic manipulation facilities (equation
systems are automatically torn to solve as much
symbolically as possible, constant expressions are
folded and shared expressions are eliminated to be
computed at most once), the controller source code
generated by the embedded code generator complies
with the following requirements for execution on
embedded devices:
Code Integration
• All types (model variables, states and records)

relevant for user code and further code integration
are encapsulated in header files.

• Proper C data types are deduced. Substitutions are
performed to reduce memory footprint.

• A clear interface (with separate C-functions for
initialization, output calculations, etc.) enables
easy integration within external embedded
environments.

• A generic interface to a solver for linear equation
systems enables the usage of solvers tailored for
specific applications and targets. The code for a
default LU-solver is provided.

• The generated code is self-contained, without
dependencies on further libraries (including the C
standard library), supporting embedded devices
without operating system or restricted software
availability.

Traceability
• Comments link the generated code to its Modelica

model, enabling traceability of computations and
declarations. An XML file describing all variables
is generated.

Real-Time Execution
• No heap memory allocation or recursion enables

deterministic static memory allocation and
therefore memory requirement predictions.

• The Rosenbrock integration methods described in
Section 3 are applied to achieve deterministic
execution times and enable predictable response
times by preventing iterative loops with unknown
number of iterations.

• Equations and variables are only considered when
relevant for controller outputs; irrelevant
computations are removed from the code.

There are also some restrictions on the generated
embedded code:
• It does not (yet) fulfill all requirements of the

MISRA-C standard (MISRA, 2013), which is
important for safety-critical systems.

• Simplified event handling is applied. Only state
events can occur, since the models do not use time
directly.

• Nonlinear systems of equations to be solved in
real-time are currently not directly supported. By
using linearly implicit integration methods with an
index-1 formulation these systems are
automatically avoided, see Section 3.2.

2.3 A Simple PI-Controller Example

Figure 2. Simple PI-controller with output saturation and
integer quantization.

Figure 2 shows a simple linear PI-controller. Since
the synchronous model decomposition is only required
to “mark” the controller for embedded code generation,
but irrelevant for the actual embedded code generated,
we can ignore the controller’s clock and in- and output
samplings. Relevant for embedded code generation is
that the output u of the controller model is declared
with min and max attributes defining its saturation:
 Modelica.Blocks.Interfaces.IntegerOutput

u (min = -500, max = 500) "Controller output";
The embedded code generator generates two C source
code files: a header file defining the controller’s in-
and output types (dsembedded.h) and its actual
implementation (dsembedded.c).

The header file in Figure 3 defines a C struct that
holds all relevant model variables, each annotated with
a comment referring to its original Modelica
declaration and description. Note, that the type of the
output u is a signed 16-bit integer which Dymola has
deduced from the min and max attributes declared in
the controller’s Modelica model.

Figure 4 shows parts of the generated model
implementation, in this case the start of the routine for
the calculation of controller outputs. Each calculation
is preceded by a comment that traces back to the
original component, class and equation within the
controller’s Modelica model responsible for the code
generated. The comments also contain information
about alias substitutions and deduced array sizes.

Similar code is generated for model update used to
provide new sampling inputs and dynamics to compute
complex simulation steps. Using the code and the types
provided by the generated header file, the generated
controller implementation can be integrated in the
embedded software system actually deployed on some
target device. More advanced application examples
combining Rosenbrock integration methods and this
embedded code generator are given in Section 4.

Session 7D: Control Systems III

DOI
10.3384/ecp17132517

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

519

/* dsembedded.h
 * Model variables for Modelica model PIController */
#ifndef _dsembedded_h_
#define _dsembedded_h_
#include <dse_types.h>
#include <dsembedded_structs.h> /* structs for records */
#include <dsembedded_prototypes.h> /* function prototypes */

/* Model variables */
struct PIController_variables {
 /* input Modelica.Blocks.Interfaces.RealInput y
 "Measured variable" */
 real_t y;

 /* input Modelica.Blocks.Interfaces.RealInput y_ref
 "Reference signal" */
 real_t y_ref;

 /* output Modelica.Blocks.Interfaces.IntegerOutput
 u(min=-500, max=500) "Controller output" */
 integer16_t u;
 ...

