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Abstract

This paper deals with the application of thermochemical Lagrangian MDF

(mass density function) methods for compressible sub- and supersonic RANS

(Reynolds Averaged Navier-Stokes) simulations. A new approach to treat molec-

ular transport is presented. This technique on the one hand ensures numerical

stability of the particle solver in laminar regions of the flow field (e.g. in the

viscous sublayer) and on the other hand takes differential diffusion into account.

It is shown in a detailed analysis, that the new method correctly predicts first

and second-order moments on the basis of conventional modeling approaches.

Moreover, a number of challenges for MDF particle methods in high speed flows

is discussed, e.g. high cell aspect ratio grids close to solid walls, wall heat

transfer, shock resolution, and problems from statistical noise which may cause

artificial shock systems in supersonic flows. A Mach 2 supersonic mixing chan-

nel with multiple shock reflection and a model rocket combustor simulation

demonstrate the eligibility of this technique to practical applications. Both test

cases are simulated successfully for the first time with a hybrid finite-volume

(FV)/Lagrangian particle solver (PS).
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1. Introduction

Since the pioneering work of Pope [1, 2], Lagrangian transported PDF (prob-

ability density function) or MDF (the MDF is a density weighted PDF) sim-

ulations are in use for more than three decades now. While in the beginning

hybrid RANS/PDF simulations have been performed [3, 4, 5, 6, 7], the present

trend is towards more complex and still more demanding LES (large-eddy simu-

lation)/FMDF (filtered MDF) couplings [8, 9, 10, 11]. Despite the large number

of papers published on MDF methods, the greatest part of them investigate aca-

demic laboratory flames and/or simple geometric configurations only. Publica-

tions dealing with wall bounded flows, wall heat transfer, or even real combustors

are rare. Some exceptions are [12, 11], [13], and [10], where internal combustion

engines, gas turbine combustors, and swirling flows are simulated with MDF

methods, respectively. Moreover, most papers investigate incompressible flows,

where the pressure may be treated as thermodynamically constant. On the

other hand there is a large demand for this technique to be used in compressible

turbulent applications too, e.g. in rocket and supersonic combustion.

For reactive flows the most simple MDF approach is to describe the thermo-

chemical variables (energy and gas composition) by a MDF, while solving con-

ventionally averaged transport equations for the remaining variables needed.

Such a hybrid approach is employed in the present paper, where Lagrangian

particles represent the MDF.

The main cause why MDF methods are seldom used for compressible flows

is the necessity to include the density (or pressure) into the set of independent

random variables, or, to use simplifications. In the first case a conditional ex-

pectation of divergence appears in the MDF equation which is important but

difficult to model. Eifler and Kollmann [14] presented a sophisticated technique

which included density and dilatation as independent random variables in an

Eularian PDF framework. However, this approach has not been employed after-

wards in any practical application. Delarue and Pope [15, 16] used the pressure

as a Lagrangian MDF variable, but again, this technique has hardly been used
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afterwards. One problem with their approach is the high degree of modeling

required for the pressure equation. Another method is to neglect pressure fluc-

tuations at the beginning of the MDF step. In incompressible low speed flows

this is the usual procedure because in such cases pressure can be treated as

constant in the MDF part. In compressible flows, however, one particle prop-

erty (density or pressure) is missing, if the MDF covers the thermochemical

variables energy and gas composition only. The reason is that the continuity

equation, which is solved by the FV scheme, delivers the mean density only.

Because of the missing information the particle pressures are initialized with

the mean pressure of the volume obtained after the FV step by many authors

[5, 17, 18, 19, 20, 21]. Errors resulting from this simplification in high speed

compressible flows are still unknown. This technique is chosen in the present pa-

per and details will be given later. In the LES/FMDF technique of Banaeizadeh

et al. [22, 11] the energy equation is solved with both the FV and the particle

solver. To this end averaged source terms are transferred to the FV scheme.

This is in contrast to the present approach, where the energy equation is solved

by the particle method only. Still more demanding methods for compressible

flows like the EPVS (energy-pressure-velocity-scalar) FMDF method [23] are

under development.

Due to the much stronger coupling (caused by changes in pressure) between

the MDF and the FV solver in compressible flows, there is also a greater impact

of statistical noise from transferred averaged particle data to the FV scheme.

This may cause stability problems. Moreover, some additional terms have to be

modeled in compressible flows (i.e. work by viscous forces, pressure derivatives,

and dissipation of turbulent kinetic energy), what is difficult to accomplish

on an individual particle level. Instead, the corresponding terms are usually

calculated from averaged FV data [5, 17, 18, 19]. These terms are transferred

to all particles of a volume in an identical way.

There are some additional challenges for MDF methods in supersonic flows:

How to deal with shock waves and how to deal with highly stretched grids?

Cell aspect ratios of up to 10,000 often occur in RANS simulations of super-
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and hypersonic flows close to solid walls. Because pure LES of high Reynolds

number flows are extremely expensive, hybrid RANS/LES methods for the fluid

flow, as e.g. the DDES (delayed detached-eddy simulation) [24], seem to be a

feasible compromise for the foreseeable future. If coupled with a MDF scheme,

the particle solver again has to deal with very high cell aspect ratios close to

solid walls. A further point is shock capturing. Over the last 40 years sophis-

ticated discretization techniques have been developed to achieve a sharp shock

resolution with low numerical diffusion. Flux vector and flux difference splitting

schemes achieve excellent results even if the shock is oblique with respect to the

computational grid. WENO schemes [25] are able to reach high discretization

orders directly at the shock. These techniques are not available on a particle

level required for MDF scalar-velocity simulations.

Another problem is a correct prediction of laminar or weakly turbulent flows

with MDF methods, which appear in case of relaminarization, close to solid

walls, or in flows with a laminar surrounding. In such regions differential dif-

fusion may become important. While in this paper RANS simulations are pre-

sented only, molecular transport and differential diffusion are essential in LES,

too, where the differences between turbulent and molecular gas properties are

much smaller than in RANS simulations.

This paper deals with most of the problems introduced above. For simplicity,

a thermochemical MDF is used which covers energy and species mass fractions,

while continuity, momentum, and turbulence equations are solved by a high or-

der FV scheme. Because the focus is on numerical aspects of MDF methods and

on a new approach for differential diffusion, predominantly non-reactive flows

are investigated.

2. Finite-volume scheme

In the hybrid finite-volume/Lagrangian particle approach the in-house code

TASCOM3D (Turbulent All Speed Combustion Multigrid solver) [26, 27, 28, 29]
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is used to solve the averaged continuity and momentum equations

∂ρ̄

∂t
+

∂

∂xi
(ρ̄ ũi) = 0 , (1)

∂

∂t
(ρ̄ ũi) +

∂

∂xj
(ρ̄ ũiũj) = − ∂

∂xj

(
ρ̄ ˜u

′′
i u

′′
j

)
+

∂τ̄ij
∂xj

− ∂p̄

∂xi
(2)

as well as two transport equations of a turbulence model (in the present case the

low-Reynolds number q-ω model from Coakley and Huang [30] with q =
√
k, k

is the turbulent kinetic energy, and ω the specific dissipation rate). While the

code allows both steady-state and time-accurate simulations, only steady-state

results are presented in this paper. In the above equations ρ is the density, p

the pressure, ui the velocity component in i-coordinate direction, and τij is an

element of the stress tensor. Further, t is the time, xi are the coordinate di-

rections, and ¯ indicates Reynolds and ˜ Favre averages, respectively. In this

paper Einstein summation is taken over the indices i, j, k, and l, but not over

Greek indices. Moreover, i and j are exclusively used for the coordinate direc-

tions. An implicit LU-SGS (Lower-Upper Symmetric Gauss-Seidel) [31, 32, 33]

scheme solves the set of equations, given above, in a coupled way. The dis-

cretization is up to third order in time by using a BDF (backward differentia-

tion formula) technique. For spatial discretization a newly developed high order

MLP (multi-dimensional limiting process) [34, 29] scheme is employed, which is

up to sixth order in space and offers high accuracy and robustness while keeping

the computational cost low. The fluxes at cell interfaces are calculated using the

AUSM+-up flux vector splitting of Liou [35]. TASCOM3D works with struc-

tured grids. The code is parallelized using MPI (Message Passing Interface)

and shows a good performance on both vector processors and massively parallel

scalar architectures.

The different steps of the FV solver and the data obtained from and trans-

ferred to the particle solver (PS) are shown on the left side of Fig. 1. In the

FV part of the hybrid scheme ρ̄ and ũi are advanced, while gas composition,

enthalpy, and temperature are frozen. From the new density, frozen gas compo-

sition, and frozen temperature a new pressure is calculated from the equation
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FV solver Particle solver (PS)

ρn, ũn
i , q

n, ωn from last
FV step

hp,n, Y p,n
α , T p,n from last

PS step

T̃ n, Θn
TY , p

n, μn from last
PS step ρn+1, ũn+1

i , τn+1, p1 from FV
solver

Implicit solver: continuity,
momentum, turbulence Eqs.