 /* parameter Modelica.Blocks.Types.Init
 integrator.initType (min=1, max=4) =
 Modelica.Blocks.Types.Init.InitialState
 "Type of initialization (1: no init,
 2: steady state, 3,4: initial output)" */
 uinterger8_t integrator_initType;

 /* parameter Boolean limiter.strict = false
 "= true, if strict limits with noEvent(..)" */
 boolean_t limiter_strict;
 ...
};

Figure 3. C header file generated for the PI-controller.
/* dsembedded.c
 * Model equations for Modelica model PIController */
#include <dsembedded.h>
#include <dsembedded_codes.c> /* functions code */

/* Model outputs */
static int model_outputs(PIController_variables* v,
 PIController_states* s)
{
 /* Component add1 */
 /* Class Modelica.Blocks.Math.Add */
 /* y = k1*u1+k2*u2; */
 /* y = Ki.u; */
 /* u1 = y_ref; */
 /* u2 = y; */
 v->Ki_u = v->add1_k1*v->y_ref+v->add1_k2*v->y;

 /* Component Kp */
 /* Class Modelica.Blocks.Math.Gain */
 /* y = k*u; */
 /* u = Ki.u; */
 v->Kp_y = v->Kp_k*v->Ki_u;

 /* Component add */
 /* Class Modelica.Blocks.Math.Add */
 /* y = k1*u1+k2*u2; */
 /* u1 = integrator.y; */
 /* u2 = Kp.y; */
 v->add_y = v->add_k1*v->integrator_y+v->add_k2*v->Kp_y;
 ...
}

Figure 4. Generated PI-controller implementation.

3 Rosenbrock Methods
For real-time applications of stiff systems Dymola has
historically reduced the model’s equation system to
index 0 (an ODE system) and used a nonlinear solver
to handle the implicit Euler discretization by a limited
number of Newton iterations, see e.g. (Elmqvist,
Mattsson et al., 2004).

One main advantage of Rosenbrock methods is to
directly solve stiff systems using only a linear solver.

A certain variant of the implicit Euler method doing
only one Newton iteration per step is equivalent to the
corresponding Rosenbrock method of order 1.

In the following subsection Rosenbrock methods are
introduced for index-1 DAEs which are known from
the literature. Further, the advantages of the index-1
formulation and their application on Modelica models
are presented. Finally, some properties and details of
their implementation in Dymola are discussed.

3.1 Rosenbrock Methods for Index-1 DAEs
The supported Rosenbrock methods consider non-
autonomous DAE systems with index 1 of the form

𝐸𝐸�̇�𝑦 = 𝑓𝑓(𝑡𝑡,𝑦𝑦)

where 𝐸𝐸 is a constant and possibly singular matrix.
The Rosenbrock methods (Hairer, Wanner, 1991)

are defined by s stages for a single step from 𝑡𝑡0 to
𝑡𝑡1 ≔ 𝑡𝑡0 + ℎ with the initial state vector 𝑦𝑦0 = 𝑦𝑦(𝑡𝑡0) to
get an approximation of the state vector 𝑦𝑦(𝑡𝑡1):