⇒ ρn+1, ũn+1
i , qn+1, ωn+1

⇒ τn+1 = 1 / ωn+1

EOS: p1 = p(ρn+1,T̃ n,Θn
TY )

Assumption: pp,1 = p1

for all particles p = 1, 2, . . . , M

EOS: ρp,1 = ρ(Y p,n
α ,T p,n,pp,1)

FS Ch: ⇒ Y p,1
α , hp,1 = hp,n

FS M: ⇒ Y p,2
α , hp,2

FS Co: ⇒ Y p,n+1
α , hp,n+1, T p,n+1

FS T: ⇒ xp,n+1
i

Averaging: (IA and MTA)

⇒ Ỹ n+1
α , T̃ n+1, Θn+1

TY

Implicit smoothing (optional):

⇒ Ỹ n+1
α , T̃ n+1, Θn+1

TY

EOS: pn+1= p(ρn+1,T̃ n+1,Θn+1
TY )

Gas properties: μn+1,λn+1,Dn+1
α

ρn+1, ũn+1
i , τn+1, p1 to PS

T̃ n+1, Θn+1
TY , pn+1, μn+1 to FV

solver

� �

Figure 1: Diagram of the sequence of one iteration of the hybrid scheme for a steady-state

simulation (EOS - equation of state, FS - fractional step, Ch - chemistry, M - turbulent

mixing, Co - changes due to compressibility, viscous dissipation, and differential diffusion, T

- spatial transport, IA - instantaneous averaging, MTA - moving-time averaging).

of state (EOS)

p = ρRmT

N∑
α=1

Yα

Mα
= ρRm

(
T̃

N∑
α=1

Ỹα

Mα
+

N∑
α=1

1

Mα

˜T ′′Y ′′
α

)
, (3)

taking species temperature correlations into account. In this equation T denotes

temperature, Yα is the mass fraction of species α (α = 1, 2, . . . , N , where N is

the number of species), Mα the corresponding molecular weight, and Rm the

universal gas constant. The temperature-species correlation term (the last sum

on the right-hand side of Eq. (3)) is usually neglected in RANS simulations. In
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the framework of the hybid FV/Lagrangian particle solver Eq. (3) is replaced

by

p = ρRmΘTY (4)

with

ΘTY =
1∑M

p=1 m
p

M∑
p=1

(
mpT p

N∑
α=1

Y p
α

Mα

)
, (5)

where mp are individual particle masses and M is the total number of parti-

cles in the corresponding volume. ΘTY is calculated after the MDF step and

is kept constant during the FV simulation. After a new pressure is calculated

according to Eq. (4), the new mean pressure together with the updated values

of mean density, velocity, and a turbulence time scale τ (obtained from the spe-

cific dissipation rate ω) are transferred to the MDF solver (see Fig. 1). The

computational grid defines the volumes for the FV solver (here also referred to

as cells). Based on these volumes Ensemble averages or other mean values are

calculated in the particle solver using all particles with are located inside the cell.

3. First and second moment equations

In the present approach the scalar MDF is based on the thermochemical vari-

ables enthalpy and species mass fractions. The corresponding balance equations

of these variables are given by

∂

∂t
(ρh) +

∂

∂xi
(ρuih) =

∂p

∂t
+ ui

∂p

∂xi
+ τij

∂ui

∂xj
− ∂qi

∂xi
, (6)

∂

∂t
(ρYα) +

∂

∂xi
(ρuiYα) = − ∂jαi

∂xi
+ Sα . (7)

Here h is the enthalpy, Sα the chemical source term, qi is the heat flux in

i-direction which is calculated by

qi = −λ
∂T

∂xi
+

N∑
α=1

hα jαi (8)
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and the diffusive flux of species α in i-direction is obtained from

jαi = − ρDα
∂Yα

∂xi
+ Yα

N∑
β=1

ρDβ
∂Yβ

∂xi
. (9)

The sum in Eq. (9) is added in order to achieve
∑

α jαi = 0 [36]. This term

adds a correction which is weighted with the mass fraction of the corresponding

species.

For a later evaluation of modeling approaches for unclosed terms in the

MDF equation, transport equations for the first and second moments of the

thermochemical variables are needed for comparison. Starting from Eqs. (6)

and (7) exact but unclosed equations for the Favre averaged enthalpy h̃ and

species mass fractions Ỹα are derived [37]

∂

∂t

(
ρh̃
)

+
∂

∂xi

(
ρũih̃

)
=

∂p̄

∂t
+ ũi

∂p̄

∂xi
+ u′′

i

∂p

∂xi
+ τ ij

∂ũi

∂xj
+ τij

∂u′′
i

∂xj

− ∂

∂xi

(
qi + ρ˜u′′

i h
′′
)

, (10)

∂

∂t

(
ρỸα

)
+

∂

∂xi

(
ρũiỸα

)
= − ∂

∂xi

(
jαi + ρ˜u′′

i Y
′′
α

)
+ Sα . (11)

The averaged molecular heat and mass fluxes are usually approximated by

qi ≈ −λ
∂T̃

∂xi
+

N∑
α=1

h̃α jαi , (12)

jαi ≈ − ρDα
∂Ỹα

∂xi
+ Ỹα

N∑
β=1

ρDβ
∂Ỹβ

∂xi
, (13)

where the influence of turbulence on transport properties is neglected. Instead

the heat conductivity λ and the diffusion coefficients Dα are calculated from

averaged values.

In addition, second-order moments are needed. In the case of enthalpy the

transport equation of enthalpy variance σh = h̃′′2 becomes

∂

∂t
( ρσh ) +

∂

∂xi
( ρũiσh ) = Ph − ∂T h

i

∂xi
+ Dh + Θh − εh . (14)
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This equation contains terms for production P , spatial transport T = T 1 + T 2,

pressure-enthalpy correlations D, velocity-enthalpy correlations Θ, and dissipa-

tion ε, which are given by

Ph ≡ − 2 ρ ˜u′′
i h

′′ ∂h̃

∂xi
≈ 2μt

Prt

(
∂h̃

∂xi

)2

, (15)

T h1
i ≡ ρ ˜u′′

i h
′′2 ≈ − μt

Prt

∂σh

∂xi
, (16)

T h2
i ≡ 2h′′qi ≈ − μ

Pr

∂σh

∂xi
, (17)

Dh ≡ 2 h′′ Dp

Dt
, (18)

Θh ≡ 2 h′′τij
∂ui

∂xj
, (19)

εh ≡ − 2 qi
∂h′′

∂xi
≈ ρ̄ Ch

σh

τt
. (20)

All terms on the right-hand side of Eq. (14) require modeling. For the unclosed

terms which are needed later conventional modeling approaches are given on

the right sides of Eqs. (15) to (20). They are mostly based on gradient diffusion

assumptions. In Eq. (20) τt is standing for a turbulence time scale and Ch for a

constant representing a turbulence to scalar time scale ratio. Pr = μcp/λ and

Prt = μtcp/λt are molecular and turbulent Prandtl numbers, respectively.

In the case of species mass fractions the exact second moment transport

equation for σαβ = ˜Y ′′
α Y ′′

β becomes [38]

∂

∂t

(
ρσαβ

)
+

∂

∂xi
(ρũiσαβ) = Pαβ − ∂T αβ

i

∂xi
− εαβ + Cαβ . (21)

Again, all right-hand side terms have to be modeled. They are standing for

production P , spatial transport T = T 1 + T 2, dissipation ε, and chemistry-
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species fluctuation interaction C and are given by

Pαβ ≡ − ρ˜u′′
i Y

′′
α

∂Ỹβ

∂xi
− ρ˜u′′

i Y
′′
β

∂Ỹα

∂xi
≈ 2 ρ̄ Dt

∂Ỹα

∂xi

∂Ỹβ

∂xi
, (22)

T αβ1
i ≡ ρ ˜u′′

i Y
′′
α Y ′′

β ≈ μt

Sct

∂σαβ

∂xi
, (23)

T αβ2
i ≡ − Y ′′

α ρDβ
∂Yβ

∂xi
− Y ′′

β ρDα
∂Yα

∂xi
≈ μ

Sc

∂σαβ

∂xi
, (24)

εαβ ≡ ρDβ
∂Yβ

∂xi

∂Y ′′
α

∂xi
+ ρDα

∂Yα

∂xi

∂Y ′′
β

∂xi
≈ − ρ̄ Cαβ

σαβ

τt
, (25)

Cαβ ≡ Y ′′
α Sβ + Y ′′

β Sα . (26)

Conventional modeling approaches for some of these terms are given on the

right sides of the definitions. In the modeling approaches of Eqs. (24) and (25)

identical diffusion coefficients are assumed. Sc = μ/(ρD) and Sct = μt/(ρDt)

represent molecular and turbulent Schmidt numbers, respectively. From Eq.

(21) mass fraction covariance equations are obtained for α �= β and variance

equations by setting α = β.

4. Thermochemical MDF

In the present paper the vector of thermochemical variables is given by

Φ = [Φ1,Φ2, . . . ,ΦN ] = [h, Y1, Y2, . . . , YN−1]. The mass fraction of the last

species is obtained from the normalization property. For description of the

themochemical state the one-point, one-time PDF P (Ψ;x, t) is used [2], where

Ψ = [Ψ1,Ψ2, . . . ,ΨN ] = [ĥ, Ŷ1, Ŷ2, . . . , ŶN−1] is the corresponding sample space

vector. To solve a PDF transport equation by a stochastic particle approach, a

Favre PDF P̃ ≡ ρP/ρ or a MDF

F (Ψ;x, t) ≡ ρ(Ψ;x, t)P (Ψ;x, t) (27)

is required in case of variable-density flow. A transport equation for the one-

point one-time thermochemical MDF may be derived [2] from balance Eqs. (6)
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and (7)

∂F

∂t
+

∂

∂xi
(ũiF ) +

∂

∂xi

(〈
u

′′
i

∣∣∣Φ = Ψ
〉
F
)

= − ∂

∂Ŷk

(
Sk

ρ
F

)

+Mh + MY + Sh

(28)

with

Mh ≡ ∂

∂ĥ

(〈
∂qi
∂xi

∣∣∣∣Φ = Ψ

〉
F

ρ

)
, (29)

MY ≡ ∂

∂Ŷk

(〈
∂jki
∂xi

∣∣∣∣Φ = Ψ

〉
F

ρ

)
, (30)

Sh ≡ − ∂

∂ĥ

(〈
∂p

∂t
+ ui

∂p

∂xi
+ τij

∂ui

∂xj

∣∣∣∣Φ = Ψ

〉
F

ρ

)
(31)

and k = 1, 2, . . . , N − 1. All conditional expectations (〈•|Φ = Ψ〉) are unclosed

and require modeling. The major advantage of a thermochemical MDF is the

closed formulation of the strongly non-linear chemical source term (first term

on the right-hand side of Eq. (28)). Mh and MY are standing for scalar dissi-

pation but these terms include molecular species diffusion and heat conduction,

too. Sh is caused by compressibility and viscous dissipation and is usually ne-

glected in incompressible low Mach number flows, where temporal and spatial

pressure derivatives are small, as well as the temperature increase due to vis-

cous dissipation. However, these terms are important in high speed flows and

corresponding modeling approaches are discussed later. During the MDF step

the mean density and velocity (obtained from the FV solver) are frozen. In-

dividual particle densities are calculated at the beginning of the MDF step by

assumption of a constant pressure for all particles in a volume (ρ = ρ(Ψ, p1)).