𝑦𝑦1 = 𝑦𝑦0 + �𝑚𝑚𝑖𝑖

𝑠𝑠

𝑖𝑖=1

𝑢𝑢𝑖𝑖 ,

𝐽𝐽𝑖𝑖 =
1
ℎ𝛾𝛾𝑖𝑖𝑖𝑖

𝐸𝐸 − 𝑓𝑓𝑦𝑦(𝑡𝑡0,𝑦𝑦0),

𝐽𝐽𝑖𝑖𝑢𝑢𝑖𝑖 = 𝑓𝑓(𝑡𝑡0 + 𝛼𝛼𝑖𝑖ℎ, 𝑦𝑦0 + �𝑎𝑎𝑖𝑖𝑖𝑖

𝑖𝑖−1

𝑖𝑖=1

𝑢𝑢𝑖𝑖) + 𝐸𝐸�
𝑐𝑐𝑖𝑖𝑖𝑖
ℎ

𝑖𝑖−1

𝑖𝑖=1

𝑢𝑢𝑖𝑖

 + 𝛾𝛾𝑖𝑖ℎ𝑓𝑓𝑡𝑡(𝑡𝑡0,𝑦𝑦0) (𝑖𝑖 = 1, … , 𝑠𝑠).
Fixed method coefficients are 𝛾𝛾𝑖𝑖𝑖𝑖 , 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝛼𝛼𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖 , 𝛾𝛾𝑖𝑖 and
𝑚𝑚𝑖𝑖. To compute the stage vectors 𝑢𝑢𝑖𝑖 a linear system of
equations has to be solved in each stage. Especially
interesting are methods with 𝛾𝛾 ≔ 𝛾𝛾𝑖𝑖𝑖𝑖 (𝑖𝑖 = 1, … , 𝑠𝑠),
because then the iteration matrix 𝐽𝐽𝑖𝑖 of the linear system
is the same in each stage – and we can drop the index.
So, only one decomposition of the iteration matrix 𝐽𝐽 is
required in each time step. Rosenbrock methods
require the evaluation of the Jacobian 𝑓𝑓𝑦𝑦 and the
derivative with respect to time 𝑓𝑓𝑡𝑡.

For systems with input variables 𝑢𝑢 (which must not
be mixed up with the stage vectors 𝑢𝑢𝑖𝑖):

𝐸𝐸�̇�𝑦 = 𝑓𝑓(𝑡𝑡,𝑦𝑦) ≔ 𝜑𝜑�𝑡𝑡,𝑦𝑦,𝑢𝑢(𝑡𝑡)�

this means 𝑓𝑓𝑡𝑡 = 𝜑𝜑𝑡𝑡 + 𝜑𝜑𝑢𝑢�̇�𝑢 with the derivatives �̇�𝑢 of the
external input signal 𝑢𝑢 to be provided.

There exist coefficients of Rosenbrock methods with
convergence orders from 1 to 4 with different stability
properties. In (Lubich, Roche, 1990) an L-stable
Rosenbrock method of order 3 with 𝑠𝑠 = 4 stages is
developed for index-1 systems. In (Rang, 2013) the
coefficients of Rosenbrock methods are improved to
get methods without order reduction for (very) stiff
problems.

Rosenbrock methods are interesting for real-time
simulation of stiff systems, because the computational
procedure for a step includes the solution of linear

Model-based Embedded Control using Rosenbrock Integration Methods

520 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132517

systems but not of nonlinear systems. For linear
systems a fixed number of computations guarantee
finding the numerical solution in contrast to the
iteration process for solving nonlinear systems.

3.2 Linear and Nonlinear Systems of
Equations

In comparison to the ODE representation of a Modelica
model, the index-1 formulation in Section 3.1 has some
advantages in combination with Rosenbrock methods.
Consider the example system of index 1

�̇�𝑥 = 𝑓𝑓(𝑡𝑡,𝑥𝑥, 𝑦𝑦),
0 = 𝑔𝑔(𝑡𝑡, 𝑥𝑥, 𝑦𝑦),

where a possibly nonlinear function 𝑔𝑔 couples states 𝑥𝑥
and algebraic variables 𝑦𝑦. The typical transformation to
ODE form would lead to

�̇�𝑥 = 𝑓𝑓�𝑡𝑡, 𝑥𝑥,𝑦𝑦(𝑥𝑥, 𝑡𝑡)�,
𝑦𝑦 = 𝑔𝑔−1(𝑥𝑥, 𝑡𝑡).

Here, maybe a nonlinear or at least a linear system
of equations has to be solved when inverting the
function 𝑔𝑔 with respect to 𝑦𝑦. This can be avoided, if
the index-1 formulation is used:

�𝐼𝐼 0
0 0��

�̇�𝑥
�̇�𝑦� = �𝑓𝑓(𝑡𝑡, 𝑥𝑥, 𝑦𝑦)

𝑔𝑔(𝑡𝑡,𝑥𝑥, 𝑦𝑦)�.

When applying a Rosenbrock method only the right
hand side and its derivatives are evaluated. The one
step method provides an approximation of the solution
vectors 𝑥𝑥, 𝑦𝑦 just by solving linear systems in the stages
of the method. So, no nonlinear or nested linear system
has to be solved. This property is very helpful for real-
time simulation, because nonlinear loops in the original
Modelica model can be replaced by linear systems in
this way – leading to predictable computation times,
see Section 4.1.2 for an example.