After the MDF simulation a new ensemble mean gas composition and temper-

ature field is calculated using the particle-in-cell method [9] (an instantaneous

averaging (IA)). In case of steady-state simulations the statistical error can be

further reduced by a moving-time averaging (MTA) [39], which, in the present

case, is used for mass fractions, temperature, and ΘTY (this term is needed in

the FV scheme to calculate the pressure). Moreover, some practical test cases
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required an additional implicit smoothing of the MDF data Q = Ỹα, T̃ , ΘTY ,

transferred to the FV scheme, which is performed by [40, 9]

(
1− εξ δ

2
ξ

) (
1− εη δ

2
η

) (
1− εζ δ

2
ζ

)
Qnew = Qold . (32)

Here ξ, η, ζ are the directions of the curvilinear coordinate system and δ2

is a discrete second-order central-difference operator. In this paper identical

damping coefficients εξ = εη = εζ = ε are used. However, similar to adding

artifical viscosity in case of central-difference schemes [41, 40], individual values

could be advantageous in case of highly stretched grids. In simulations with

multiple shock wave reflection this damping was required in order to avoid the

creation of artificial shock systems due to statistical noise.

From the averaged and (in some cases) spatially damped MDF data a new

pressure is calculated for the FV step using Eq. (4). The sequence of steps

required for the Lagrangian particle solver as well as the coupling with the

FV solver and the exchanged data are summarized on the ride side of Fig.

1. Please note, that pressure (by the equation of state) and temperature (by

Newton iteration from new enthalpy and/or gas composition values) updates

have to be performed several times during one iteration.

The moving-time averaging can be employed for steady-state simulations

only. A local time-stepping (constant CFL number) is used in the MDF [20, 42]

and the FV part of the simulation. This strongly accelerates convergence and is

especially important for high speed flows. Because a compressible flow solver is

employed in the FV part, the corresponding time-step size is based on (u2
i )

0.5+a

and grid size, where a is the speed of sound. Moreover, contributions from the

viscous fluxes [43] are considered in a simplified way in the time-step calculation,

too. This is in contrast to the Lagrangian particle solver, where the time-step

size for a volume does not depend on the speed of sound. In this paper it is

calculated from convective and diffusive contributions by

Δt =

[
1

Δxi
abs

(
ũi +

1

ρ

∂

∂xi
(ρDe)

)
+

2De

(Δxi)2

]−1

· CFL , (33)
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where the effective diffusivity De = Dt +D consists of a turbulent and molecu-

lar part. Due to the different stability requirements, the FV and particle solver

time-steps differ, if identical CFL numbers are used. Moreover, the implicit LU-

SGS solver allows much larger CFL numbers than the explicit particle solver

which is limited to CFL < 1. Thus, for steady-state simulations, the global

CFL numbers of the FV and the MDF part usually differ. This means that the

time-steps change from volume to volume and that additionally the FV vari-

ables and the particle properties in a cell advance differently in pseudo-time.

However, in some cases it was found to be advantageous (for stability reasons)

to have identical or similar time-step sizes for the FV and the MDF solver in a

volume. In the Lagrangian particle solver the local time-stepping is realized by

changing the weights of particles which leave or enter a volume. This technique

is described in [20] and mathematically proofed in [42].

4.1. Partially modeled MDF transport equation

The unclosed turbulent convection (conditional expectation on the left-hand

side of Eq. (28)) is modeled by a gradient diffusion assumption as proposed

by Pope [44]. This requires a turbulent diffusivity Dt which is calculated from

the eddy viscosity assuming a constant turbulent Schmidt number. As already

mentioned, the unclosed term Sh is important in high speed flows and cannot

be neglected. The approximation used in this paper is based on the work of

Hsu et al. [45, 17]. It later has been employed in the same way by Möbus et al.

[18, 20] for compressible RANS and similarly by Banaeizadeh et al. [46, 22] for

compressible LES/FMDF simulations. By inserting these modeling approaches

in Eq. (28)

∂F

∂t
+

∂

∂xi
(ũiF )− ∂

∂xi

[
ρDt

∂

∂xi

(
F

ρ

)]
= − ∂

∂Ŷk

(
Sk

ρ
F

)

+Mh + MY − ∂

∂ĥ

(
Sh

ρ
F

) (34)
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with

Sh =
∂p

∂t
+ ũi

∂p

∂xi
+ τ ij

∂ũi

∂xj
+ ρε (35)

is obtained (note that Sh is an approximation for the corresponding part of the

exact term Sh according to Eq. (31)). Closures for Mh and MY are the main

subject of this paper and will be discussed later. The temporal pressure deriva-

tive in Eq. (35) is discretized by a first or second-order backward discretization,

the spatial derivatives by second-order central discretizations. This is in contrast

to the LES/FMDF simulations of Banaeizadeh et al. [22] who used a minmod

limiter for the calculation of spatial pressure derivatives what was necessary for

time-accurate simulations. The dissipation rate ρε ≡ τij∂u
′′
i /∂xj of turbulent

kinetic energy k appears due to the splitting of the viscous term into a mean

and a fluctuating part. ε is taken from the turbulence model and describes an

increase in enthalpy due to dissipation of k. While this term is neglected in the

LES/FMDF of [22] and in low speed RANS simulations, it becomes important

in high speed flows.

By multiplication of Eq. (34) with ĥ, Ŷα, ĥ2, or ŶαŶβ and integration

over the thermochemical space Ψ (and use of equations for h̃2 or ỸαỸβ in case

of the second-order moments) first and second moment equations are derived,

respectively. During this procedure Mh and MY are neglected because these

terms will be discussed later in more detail. In this way

∂

∂t

(
ρh̃
)

+
∂

∂xi

(
ρũih̃− ρDt

∂h̃

∂xi

)
= Sh , (36)

∂

∂t

(
ρỸα

)
+

∂

∂xi

(
ρũiỸα − ρDt

∂Ỹα

∂xi

)
= Sα (37)

are obtained for the first moment equations. The gradient diffusion assumption

used in the MDF equation to close turbulent convection causes correspondingly

modeled terms for the Reynolds enthalpy and species fluxes. These equations

may be compared with the exact transport Eqs. (10) and (11). Note that
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molecular terms (qi, τ ik, jαi) do not appear in Eqs. (36) and (37) because

Mh and MY are (for the moment) neglected. If the unclosed Reynolds fluxes

are modeled with gradient type assumptions, both species equations become

identical. The enthalpy equations also agree with the exception of the pressure

gradient term (third term on the right-hand side of Eq. (10)). This term can

be decomposed into pressure diffusion, pressure work, and pressure dilatation.

The latter two appear in compressible flows only. Due to the much stronger

impact of pressure on the thermochemical MDF, these terms are probably im-

portant. Modeling approaches based on averaged values could be included in

Eq. (28), however, none of the modeling proposals currently available received

general acceptance [47]. For this reason these terms are not considered in the

MDF equation.

The agreement achieved in the first-order moments is due to correspondingly

chosen modeling approaches. The question is what happens with the second-

order moments. Form the MDF transport equation (34) (without Mh and MY )

∂

∂t
(ρσh) +

∂

∂xi

(
ρũiσh − ρDt

∂σh

∂xi

)
= −2ρDt

(
∂h̃

∂xi

)2

+ 2Shh
′′ (38)

follows for the enthalpy variance. A comparison with Eq. (14) shows that with

the exception of the last expression in Eq. (38) all terms agree with their coun-

terparts, if unclosed correlations are modeled by gradient like assumptions. T h2
k

and εh are caused by molecular transport and due to negligence of Mh do not

appear in Eq. (38). The last term of Eq. (38) is a very simple approximation

for Dh and Θh.

The transport equations for species mass fraction covariances

∂

∂t
(ρσαβ) +

∂

∂xi

(
ρũiσαβ − ρDt

∂σαβ

∂xi

)
= − 2ρDt

∂Ỹα

∂xi

∂Ỹβ

∂xi

+ Y ′′
α Sβ + Y ′′

β Sα

(39)
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can be calculated correspondingly from the MDF equation. It agrees perfectly

with the exact covariance equation (21), if gradient type approximations are

used to close production (Pαβ) and turbulent transport (T αβ1). As the averaged

chemical source term Sα in the first moment equation, the chemistry species

fluctuation correlations (last two terms or Cαβ) appear correctly in the second

moment equation and require no modeling. T αβ2 and εαβ are due to molecular

transport and, for the moment, are neglected in Eq. (39).

In summary, the greatest uncertainties for compressible flows are due to Dh

and Θh for which better modeling approaches are needed. The modeling of Sh

(see Eq. (31)) with averaged values causes identical changes in enthalpy (Sh)

for all particles of a volume. The model delivers correct conventionally modeled

terms in the first moment equation but it is not able to reproduce the complex-

ity of Sh with respect to the second moments. Here, the approach of Nik et

al. [23] may be more promising, because velocity and pressure correlations are

treated on a particle level. However, it is also much more complex.

5. Conditional diffusion term

The main focus is now on different possibilities to model the conditional ex-

pectations Mh and MY in Eq. (34), which are standing for scalar dissipation as

well as for molecular species diffusion and molecular heat conduction. Through-

out this paper dissipation of fluctuations is modeled by the IEM (interaction

by exchange with the mean) model [48] which is not discussed any further. In

RANS approaches the molecular transport of species and enthalpy is often ne-

glected because the turbulent transport is orders of magnitude higher. This,

however, is valid for fully turbulent flows only. In general, molecular transport

should be considered in RANS/URANS (unsteady RANS) simulations as well as

in LES. Depending on the Reynolds number turbulent and molecular transport

can be of same order of magnitude in LES [49]. In RANS simulations there may

be relaminarization (e.g. in supersonic accelerating flows), laminar or weakly
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turbulent regions in jet flames with transition to a laminar surrounding [50], or,

most importantly, there are viscous sublayers close to solid walls. The latter

have to be resolved accurately with many two-equation turbulence models or

Reynolds stress closures. In addition, differential diffusion can be important in

such regions. In the following subsections two standard approaches to model

molecular transport (with and without differential diffusion) are given. Next, a

new technique is presented which combines the advantages of both approaches

and allows a stable and accurate modeling of molecular transport even in real-

istic complex applications.

5.1. Approach 1: Modeling molecular transport as drift in thermochemical space

The following approach basically follows the technique developed by Mc-

Dermott and Pope [8] for LES and later by Fiolitakis et al. [50] for RANS

simulations. In this approach Mh and MY are modeled by

Mh + MY ≈ ∂

∂ĥ

(
∂qi
∂xi

F

ρ

)
+

∂

∂Ŷk

(
∂jki
∂xi

F

ρ

)
− ∂

∂Ψl

[
1

2τΦ

(
Φ̃l −Ψl

)
F

]
,

(40)

where the molecular heat transfer and molecular species diffusion are calculated

from Eqs. (12) and (13), respectively. As always in this paper, the index k

is running over the species k = 1, 2, . . . , N − 1, while l = 1, 2, . . . , N is run-

ning over all thermochemical variables. The last term in Eq. (40) represents

the IEM model for turbulent mixing, where τΦ is a scalar mixing time scale

calculated from τ−1
Φ = CΦ τ

−1
t = CΦω. Here, ω is the turbulent frequency

obtained from a two-equation turbulence model and CΦ a turbulence to scalar

time scale ratio which ist taken to be 2 in all simulations of this paper. On the

particle level, McDermott and Pope [8] model molecular transport (first two

terms on the right-hand side of Eq. (40)) by drifts in enthalpy and compo-

sition space (similar to the modeling of Sh before). For any volume ∂qi/∂xi

and ∂ jki/∂xi are constants, calculated from averaged values. In this paper

the required molecular heat conductivity λ = λ(T̃ , Ỹ1, · · · , ỸN ) and diffusivity
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Dα = Dα(T̃ , p, Ỹ1, · · · , ỸN ) are calculated from mean values, while McDermott

and Pope [8] use the particle properties to calculate corresponding Favre aver-

ages D̃α. With the present approach consistency to the FV simulation is given.

The differences between both approaches are expected to be small. Thus, all

particles in a volume experience identical drifts from molecular heat conduction

and species diffusion but individual changes due to turbulent mixing.

Together with the remaining parts, the modeled MDF transport equation

can be solved by a Lagrangian stochastic particle method [2]. The particles

(indicated by the superscript p) are subject to changes in physical and ther-

mochemical space, expressed by the following stochastic differential equations

(SDEs)

xp
i (t+ dt) = xp

i (t) +

[
ũi +

1

ρ

∂

∂xi
(ρDt)

]
dt +

√
2Dt dWi , (41)

hp(t+ dt) = hp(t) +

[
1

ρ

∂qi
∂xi

− 1

2τΦ

(
h̃− hp

)
+

Sh

ρp

]
dt , (42)

Y p
α (t+ dt) = Y p

α (t) +

[
1

ρ

∂jαi
∂xi

− 1

2τΦ

(
Ỹα − Y p

α

)
+

Sp
α

ρp

]
dt , (43)

where dWi are the increments of an isotropic vector Wiener process. The first

terms in the square brackets in Eqs. (42) and (43) describe molecular trans-

port, the second ones scalar mixing. McDermott and Pope [8] combine molec-

ular species transport and turbulent mixing in order to guarantee individual

boundedness of the scalar field by imposing a limit on the mixing rate. If the

individual boundedness of one species is violated by molecular transport, tur-

bulent mixing of all species is increased to avoid it.

5.1.1. First and second moments

To investigate the impact of the modeling approach 1 on the first and second

moments of Φ, Eq. (34) is extended by the modeled terms for Mh and MY

according to Eq. (40). Only results stemming from these terms are discussed in
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the following. The additional right-hand side contributions from Mh and MY

become

∂

∂t

(
ρh̃
)

= . . . − ∂qi
∂xi

, (44)

∂

∂t

(
ρỸα

)
= . . . − ∂jαi

∂xi
. (45)

Note, that these contributions to the first moments are exclusively from molec-

ular transport and not from turbulent mixing (IEM model). A comparison with

Eqs. (10) and (11) shows, that the modeling approach 1 achieves identical terms

as conventional closures for the first order moment equations. In a similar way

the right-hand side contributions of Mh and MY to the second-order moments

are calculated

∂

∂t
(ρσh) = . . . − ρ

σh

τΦ
, (46)

∂

∂t
(ρσαβ) = . . . − ρ

σαβ

τΦ
. (47)

These terms now exclusively result from turbulent mixing. The molecular trans-

port approach of Eq. (40) has no impact on the second-order moments. How-

ever, a comparison with Eqs. (14) and (21) shows, that molecular transport also

causes the terms T h2 and T αβ2, which describe a spatial transport of variance.

These terms are not reproduced by the present model [8].

5.1.2. Advantages and disadvantages of approach 1

The great advantage of Eq. (40) to model molecular transport is the possibil-

ity to account for differential diffusion and thus non-equal Prandtl and Schmidt

numbers. On the other hand there are the described problems with individ-

ual boundedness which can be solved by accelerating turbulent mixing [8] or

by a simple clipping [50]. However, there may be numerical problems, too, if

molecular heat conduction and species diffusion are treated by constant drifts

in thermochemical space. In case of steady-state simulations and local time-

stepping (constant CFL number) [20, 42] volumes may run out of particles,
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Figure 2: Particle positions (dots) and computational grid (lines) for a nozzle flow simulation

in an extension close to the upper wall. Left side Wiener process with Dt only (approach 1),

right side with De = Dt +D (approaches 2 and 3).

e.g. in the viscous sublayer. Please note, that this problem arises due to non-

physical intermediate states caused by the local time-stepping before reaching

a statistically steady-state solution. If Dt becomes zero in laminar parts of the

flow due to μt → 0, the stochastic contribution from the Wiener process to the

particle movement (last term in Eq. (41)) vanishes. This has the effect that all

particles in volumes with μt ≈ 0 (e.g. in the viscous sublayer close to a solid

wall) move with identical velocity, if the local constant mean estimate (LCME)

[51] is used to initialize the particles with FV velocity data. As a consequence

volumes may run empty if the common flow direction is out of a volume and no

particles enter on the opposite side, for example because there is a solid wall.

This problem for μt ≈ 0 regions (laminar zones) often occurs in volumes with

high cell aspect ratios or if the instantaneous flow direction does not agree with

the curvilinear grid. Examples for both cases are given on the left sides of Figs.

2 and 3. According to approach 1, only Dt is used in the stochastic part of the

Wiener process. Figure 2 is from a nozzle flow simulation with sonic inlet at the

nozzle throat on the left side. The picture shows an extension of the first part

of the grid close to the upper wall. The lines indicate computational volumes,
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Figure 3: Particle positions (dots) and computational grid (lines) for a backward facing step

simulation in an extension close to the upper corner of the step (upper figures) and at the

lower corner (lower figures) after the step. Left side Wiener process with Dt only (approach

1), right side with De = D +Dt (approaches 2 and 3).

the dots particle positions at a given time-step. Note that this figure is not

to scale but highly stretched in y-direction. The cell aspect ratio of the first

volumes adjacent to the wall is approximately 2800. Due to the axial inflow at

the nozzle throat and the slowly developing flow field, a large number of vol-

umes runs out of particles. This happens in many practical applications with

high cell aspect ratios and turbulence models which resolve the viscous sub-

layer. A second example is the supersonic backward facing step flow from Sect.

6.3 which demonstrates, that the described problem is not limited to highly

stretched boundary layer grids. Figure 3 shows extensions of the region directly

at the upper corner of the backward facing step (upper figures) and at the lower
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corner downstream of the step (lower figures). The complete configuration is

plotted in Fig. 7. The cell aspect ratios in this case are very low. The incoming

viscous sublayer with μt ≈ 0 experiences a sudden change in flow direction at

the step. The particles follow the main flow direction and a large number of

volumes becomes empty. No thermochemical data is available in these volumes

and without special fixes, the simulation is stalled. In case of time-accurate

simulations this problem should not occur because at any time there always

has to be mass in every volume. The situation may be slightly better, if the

velocities from the FV simulation are interpolated to the particle positions. In

this case, however, the problem arises, that particles accumulate close to solid

walls and are not able to leave due to extremely low flow velocities. For these

reasons a different approach is required.