3.3 Rosenbrock Methods in Dymola
The support of Rosenbrock methods has recently been
implemented in Dymola. The integration schemes rely
on the index-1 formulation of the manipulated
Modelica model equations. By the symbolic
manipulation algorithms of Dymola, it is structurally
guaranteed, that the system 𝐸𝐸�̇�𝑦 = 𝑓𝑓(𝑡𝑡, 𝑦𝑦) has index 1.
Currently, in Dymola four different Rosenbrock
methods with orders 1-4 are available. The method of
order 1 is the linearly implicit Euler method. All the
methods are available as global inline integration
methods in Dymola, see the menu in Figure 5.

Further, a Rosenbrock method can be specified as a
solver method for a clocked part, by setting the
argument solverMethod of the Modelica Clock
constructor Clock(c, solverMethod). This functionality
is then used in the Modelica_Synchronous library to
define the integration method of clocked equations. In

the example in Figure 6 the first order Rosenbrock
method “Rosenbrock1” is used.

Figure 5. Menu to select a Rosenbrock integration
method in Dymola.

Figure 6. Inclusion of a continuous-time controller into a
clocked environment using Rosenbrock integration.

To complete the tool chain, the Rosenbrock methods
are also supported by Dymola’s embedded code
generator. The symbolic machinery transforms the
Modelica model equations after index reduction and
fixed state selection to the form 𝐸𝐸�̇�𝑦 = 𝑓𝑓(𝑡𝑡,𝑦𝑦) and
generates code for calculating 𝐸𝐸 and 𝑓𝑓. Additionally
the matrix 𝑓𝑓𝑦𝑦 corresponding to the analytic Jacobian is
straightforward to construct and generate code for.

It is more complicated to construct the vector 𝑓𝑓𝑡𝑡.
The symbolic machinery normally deduces a total
derivative with respect to time, but for Rosenbrock
methods a partial derivative is needed. We will explain
the difference with an example. If for example
𝑓𝑓(𝑡𝑡,𝑦𝑦) = 𝑡𝑡2 + 𝑦𝑦, the total derivative with respect to
time would be 𝑑𝑑 𝑑𝑑𝑡𝑡⁄ 𝑓𝑓(𝑡𝑡, 𝑦𝑦(𝑡𝑡)) = 2𝑡𝑡 + �̇�𝑦, but the
partial derivative is 𝑓𝑓𝑡𝑡(𝑡𝑡,𝑦𝑦) = 2𝑡𝑡. The symbolic
machinery has also to deal with intermediate variables
(e.g. 𝑧𝑧, if we rewrite the previous equation as 𝑓𝑓(𝑡𝑡,𝑦𝑦) =
𝑧𝑧 + 𝑦𝑦; 𝑧𝑧 = 𝑡𝑡2; and the partial derivative with respect to
time should differentiate those, but not the states).

Moreover, this time-derivative is not used by other
standard numerical integration methods, and thus some
Modelica functions do not provide the necessary
derivatives (this can be handled either by assuming that
the functions are smooth even if not specified or some
minor modifications of libraries such as Modelica

Session 7D: Control Systems III

DOI
10.3384/ecp17132517

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

521

Standard Library to specify this). This is especially the
case, if the model follows some time-dependent
trajectory 𝑟𝑟(𝑡𝑡) – because we need the derivative �̇�𝑟(𝑡𝑡),
which is not needed for other methods. For input
dependent models the derivative �̇�𝑢 of the input is
involved in 𝑓𝑓𝑡𝑡 (as explained in Section 3.1) and could
be approximated by a difference quotient or the
influence of �̇�𝑢 could be neglected in the method
equations (�̇�𝑢 = 0), when we assume that the input
signal is piecewise constant. But this introduces some
non-smoothness into the right hand side 𝑓𝑓, which could
lead to numerical errors especially when applying
Rosenbrock methods with orders greater than two. A
more sophisticated solution for such input dependent
models would require the additional input �̇�𝑢 for the
model. This approach has not been investigated so far.