5.2. Approach 2: Modeling molecular transport as part of the stochastic Wiener

process

If identical diffusion coefficients are assumed for all species and Prandtl and

Schmidt numbers are identical (Lewis number of one) the averaged molecular

heat and species fluxes take similar forms and instead of Eqs. (12) and (13)

q̆i = − μ

Pr

∂h̃

∂xi
= − μ

Sc

∂h̃

∂xi
= − ρD

∂h̃

∂xi
, (48)

j̆αi = − ρD
∂Ỹα

∂xi
(49)

is obtained. Note that the correction term required in Eq. (13) disappears in

case of equal diffusion coefficients. There are different possibilities to calculate

the average molecular diffusion coefficient D. In this paper a mass fraction

weighted average of the individual molecular diffusion coefficients is chosen D =∑
α ỸαDα. Alternatively, D = λ/(ρcp) may be used. Another possibility is the

calculation from μ using a chosen Schmidt number as given in Eq. (48). Minor

differences are expected in D stemming from the different approaches.

Under the simplifications given above Mh and MY from Eqs. (29) and (30)
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may by summarized to

Mh + MY =
∂

∂Ψl

[〈
∂

∂xi

(
ρD

∂Φl

∂xi

)∣∣∣∣Φ = Ψ

〉
F

ρ

]
. (50)

In the modeling approach 2 this conditional expectation is modeled as [20]

Mh +MY ≈ ∂

∂xi

[
ρD

∂

∂xi

(
F

ρ

)]
− ∂

∂Ψl

[
1

2τg

(
Φ̃l −Ψl

)
F

]
, (51)

where, again, the IEM model is used for turbulent mixing. In this equation

τΦ is replaced by a time scale τg. The reason for it is given later. In the

modeling approach 2, molecular transport (first term on the right-hand side of

Eq. (51)) has the same form (with D instead of Dt) as turbulent transport

in the MDF transport equation. Thus, on a particle level, both terms may be

modeled together. In this way the effective diffusivity De = Dt + D appears

in the stochastic Wiener process as well as in the drift term. The latter one is

identical for all particles in a volume. Combined with the remaining parts of

the modeled MDF equation the particle properties now change according to the

SDEs

xp
i (t+ dt) = xp

i (t) +

[
ũi +

1

ρ

∂

∂xi
(ρDe)

]
dt +

√
2De dWi , (52)

hp(t+ dt) = hp(t) −
[

1

2τg

(
h̃− hp

)
− Sh

ρp

]
dt , (53)

Y p
α (t+ dt) = Y p

α (t) −
[

1

2τg

(
Ỹα − Y p

α

)
− Sp

α

ρp

]
dt . (54)

Due to the modeling of molecular diffusion by stochastic particle movement there

is one single free parameter (D) for enthalpy and species only. Thus differential

diffusion and non-equal Prandtl and Schmidt numbers cannot be realized with

this technique.
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5.2.1. First and second moments

Using the modeling approach (51) in the modeled MDF Eq. (34) the addi-

tional contributions from Mh and MY to the right-hand sides of the first-order

moment equations

∂

∂t

(
ρh̃
)

= . . . − ∂q̆i
∂xi

, (55)

∂

∂t

(
ρỸα

)
= . . . − ∂j̆αi

∂xi
(56)

are constant Prandtl and Schmidt number approximations of approach 1 (see

Eqs. (44) and (45)). Moreover, the first moments agree with the corresponding

terms of the standard first-order moment equations (10) and (11), if identical

assumptions and modeling approaches are taken (Dα = D, Pr = Sc). Differ-

ences to approach 1 occur, if the contributions to the right-hand side of the

second-order moments are calculated which become

∂

∂t
(ρσh) = . . . +

∂

∂xi

(
ρD

∂σh

∂xi

)
+ 2ρD

(
∂h̃

∂xi

)2

− ρ
σh

τΦ
, (57)

∂

∂t
(ρσαβ) = . . . +

∂

∂xi

(
ρD

∂σαβ

∂xi

)
+ 2ρD

∂Ỹα

∂xi

∂Ỹβ

∂xi
− ρ

σαβ

τΦ
, (58)

if τg = τΦ is used. The last term of each equation results from the turbulent

mixing model while the first two terms are caused by molecular transport. The

latter ones do not appear in approach 1. A comparison with the exact Eqs.

(14) and (21) shows, that each first term is correct on a modeled level and de-

scribes transport of variance in physical space. The second terms however, are

unwanted non-physical production terms, which are termed spurious production

in Ref. [52]. In fully turbulent regions (μt 
 μ) this production of variance

is small compared to the turbulent production terms Ph and Pαβ (see Eqs.

(15) and (22), respectively). Therefore, as long as the flow is fully turbulent,

approach 2 may be used. Problems with non-physical variance production are

limited to laminar regions, regions with low turbulence levels, and the viscous

sublayer. Approaching the wall, ω → ∞ and τΦ → 0 cause a strong reduction
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of variance due to turbulent mixing. On the other hand, there may be large

enthalpy gradients in case of cooled walls.

5.2.2. Modified mixing time scale

A simple possibility to correct the non-physical variance production terms

and to achieve more accurate second-order moments is to modify the time scale

of the IEM model. A similar approach has been used by Pozorski and Minier

[53] for a single variable in a temperature PDF equation. As shown before, the

IEM model keeps the first moment constant and causes a reduction of variance.

In order to correct the non-physical molecular production terms, a new time

scale τg is introduced by

1

τg
=

1

τm
+

1

τΦ
(59)

with

1

τm
= 2

D

σΦ

(
∂Φ̃

∂xi

)2

(60)

in case of a single scalar Φ (σΦ is the variance of Φ). Using the new time scale

τg instead of τΦ in the IEM model (as done in Eqs. (53) and (54)) causes an

additional destruction term (antidiffusion in scalar phase space), which, in the

statistical limit, is identical to the unwanted non-physical production but with

opposite sign. In contrast to [53] multiple scalars have to be treated here. While

individual second-order momen production terms are caused by approach 2 for

any variable combination α, β, a single common destruction time scale τm can

be introduced in the IEM model for all variances and covariances (enthalpy

and species) only. Thus, for multi-scalar problems, the following approach is

only approximately able to cancel out the non-physical second-order production

terms. While for the enthalpy equation alone an exact destruction time scale

1

τh
=

2D

σh

(
∂h̃

∂xi

)2

, (61)
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can be defined, an averaged value

1

τY
=

2D∑N
α=1 σαα

N∑
α=1

(
∂Ỹα

∂xi

)2

(62)

is proposed for the species. For simplicity this approach is based on variances

only. The required values σh and σαα are calculated for any volume from the

particle properties. In this paper instantaneous averages are used but if a further

reduction of their statistical error is required, a moving-time averaging [39] can

be employed for σh and σαα in case of steady-state simulations. To avoid division

by zero a lower limit for the variances must be chosen. Next, the maximum

1

τm
= max

(
1

τh
,

1

τY

)
(63)

is taken to account for cases, where either species or enthalpy variances are

dominating.

The described technique works very well in most cases. However, problems

arise when strong gradients occur, e.g. in the first volumes downstream of a

splitter plate which separates streams of different gas composition (see test cases

of Sects. 6.4, 6.5, and 6.6). The large species gradients which exist locally in such

regions cause large values of 1/τm and thus a rapid mixing. The problem is, that

in the IEM model τm causes a numerical diffusion which scales with Δx2/τm,

where Δx is the grid spacing. Hence, a fast mixing in thermochemical space due

to large values of 1/τm may induce numerical errors in physical space, where

the scalar transport can become too diffusive (of course τΦ causes corresponding

errors in the IEM model but the focus is here on τm). Therefore, a limitation

is introduced
1

τm
= min

(
1

τm
, Cm

1

τc

)
, (64)

which limits the degree of possible mixing due to τm in a volume. In this equa-

tion τc = lc/(ũ
2
i )

0.5 is a mean flow through time through the volume with lc

being a characteristic length of the cell. Cm is a constant of the order of one.
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As will be shown later in practical investigations, Cm = 1 is a good compro-

mise. With this value the non-physically produced variance of a single scalar

is reduced by 66 % when the particles cross the volume. A value of Cm = 4

already achieves 98 % reduction but causes a more diffusive behavior, too. The

impact of Cm on the numerical results is discussed in detail later.

5.2.3. Advantages and disadvantages of approach 2

By modeling molecular transport in the Wiener process, no problems with

boundedness of species mass fractions occur. Moreover, a stochastic movement

of particles takes place everywhere, even in laminar regions such as the viscous

sublayer. As a result, volumes do not run out of particles in constant CFL

number simulations. Figures 2 and 3 show this on their right sides. They are

simulated with approach 3 but approach 2 achieves identical results, because

in both cases differential diffusion is not important. These examples clearly

demonstrate the numerical advantages of approach 2 for practical applications

and especially high speed flows. Note however, that molecular diffusion in the

Wiener process is not inherently essential in MDF methods. Further, compared

to approach 1, the molecular transport of variance is included correctly. More-

over, the presented modification of the mixing time scale of the IEM model

reduces the unwanted non-physical variance production. A more detailed dis-

cussion concerning this point is given in the next section. Thus, the main

disadvantage of approach 2 is the missing possibility to account for differential

diffusion.