The matrix 𝐸𝐸 is generally sparse or even diagonal
with just zeros and ones on the diagonal and it would
be worth to exploit the structure of the matrix when
generating tailored code for the application of a
Rosenbrock method to a specific Modelica model – but
this is not yet realized in the implementation.

Dymola’s implementation of Rosenbrock is
generic, and some method-specific optimizations are
not yet included, e.g. some Rosenbrock methods have
several rows of the matrix (𝑎𝑎𝑖𝑖𝑖𝑖) that are identical, and
in those cases we could avoid re-evaluating the right
hand side 𝑓𝑓. This can intuitively be explained as
performing exactly two iterations of the nonlinear
solver for that point.

There are variations of Rosenbrock methods (W-
methods) that keep the factorized matrices for several
steps. We have not considered them for real-time
applications. The reason is that for real-time code the
goal is to ensure a maximum computation time for
each sampling point – not for the average one; and we
will anyway need new factorized matrices after each
event. If we do not explicitly detect events, the
problem with W-methods would be more severe since
the continuity assumptions are silently broken.

4 Application Examples
In this section two application examples are given to
demonstrate how the embedded code generation and
the Rosenbrock methods can be used to generate real-
time code for nonlinear controller structures with
guaranteed upper number of operations.

4.1 Nonlinear Feedforward Controllers
We consider a continuous-time controller with two
structural degrees of freedom and an inverse plant
model in the feedforward path. See (Looye et al., 2005)
for details on this controller structure and its
implementation in Modelica. In case the inverse plant
and the plant model are identical, they start at the same
initial values and the plant is stable, then the control

error is equal to zero, so the plant output follows the
filtered reference input. The feedback controller is used
to compensate for differences in the plant and inverse
plant model, as well as for external disturbances, and it
stabilizes a plant in case it is unstable.

4.1.1 Implementation in Modelica
In Modelica an inverse plant model can be constructed
by using the model component
 Modelica.Blocks.Math.InverseBlockConstraints
to exchange inputs and outputs and by connecting a
filter to the input of the inverse model. As filter the
model Modelica.Blocks.Continuous.Filter with
parameters filterType = LowPass and analogFilter =
CriticalDamping or Bessel can be used, see Figure 7.
The minimum order of the filter results from the
structural analysis of the inverse plant model resp. the
corresponding DAE in order to only provide the input
u but not derivatives of it. The derivatives of the
smoothed input signal are computed inside the filter
model.

Figure 7. Definition of an inverse plant model.

In order that the controller can be used on a real
time system, the process of Section 2 is applied. The
continuous controller model is transformed to a
clocked system with sample and hold blocks and an
appropriate inline integrator needs to be selected for
the clock. In simple cases, an Explicit Euler method
might be enough. If the controller contains nonlinear
algebraic equations or if the model is stiff, a
Rosenbrock integrator has to be selected, see also
Section 3.3. Note, that the filter might be stiff even if
the inverse plant model might be non-stiff.

It follows an application example for the automatic
construction of nonlinear feedforward controllers that
can be used in an embedded system.

4.1.2 Example 1: Slider Crank Mechanism
with Feedforward Controller

The following example is a slider-crank
mechanism that is directed in vertical
direction. At the top a spring-mass system is
present. The goal is to move the revolute
joint of the slider-crank mechanism, such
that the mass follows a pre-defined path
without vibrations.

When kinematically driving the revolute
joint with constant velocity, then the vertical
coordinate of the top mass moves as shown

Model-based Embedded Control using Rosenbrock Integration Methods

522 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132517

in Figure 8. As can be seen, significant vibrations are
present in the movement of the mass. The goal is to
develop an embedded controller according to Section
2. The problem is rather challenging, because the slider
crank mechanism introduces a nonlinear algebraic
equation system in the plant, as well as in the plant
inverse.

Figure 8. Vertical movement of top-mass of the slider-
crank mechanism.

Figure 9. Controlled slider crank mechanism.

In Figure 9 the overall system including a controller
is shown. The controller is detailed in Figure 10 where
for the feedforward path of the controller an inverse
model of the slider crank mechanism is present such
that the input of the inverse model is the vertical
position s of the top mass, and the outputs are (a) the
reference torque tau for the revolute joint, and (b) the
reference angle phi for the revolute joint. As filter a

third order critical damping filter is used. The control
error is the difference between the reference angle phi
computed by the inverse slider crank model and the
measured angle phi from the plant. A simple P
controller is used in the feedback loop.

Although a nonlinear system of equations appears in
the model equations of the inverse slider-crank model,
it is possible to generate embedded code for the
sampled data controller according to Section 2 by
using the newly supported Rosenbrock integrators of
Section 3. The detailed explanation of this effect is
found in Section 3.2. A proper step size of the tested
Rosenbrock methods for the controller is 1 ms.

Some simulation results are shown in Figure 11. The
Rosenbrock method of order 1 (the linearly implicit
Euler method) leads to very accurate results with
respect to the reference solution generated by a highly
accurate DASSL simulation. The numerical solution of
the Rosenbrock method with order 3 is also rather
accurate, only in the torque signal some vibrations are
visible. One reason could be neglecting the input
derivatives of s_ref and phi in the integration scheme
of Rosenbrock methods as described in Section 3.1.

Experiments show for the Explicit Euler method a
maximum step size of 0.5 ms can be used; otherwise
the numerical integration cannot be run due to
difficulties with solving the nonlinear system. There
remains still a nonlinear system of equations due to the
index-0 formulation of the translated model equations.
This also means that currently no embedded code can
be generated for this controller example when using an
Explicit Euler method as integrator.

There are two advantages of Rosenbrock methods:
Because they are implicit methods, generally greater
step sizes can be used than for explicit methods and
nonlinear system of equations present in the model
equations can be approximately solved by a
Rosenbrock solver resulting in only linear systems.

Figure 10. Sampled data controller of a slider crank mechanism consisting of inverse plant model in the feedforward

path, a filter of order 3 and a P controller in the feedback loop.

Session 7D: Control Systems III

DOI
10.3384/ecp17132517

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

523

Figure 11. Simulation results of the slider crank
mechanism with a nonlinear feedforward path and a P
controller in the feedback loop. The reference solution
using the continuous controller in Modelica is generated
by highly accurate BDF-methods with DASSL (blue
lines) whereas the embedded controllers contain
Rosenbrock methods of order 1 (red lines) and order 3
(green lines) with a constant step size of 1 ms.

4.2 Feedback Linearization Controllers
A further important controller structure using nonlinear
plant models is feedback linearization, see (Looye et
al., 2005) for more details including the implemen-
tation in Modelica.

4.2.1 Implementation in Modelica
The first part of this subsection is a summary of
material provided in (Looye et al., 2005). The principal
differences between a controller with feedback
linearization and a feedforward controller of Section
4.1 are that for the feedback linearization
• the inverse plant model is in the feedback part of

the controller and
• the states in the inverse model are obtained from

the actual plant via measurement and/or estimation
and not via solving a DAE (but algebraic equations
might need to be solved).

When deriving feedback linearizing control laws
manually, the outputs to be controlled are differentiated

until an analytical relation with a control input is
found. If the system model is available in Modelica,
the derivation of the control laws can be automated
using a similar procedure as described in Section 4.1.1.
However, instead of a filter with a minimal order, a
minimal set of integrators is added:

𝑣𝑣 ∶= 𝑦𝑦(𝑝𝑝) ∶=
𝑑𝑑𝑝𝑝

𝑑𝑑𝑡𝑡𝑝𝑝
𝑦𝑦 (1)

where 𝑣𝑣 is the new model input corresponding to the
output with relative degree 𝑝𝑝. We describe the
procedure for a single output system with the
controlled output 𝑦𝑦. The desired dynamic behavior of
the closed-loop system is then imposed by application
of an additional feedback law:

𝑣𝑣 = 𝑘𝑘0�𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑦𝑦� −�𝑘𝑘𝑖𝑖

𝑝𝑝−1

𝑖𝑖=1

𝑦𝑦(𝑖𝑖) (2)

with constant coefficients 𝑘𝑘𝑖𝑖. This feedback law
requires availability of the (𝑝𝑝 − 1)-th derivative of the
controlled output 𝑦𝑦. The derivatives may be obtained
from measurements or from the computed values in the
inverse model. In case the inverted model exactly
represents the true system, the closed loop system
becomes the single output case:

𝑦𝑦(𝑝𝑝) + �𝑘𝑘𝑖𝑖

𝑝𝑝−1

𝑖𝑖=1

𝑦𝑦(𝑖𝑖) + 𝑘𝑘0(𝑦𝑦 − 𝑦𝑦𝑅𝑅𝑅𝑅𝑓𝑓) = 0. (3)

A disadvantage of feedback linearization is that the
state vector of the plant must be fully available from
measurement and/or estimation.