5.3. Approach 3: Combination of approaches 1 and 2

To overcome the disadvantage of approach 2 but retain its good numerical

stability, a combination with approach 1 is introduced. First the molecular heat
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and species fluxes are divided into two parts

qi = q̆i + Δqi , (65)

jαi = j̆αi + Δjαi . (66)

Using Eqs. (12), (13), (48), and (49)

Δqi = − (λ− ρcpD)
∂T̃

∂xi
+

N∑
α=1

h̃α Δjαi , (67)

Δjαi = − ρ (Dα −D)
∂Ỹα

∂xi
+ ρỸα

N∑
β=1

Dβ
∂Ỹβ

∂xi
(68)

can be calculated for any volume based on averaged data. In this way the

molecular heat and species transport with individual conductivity and diffusion

coefficients (qi and jαi) is divided into a part with equal diffusivity and Lewis

number one (q̆i and j̆αi) and individual correction terms (Δqi and Δjαi). Based

on this division, the following modeling approach is proposed to model molecular

heat and species transport and scalar mixing

Mh +MY ≈ ∂

∂xi

[
ρD

∂

∂xi

(
F

ρ

)]
+

∂

∂ĥ

(
∂Δqi
∂xi

F

ρ

)
+

∂

∂Ŷk

(
∂Δjki
∂xi

F

ρ

)

− ∂

∂Ψl

[
1

2τΦ

(
Φ̃l −Ψl

)
F

]
. (69)

From the three terms describing molecular transport (first three terms on the

right-hand side) the first one contributes to the stochastic Wiener process. The

next two terms represent identical shifts in thermochemical space for all particles

in a volume due to differential diffusion. If approach 3 is used in the modeled

MDF Eq. (34), it can be solved by the following SDEs

xp
i (t+ dt) = xp

i (t) +

[
ũi +

1

ρ

∂

∂xi
(ρDe)

]
dt +

√
2De dWi , (70)

hp(t+ dt) = hp(t) +

[
1

ρ

∂Δqi
∂xi

− 1

2τg

(
h̃− hp

)
+

Sh

ρp

]
dt , (71)

Y p
α (t+ dt) = hp(t) +

[
1

ρ

∂Δjαi
∂xi

− 1

2τg

(
Ỹα − Y p

α

)
+

Sp
α

ρp

]
dt . (72)
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As before in approach 2, τg is used in the IEM model instead of τΦ to reduce

the non-physical variance production. The shifts in composition space Δjαi

may induce problems with species boundedness. However, these problems are

expected to be smaller than in case of approach 1, because significant parts of

molecular diffusion are covered by the Wiener process. Thus a simple clipping

and a normalization of species mass fractions is performed after the fractional

step diffusion.

5.3.1. First and second moments

Inserting approach (69) to model Mh + MY in the MDF Eq. (34), the

following contributions to the right-hand sides of the first and second moment

equations are obtained

∂

∂t

(
ρh̃
)

= . . . − ∂qi
∂xi

, (73)

∂

∂t

(
ρỸα

)
= . . . − ∂jαi

∂xi
, (74)

∂

∂t
(ρσh) = . . . +

∂

∂xi

(
ρD

∂σh

∂xi

)
− ρ

σh

τΦ
+ ρσh

(
1

τh
− 1

τm

)
, (75)

∂

∂t
(ρσαβ) = . . . +

∂

∂xi

(
ρD

∂σαβ

∂xi

)
− ρ

σαβ

τΦ
+ ρσαβ

(
1

ταβ
− 1

τm

)
(76)

with τh according to Eq. (61) and

1

ταβ
=

2D

σαβ

∂Ỹα

∂xi

∂Ỹβ

∂xi
. (77)

The last terms in Eqs. (75) and (76) are due to the spurious variance production

(1/τh and 1/ταβ) and the newly introduced destruction term (1/τm). In case of a

single scalar, the non-physical variance production can be completely removed

(e.g. with τm = τh in case of the enthalpy equation). However, for multi-

scalar problems, the IEM model provides one single free parameter (τm) for all

variances and covariances only. Hence, the chosen averaged time scale τm (see
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Eq. (64)) is only approximately able to cancel out the non-physical variance

and covariance production. Nevertheless the described method works well as

will be shown later in practical applications. Moreover, its use is supported

by the following analysis for idealized conditions. In the limit μt → 0 (only

then the spurious production terms become important), for non-reactive flows,

and assuming local equilibrium (spatial transport is neglected) the enthalpy and

species variance equations reduce to

2ρD

(
∂h̃

∂xi

)2

= ρCh
σh

τt
, (78)

2ρD
∂Ỹα

∂xi

∂Ỹβ

∂xi
= ρCαβ

σαβ

τt
. (79)

For these idealized conditions and assuming identical turbulence to scalar time

scale ratios Cαβ = Ch = CΦ, the following algebraic conditions

σh = 2D
τt
CΦ

(
∂h̃

∂xi

)2

, (80)

σαβ = 2D
τt
CΦ

∂Ỹα

∂xi

∂Ỹβ

∂xi
(81)

are obtained for the variances and covariances. Inserting these values into Eq.

(61) and (77) the spurious variance production time scales

1

τh
=

1

ταβ
=

CΦ

τt
(82)

become identical for all variables. Using the same algebraic relations (80) and

(81) for the calculation of the corresponding destruction term time scale τm by

Eq. (63) (without the limitation from Eq. (64)), an identical time scale

1

τm
=

CΦ

τt
(83)

is obtained. Thus, under the above given idealized local equilibrium conditions,

the spurious variance and covariance production terms could be completely re-

moved and the last terms in Eqs. (75) and (76) vanish. This, however, is not
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valid in general, especially not for cases with chemistry and strong spatial trans-

port.

5.3.2. Advantages and disadvantages of approach 3

Approach 3 combines the advantages from approach 1 and 2. The stochas-

tic movement of the particles in laminar regions allows a numerically stable

simulation without volumes running out of particles in constant CFL number

simulations. Differential diffusion is considered and the first-order moments are

predicted correctly. Moreover, compared to approach 1, the molecular trans-

port of variance is correctly included. Nevertheless, there still is the problem of

spurious variance production in case of multi-scalar problems. Another question

is the choice of the limitation constant Cm in Eq. (64) and the occurrence of

numerical diffusion in case of short time scales τm in the IEM model. These

topics are discussed further on the basis of practical investigations in the next

section.

6. Results and Discussion

In order to demonstrate the correctness and accuracy of the described tech-

niques if applied to compressible flows, a number of simulations are performed

with different levels of complexity. To enable a step by step investigation of

isolated effects some simple (partially purely academic) test cases are chosen.

Effects like viscous work, the modeling of pressure gradients, differential diffu-

sion, or the heating of the boundary layer in high speed flows are independent

from combustion. Thus, many test cases are non-reactive. In these cases a

comparison with standard FV simulations allows to check the consistency of

the implementation and the correctness of the hybrid MDF/FV simulation. At

the end of this section a supersonic mixing channel and model rocket combustor

will be presented. If not stated otherwise, all simulations use approach 3 (see

Sect. 5.3) and approximately 100 particles per volume. The particle number is
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controlled by particle splitting and fusion using individual particle masses [12].

For this purpose a preferred weight m is calculated for any volume by dividing

the total particle mass in the volume through the desired number of particles. If

the ratio between the actual particle weight and the preferred weight is higher

or smaller than a certain factor c (in all simulations of this paper this factor

is c = 0.5), than particle splitting or fusion is performed. Thus all particles

with mp ≥ m/c are replaced by int(mp/m) particles with identical properties

and new calculated weights. On the other hand, the weight of all particles with

mp ≤ mc is increased to m with probability mp/m or the particle is extin-

guished with probability 1−mp/m.

6.1. Mach 4.5 flow over an adiabatic flat plate

In order to assess the effect of heating of the fluid in a high speed boundary

layer with adiabatic wall, the experiment of Mabey et al. [54, 55] is chosen. Due

to the high flow velocity (Mach 4.5) viscous dissipation becomes important close

to the solid wall. Thus, the modeling approach from Eq. (35) (without the tem-

poral pressure derivative term) can be validated. For this the viscous sublayer

must be resolved by the computational grid (y+ < 1) due to the requirements

of the low Reynolds number q-ω turbulence closure [30]. The turbulence model

has to predict the transition from a fully turbulent exterior flow into the lami-

nar sublayer close to the wall. The corresponding processes on the energy side

(temperature boundary layer) have to be captured by the Lagrangian particle

solver. If a particle hits the wall it is reflected and maintains its temperature.

Freestream temperature and pressure are 62 K and 3.2 kPa, respectively. In the

experiment, a roughness band was used to move transition towards the lead-

ing edge of the plate and thus to increase the length of turbulent flow. All

calculations are performed through transition and boundary layer profiles are

compared with experimental ones at identical displacement thicknesses. The

calculations use constant inflow conditions and a turbulence intensity of 1 %.

The computational grid consist of 192 · 80 volumes for a length of 1.62 m in x-
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Figure 4: Normalized measured [54] and calculated (FV solver and hybrid MDF/FV scheme)

velocity (u+ = u/uτ , left side) and temperature (right side) profiles at different displacement

thicknesses of a turbulent Mach 4.5 boundary layer.

and 0.86 m in y-direction. The grid is highly refined close to the wall and the

distance of the first cell centers to the wall is 0.5 · 10−6 m. Thus, all y+-values

of near wall cell centers are below 0.32. The resulting cell aspect ratio is up to

2400, which is quite extreme for a Lagrangian particle solver. Figure 4 shows

normalized calculated velocity (left side) and temperature (right side) profiles

at four different displacement thicknesses δ1 of the boundary layer (different

x-positions) in comparison with the experiment. A blow up of the tempera-

ture profile close to the wall is given in Fig. 5. For a better representation

of the results, the origin of the x- or y-axis is shifted for every profile. The

same technique is used in some of the following figures, too. Both velocity and

temperature profiles agree very well with the experimental data. The hybrid

MDF/FV results (solid lines) in Fig. 4 are nearly identical to the pure FV

profiles (dashed lines) and hard to distinguish. Please note that MDF solution

in the figures always means a hybrid scheme with MDF for the thermochemical

variables and a standard FV scheme for the remaining ones. The results show,

that the viscous dissipation term in the energy equation is well reproduced on

the particle level. Moreover, laminarization in the viscous sublayer is modeled
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temperature profiles at different displacement thicknesses in the near wall region of a turbulent

Mach 4.5 boundary layer.

correctly and the wall temperatures of both simulations are basically identical.