In Modelica, the inverse model is built in a similar
way as for a feedforward controller, see Figure 12:

Figure 12. Definition of an inverse plant model for
feedback linearization.

When translating this model with Dymola, typically
an error message of the following kind is displayed:
"The model requires derivatives of some inputs as
listed below: ...". For example if derivatives of order 2
are required by 𝑣𝑣, then 2 more integrators have to be
added.

This inverse model with the integrators of Figure 12
is placed in the feedback-loop of the controller. If the
minimal number of integrators are added, then the
model from 𝑣𝑣 → 𝑦𝑦 has the same number of states as the
non-inverted plant. These states must be provided from
measured and/or estimated values of the plant. To
formulate this, Dymola has introduced an annotation to
map a sampled input signal, say, xs = sample(xc) to a
state x, say:

𝑦𝑦

�̇�𝑦

�̈�𝑦

Model-based Embedded Control using Rosenbrock Integration Methods

524 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132517

Real xs annotation(useAsInputForState=x);
The meaning is that
1. StateSelect.always is defined for variable x.
2. After the usual index reduction and state selection

x is deselected as state and the equation x = xs is
added. Its derivative is set as a dummy derivative.

As a result, the inverse model is no longer a
differential-algebraic equation system, but only an
algebraic equation system. In case this system is
nonlinear, the Rosenbrock method from Section 3 is
used to solve it during run-time with a fixed upper
bound on the number of operations.

Figure 13. Modelica block to apply the new annotation
useAsInputForState.
A corresponding Modelica block has been
implemented to use the annotation, see Figure 13. The
main line of code in the block is

RealInput xs annotation (useAsInputForState=x);
to enforce, that the state x is set to the input xs
according to the above logic.

In the next subsection an application example
demonstrates the general tool chain for the automatic
construction of feedback linearization controllers that
can be used in an embedded system.

4.2.2 Example 2: Mixing Reactor with Feedback
Linearization Controller

We use a mixing reactor model that is explained in
detail in (Looye et al., 2005) – including different types
of controllers for it. The reactor shall be controlled by a
feedback linearization controller. For the feedback
linearization it is assumed that the two system states,
the concentration 𝑐𝑐 =:𝑦𝑦 of the chemical substance, as

well as its temperature 𝑇𝑇, are measurable.
With the approach of Figure 12 it is determined that

two integrators are needed. By Equation (3) we get the
following feedback law:

𝑣𝑣 = �̈�𝑐 = 𝑘𝑘0�𝑐𝑐𝑟𝑟𝑅𝑅𝑅𝑅 − 𝑐𝑐� − 𝑘𝑘1�̇�𝑐 (4)
whereby 𝑐𝑐 is available from measurement and �̇�𝑐 is
computed from the inverse model (which in turn means
that it is computed from the measured 𝑐𝑐 and 𝑇𝑇). The
following feedback coefficients are selected:

𝑘𝑘0 = 4.39e-4, 𝑘𝑘1 = 0.0419.
The complete model including the controller and the
controlled plant is shown in Figure 14. The controller
is according to (4) and includes the “input to state”
blocks for the states of the inverse plant model: the
concentration 𝑐𝑐 and the temperature 𝑇𝑇. As explained in
the previous subsection this is necessary to provide the
measured states to the inverse model of the feedback
linearization controller.

Figure 15 shows the response of the closed loop
system using the embedded controller generated
according to the process described in Section 2. The
simulation results are generated with Rosenbrock
methods of order 1-4. It is obvious that the results are
rather identical for the used step size of 5 s. It is also
possible to use the Explicit Euler method, but then a
step size of 1 s is necessary to achieve similar accuracy
as the Rosenbrock methods do.