No numerical problems occurred in this test case despite the high cell aspect

ratio. The integration was very stable and CFL numbers of 3 and 0.4 are used

for the FV and MDF solver, respectively. However, an implicit smoothing of the

exchanged data according to Eq. (32) with ε = 0.1 was required. The number

of iterations needed to reach a steady-state solution is approximately 3 times

higher for the MDF calculation compared to a pure FV simulation.

6.2. Mach 1.2 flows with constant wall temperature

The next two test cases treat flows with constant wall temperatures. The

first one is a turbulent flow over a flat plate, the second one an axisymmetric

flow through a weakly diverging pipe. Both test cases are purely academic,

non-reacting, and without mixing. They are chosen to test the ability of the

MDF solver to treat the enthalpy equation under these conditions correctly and

to achieve identical results as a corresponding pure FV simulation. The latter

one uses a transport equation for the total energy which includes kinetic and

turbulent kinetic energy. For an agreement with the temperature profiles of the
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Figure 6: Comparison of calculated pure FV and hybrid MDF/FV results. Velocity (left side)

and temperature (right side) at x = 400 mm for a turbulent non-reacting flow over a flat plate

(left side) and through a pipe (right side).

particle solver the energy, momentum, and turbulent kinetic energy equations

have to be implemented in a consistent way. Any particle in the MDF simulation

which hits the wall takes the given wall temperature. In both cases (planar and

axisymmetric) fully turbulent precalculated inlet profiles are chosen which are

obtained using adiabatic wall boundary conditions. The inflow Mach number

is 1.2 and the pressure is 1 bar. The pipe has a diameter of R(x = 0) =

29.4 mm at the inlet and the outward oriented angle is 0.29 degree. At the

inlet the temperature boundary condition changes and for both simulations a

constant wall temperature of 700 K is chosen. This causes a quick heating of the
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boundary layer due to the much warmer wall. Figure 6 shows velocity (upper

figures) and temperature (lower figures) profiles for the flat plate (left side) and

the pipe (right side) flow. Additionally, the precalculated inlet profiles for both

cases are plotted. Results are given for the position x = 400 mm. At the inlet

(x = 0 mm) there is the sudden change in wall boundary condition. The results

of the hybrid MDF/FV and the pure FV simulation are basically identical. This

is required because the same modeling approaches are used, and therefore both

simulation techniques fulfill the same first-order moment equations. The test

cases demonstrate that heat conduction and viscous dissipation are modeled

correctly on the particle level.

For both test cases no implicit smoothing of the transferred MDF data is

required. CFL numbers of 6 and 0.4 are used for the FV and MDF solver, re-

spectively. In the MDF simulations the averaged data strongly changed during

the moving-time-averaging. Therefore the number of previous time-steps, over

which the averaging is performed, had to be increased very slowly. Convergence

of the pure FV solver is again much better due to a significantly higher CFL

number (factor 3 to 4). In addition, an iteration of the Lagrangian particle

solver is much more expensive than a FV step.

6.3. Mach 2 turbulent flow over a backward facing step

The last non-mixing, non-reacting test case is a turbulent Mach 2 flow over a

backward facing step, which has been investigated experimentally by McDaniels

et al. [56]. The channel has a length of 45 mm, a step height of 3.18 mm, and,

after the step, a channel height of 21.29 mm. The computational grid uses 2

blocks with 112 · 80 and 144 · 112 volumes, respectively. It is very fine in the

near wall regions and achieves y+-values below one. The cell aspect ratio is

up to 850 near solid walls. Inlet profiles for the simulation have been calcu-

lated with the same code to match the experimentally measured boundary layer

thickness of δ = 1.45 mm at the x = 0 location. The AUSM+-up [35] flux vec-

tor splitting is used together with a second or fourth order MLP discretization
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Figure 7: Comparison of calculated pressure distributions for a turbulent Mach 2 backward

facing step flow. Left side pure FV simulation, right side hybrid MDF/FV simulation. The

vertical lines indicate the positions (p1 to p4) of profiles shown later.

[34, 29]. However, for this steady-state test case, differences between second

and higher order simulations are hardly visible [29]. As can be seen from Fig.

7, significant pressure differences occur, first in the expansion fan at the step

and later due to the reattachment shock. Thus, the pressure derivative term

in the enthalpy equation becomes important. Moreover, a large recirculation

zone exists downstream of the step and there are significant temperature dif-

ferences in the flow field. As can be seen from Fig. 7, the hybrid MDF/FV

simulation (right side) agrees very well with the pure FV solution (left side).

Downstream of the reattachment shock some slight oscillations are visible in

the MDF results. Moreover, minor differences occur in the separated region

and after the reattachment shock. The vertical lines p1 to p4 in Fig. 7 indicate

positions, where experimental profiles are available (x = 3.1, 8.8, 12.7, and 24.4

mm). These profiles are given in Fig. 8. For the four positions pressure (up-

per) and temperature (lower) profiles are plotted. Given are results from the

hybrid MDF/FV simulation and a pure FV calculation. The overall agreement

between both simulations and the experimental data is very good. The velocity

components (not shown) also agree very well. Minor differences occur only in

the recirculation zone and in the region where the reattachment shock is formed.

Even the increase in pressure and temperature over the reattachment shock is

well reproduced by the MDF simulation. This is probably an advantage of a

scalar thermochemical MDF because the positive shock capturing capabilities
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Figure 8: Comparison of hybrid MDF/FV results with those of a pure FV simulation and the

experiment [56] for a turbulent Mach 2 backward facing step flow. Upper figures pressure,

lower figures temperature profiles at the positions p1 to p4 (from left to right).

of the FV solver are maintained. Moreover, the first-order upwind character of

the explicit particle solver does not introduce non-physical upwind influences at

the shock wave. The simulation is numerically very stable in combination with

approach 3 to model molecular transport. Using approach 1, the described prob-

lem of volumes without particles occurred as demonstrated in Fig. 3. Again,

approximately 3 times more iterations are required for the hybrid MDF/FV

scheme to obtain a converged solution compared to the standard FV method.
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6.4. Subsonic Laminar Axisymmetric Non-Reacting Mixing Layer

In RANS but also in LES simulations the solver should be able to treat

laminar flows and differential diffusion. The following three test cases are chosen

to demonstrate that

• the hybrid MDF/FV scheme works correctly in the limit of laminar flow

(or at very low turbulence levels as in the next test case),

• modeling approach 3 not only stabilizes the numerical solution but also

predicts differential diffusion very well.

Hence, a coaxial shear layer is simulated with YN2 = 1 in the outer and YO2 =

YH2 = 0.5 in the inner flow. Both flows are separated for the first 50 mm

(splitter plate) and mix over the next 150 mm downstream. The inner tube has

a radius of 2 mm, the outer one of 4 mm. Thus, the splitter plate is located at

r = 2 mm. The inflow velocity, temperature, and pressure are 200 m/s, 298 K,

and 1 bar, respectively. The flow is taken to be laminar to highlight the effect

of differential diffusion. Figure 9 shows vertical profiles of the three species

involved 137.5 mm downstream of the splitter plate. Given are profiles of the

hybrid MDF/FV simulation as well as pure FV results in an extension of the

region where mixing takes place. The effect of differential diffusion is clearly

visible due to the higher diffusivity of hydrogen compared to oxygen. Results

of both simulation techniques agree very well. The profiles of the Lagrangian

particle solver are a little bit more diffusive (Cm = 1) but the results show, that

approach 3 fulfills all requirements given above.

Nevertheless, there are also limits associated with this technique as may be

seen in Fig. 10. Here the influence of the model constant Cm is investigated

which is used in Eq. (64) to limit the rate of spurious variance reduction. The

problem with a fast reduction is, that a short mixing time scale τm may cause

a dissipative behavior of the solution in physical space, as described above. On

the other hand, if Cm is chosen too low, scalar mixing in thermochemical space

is not fast enough and there may be non-physical variance. This has the effect
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Figure 9: Comparison of pure FV and hybrid MDF/FV species profiles 137.5 mm downstream

of the splitter plate for a laminar axisymmetric shear flow using Cm = 1.

that on a particle level the species may be unmixed. In case of reactive flows this

could prevent combustion. For this reason Cm has to be chosen carefully. Note,

however, this effect is important in laminar or weakly turbulent regions only.

In fully turbulent flows the turbulent mixing time scale dominates (τΦ � τm)

and it follows from Eq. (59) that τg ≈ τΦ. In case of the fully turbulent

backward facing step flow from Sect. 6.3 a change of Cm from one to five

had no visible effect at all. In Fig. 10, species profiles are plotted on the left

side at x = 137.5 mm downstream of the splitter plate. On the right side the

difference between the O2 and H2 mass fractions is given to highlight the effect

of differential diffusion and isolate it from the remaining diffusion process. The

species profiles (left side) show that the solution becomes more diffusive if Cm

is increased. The same tendency is observed if the order of discretization in the

pure FV scheme is reduced from second to first order. The best agreement with

the FV solution is obtained with the smallest value Cm = 0.25. Nevertheless,

the MDF solution using Cm = 1 still agrees pretty well with the second-order FV

results. The behavior of YO2−YH2 (right side) is more complex. No chosen value

of Cm is able to correctly reproduce the FV result. There are two points which
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Figure 10: Comparison of pure FV and hybrid MDF/FV species profiles (left side) and dif-

ference between O2 and H2 mass fractions (right side) for a laminar axisymmetric shear flow

and different values of Cm. All profiles are 137.5 mm downstream of the splitter plate.

may be responsible for these deviations: The numerical diffusion caused by τm

in the IEM model which scales with the parameter Cm and the fact, that one

free parameter (τm) is available for a multi-scalar problem only. Fig. 10 (right

side) also shows, that the recommended value Cm = 1 is a good compromise.