The main novelty of this example is the support of
the newly introduced annotation useAsInputForState
within a clocked system. This feature enables the user
to develop and test a controller with feedback
linearization in a purely Modelica environment.
Previously (see Looye et al., 2005) this was only
possible by exporting the inverse model to for example
Simulink and building the controller in this
environment. The additional support by the embedded
code generator completes this feature.

 Figure 14. Mixing reactor controlled by a feedback linearizing controller. The “input to state” blocks are used to
provide the states of the inverse model.

𝑐𝑐 ̈ 𝑐𝑐 ̇ 𝑐𝑐 𝑐𝑐𝑟𝑟𝑅𝑅𝑅𝑅

Session 7D: Control Systems III

DOI
10.3384/ecp17132517

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

525

Figure 15. Step response of the mixing reactor controlled
by a feedback linearization controller.

5 Summary and Outlook
Directly generating controller code from models is
important for model-based design. This paper
demonstrates how Dymola can generate embedded C-
code for Modelica models (with several novel aspects)
and demonstrates this for application examples.

By using Rosenbrock methods on the index-1
problem Dymola can handle stiff systems in a way that
both is theoretically sound and has an upper bound on
the execution time per sample. The stiff systems in the
control system often occur due to using an inverse
(simplified) model of the real plant in the controller.

Additionally Dymola's generated embedded C-code
has been designed to be easy to embed, with care about
minimal foot-print, traceability, and straightforward
integration in embedded platforms.

Finally, a nonlinear feedforward controller and a
feedback linearization controller have been
implemented in Modelica for different application
examples. They show the potential of the whole
process by generating embedded real-time code for
these nontrivial examples.

Future considerations include investigating how to
handle inputs (piece-wise constant or extrapolation) for
Rosenbrock methods, and nonlinear systems in

initialization and event code. Additionally, the choice
of the specific Rosenbrock methods will be re-
investigated. A possible future extension would be to
use Rosenbrock methods with step-size control in off-
line mode; one benefit would be to quickly get an
estimate of the step-size needed for the model.

6 Acknowledgment
We would like to thank Gertjan Looye from DLR for
his help regarding modeling of feedback linearizing
controllers.

References
C. Bertsch, J. Neudorfer, E. Ahle, S. S. Arumugham, K.

Ramachandran, A. Thuy. FMI for Physical Models on
Automotive Embedded Targets. Proc. of 11th International
Modelica Conference, pp. 43-50. Versailles, France, 2015.

H. Elmqvist, S. E. Mattsson, H. Olsson, J. Andreasson, M.
Otter, C. Schweiger, D. Brück. Realtime Simulation of
Detailed Vehicle and Powertrain Dynamics. Electronics
Simulation and Optimization. SAE 2004 World Congress,
Detroit, USA, 2004.

E. Hairer, G. Wanner. Solving Ordinary Differential
Equations II. Stiff and Differential-Algebraic Problems.
Springer, 1991.

G. Looye, M. Thümmel, M. Kurze, M. Otter, J. Bals.
Nonlinear Inverse Models for Control. Proceedings of 4th
International Modelica Conference, pp. 267-279, TU
Hamburg-Harburg, Gemany, 2005.

C. Lubich, M. Roche. Rosenbrock Methods for Differential-
algebraic Systems with Solution-dependent Singular
Matrix Multiplying the Derivative. Computing 43, 325-
342, Springer, 1990.

MISRA Consortium. Guidelines for the Use of the C
Language in Critical Systems. 2013.

M. Otter, B. Thiele, H. Elmqvist. A Library for Synchronous
Control Systems in Modelica. Proc. of 9th International
Modelica Conference, pp. 27-36. Munich, Germany, 2012.

J. Rang. Improved traditional Rosenbrock Wanner methods
for stiff odes and daes. Technical report, Institute of
Scientific Computing, Technical University
Braunschweig, 2013.

L. Satabin, J.-L. Colaco, O. Andrieu, B. Pagano. Towards a
Formalized Modelica Subset. Proc. of 11th International
Modelica Conference, pp. 637-646. Versailles, France,
2015.

SCADE:
www.esterel-technologies.com/products/scade-suite

Model-based Embedded Control using Rosenbrock Integration Methods

526 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132517