Despite the discrepancies the new technique offers a high potential for complex

flow simulations. Moreover, the height where differential diffusion takes place

is predicted very well.

In order to highlight the spurious variance production a parameter is needed

which evaluates the degree of mixing achieved on the particle level. For this

purpose the following parameter is chosen

νmix =
˜YAYB

ỸAỸB

= 1 +
˜Y

′′
AY

′′
B

ỸAỸB

(84)

which should be 1 in case of perfect mixing (laminar flow) and otherwise is

a measure for the non-physical covariance between A and B. Here νmix is

calculated with A = O2 and B = N2 from the particle properties. Figure 11

shows on the left side the degree of mixing at x = 137.5 mm using different
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Figure 11: Influence of the modeling parameter Cm for a laminar axisymmetric shear flow.

Left side degree of mixing (normalized species covariance) at x = 137.5 mm , right side H2-O2

scatter plot of particle properties along a vertical line at four x-positions.

values Cm. In order to reduce the statistical error, the particle data is averaged

over 1000 iterations at steady-state conditions. While high values for Cm may

be negative due to the numerical diffusion of the IEM model, its effect on νmix

is in the opposite direction. A higher value of Cm causes a faster mixing and

a better agreement with the laminar value of one. As can be seen from Fig.

11 (left side), the spurious covariance is nearly completely removed in case of

Cm = 1. On the right side of Fig. 11 scatter plots of particle properties (H2

over O2 mass fractions) are shown for all particles on a vertical line at a given

axial position. The four scatter plots are for x = 7.5, 37.5, 87.5, and 137.5

mm downstream of the splitter plate. These results are obtained with Cm =

1. Note, that for a better representation, the x-origins in this figure are shifted

for the different scatter plots. It can be seen that with the exception of the

plot for x = 7.5 mm all points basically collapse into a line. Even for x ≤ 37.5

mm the scattering is relatively low. Both plots of Fig. 11 demonstrate, that

Cm = 1 is a good compromise between a fast mixing (low spurious variance

production) and a good spatial resolution. The achieved results are comparable

to the second-order FV profiles.
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The variance in the species distribution also affects the smoothness of the

data transferred to the FV scheme and thus numerical stability. In case of

Cm = 1 or higher, no implicit smoothing of the exchanged data is required.

For Cm = 0.5 and lower, however, an implicit smoothing was necessary in the

transient phases of the simulation. After reaching a statistical steady-state and

with the start of the moving-time-averaging, the implicit smoothing could be

switched off.

6.5. Subsonic Weakly Turbulent Axisymmetric Non-Reacting Mixing Layer

The test case from the last subsection is repeated here with the difference

that the inflow in not laminar but at a low turbulence level (the q-ω turbulence

model [30] is used). The turbulence intensity is 0.816 % in the inner H2/O2

flow and 0.408 % in the outer N2 flow. In this way the eddy viscosity at the

inlet is of the same order as the molecular viscosity (factor 1.38 and 2.35). The

turbulence level significantly increases in the shear layer where the impact of

molecular diffusivity is disappearing. Due to the dominance of turbulent mixing

(IEM model), the effect of Cm is also reduced. Figure 12 shows on the left side

species profiles 137.5 mm downstream of the splitter plate. As expected, the

much stronger turbulent mixing and diffusion causes much more homogeneous

profiles and the impact of differential diffusion is negligible (the profiles of H2

and O2 become identical). Besides the MDF/FV simulation with approach 3

for molecular transport and scalar mixing an additional calculation is performed

with the standard IEM model using 1/τm = 0. This is done to highlight the

non-physical variance production of approach 3. As can be seen from Fig. 12

(left side) the use of τm does not change the mean species profiles. On the

right-hand side of Fig. 12 the impact of τm on the degree of mixing between O2

and N2 is investigated. Plotted are profiles at 4 streamwise positions. Directly

downstream of the splitter plate (x = 7.5 mm), where the flow still has a low

turbulence level, the simulations with approach 3 (Cm = 1) and with the stan-

dard IEM model show small differences. They disappear further downstream
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Figure 12: Comparison of pure FV and hybrid MDF/FV species profiles at x = 137.5 mm

(left) and degree of mixing at different streamwise positions (right). Test case is a weakly

turbulent axisymmetric non-reactive shear flow.

where both profiles become more and more identical due to the dominance of

turbulent mixing and diffusion.

6.6. Laminar Supersonic Hydrogen Flame

As shown in the last two non-reactive test cases, the unwanted non-physical

variance induced by approach 3 can be reduced successfully if the new mixing

time scale τg (see Eq. (59)) is used in the IEM model. Moreover, the model

constant Cm = 1 offers a good compromise between accuracy and numerical

diffusion. The next check is how this model performs when applied to reactive

flows. As described in Sect. 5.3.1, even at local equilibrium conditions there may

be a strong impact from combustion on the species variances and covariances

to deviate from the approximation given in Eq. (81). Thus it is expected that

the single reduction time scale τm is not able to completely compensate for the

spurious production terms.

Again a laminar academic flame is chosen to highlight the effects of τm

and Cm. The setup is based on a planar supersonic flow over a splitter plate.
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Figure 13: Comparison of calculated temperature distributions for a supersonic hydrogen

flame. Left side FV simulation, right side hybrid MDF/FV results using Cm = 1.

The lower flow is a hydrogen/nitrogen mixture (YH2 = 0.25, YN2 = 0.75) and

the upper flow is pure oxygen (YO2 = 1). The inflow velocities, temperatures,

and pressures of both streams are 3000 m/s, 1800 K, and 1 bar, respectively.

A reduced 7-species, 7-step reaction mechanism [57] is employed for hydrogen

combustion. Due to the high inflow temperatures chemistry is very fast and close

to equilibrium conditions. Figure 13 shows temperature contours of a pure FV

(left side) and a hybrid MDF/FV simulation (right side). The latter one uses

the constant Cm = 1. Both figures are nearly identical. Minor differences occur

at x ≈ 0 mm (end of the splitter plate) due to large species gradients between

the upper and lower streams. The mixing limitation with Cm = 1 is slightly

too strong at this position, but on the other hand avoids a smearing of the

species profiles due to numerical diffusion. This is shown in more detail on the

left side of Fig. 14. Given are results from a pure FV simulation and hybrid

MDF/FV results with Cm = 1, 2, 3, and 5 for the positions x = 48 and 198

mm downstream of the splitter plate. The profiles at 48 mm clearly show that

the maximum temperature for the Cm = 1 simulation is slightly lower than the

FV result. An accelerated mixing Cm ≥ 2 achieves a perfect matching with the

FV maximum temperature but at the wings of the profile the solutions become

too diffusive. At x = 198 mm the differences in maximum temperature have

disappeared, but the dissipative character of the solutions with Cm > 1 becomes

even more visible. It is concluded that a value of Cm = 1 is the best choice. On

the right-hand side of Fig. 14 temperature profiles using Cm = 1 are plotted for
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Figure 14: Comparison of pure FV and hybrid MDF/FV temperature profiles at 2 spatial

position for different values of Cm (left) and temperature profiles for Cm = 1 at different

x-positions (right). Test case is a laminar supersonic hydrogen flame.

different positions downstream of the splitter plate. With the exception of the

first profile the overall agreement between the particle and the FV solver is very

good. This can also be stated for the mean species profiles, which are given in

Fig. 15 for x =148 mm. Even the radicals predicted by the hybrid FV/MDF

scheme agree very well with those of the pure FV solution.

Due to the very high inflow temperatures of 1800 K, chemistry is extremely

fast. This can be clearly seen in the composition scatter plots for O2 and H2

which are shown for x = 48, 98, 148, and 198 mm in Fig. 16. The properties

from all particles in volumes along vertical lines at the given x-positions are

extracted for this plot. For all x-positions the properties basically collapse into

one line, indicating fast chemistry.

Next the occurrence of non-physical variance is investigated. In addition to

the averages, the rms (root mean square) values of species fluctuations of the

hybrid FV/MDF simulation are plotted in Fig. 15 for the position x =198 mm.

These values are calculated by averaging the particle data over 1000 iterations

at steady-state conditions. Ideally all variances should be zero for this laminar

combustion test case. However, spurious variances occur for all species in the
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Figure 15: Comparison of pure FV and hybrid MDF/FV mean species and rms species fluc-

tuation profiles at x = 198 mm downstream of the splitter plate using Cm = 1. Test case is

a laminar supersonic hydrogen fiffusion flame (upper figures: O2 and N2 left, H2 and H2O

right, lower figures: OH and O left, H right).

main reaction zone. These variances are significantly higher than in the non-

reactive mixing test case from Sect. 6.4 (see the line for Cm = 1 on the left

side of Fig. 11). If Cm = 5 is taken instead of Cm = 1, the spurious variances

are reduced by nearly 50 %. This, however, increases the numerical diffusion

of the IEM model as shown before in Fig. 14. The spurious variances are a

consequence from modeling molecular diffusion by the Wiener process. On the

other hand, this measure is required to ensure numerical stability. Moreover,

the spurious variance production still is relatively low and the mean species

profiles are in a very good agreement with the FV results. In addition, this
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effect become important in regions of disappearing turbulence only.

No implicit smoothing of the transferred data (from MDF to the FV scheme)

was required for this combustion test case. However, due to the lower CFL

number (0.4 compared to 3 for the FV solution) the number of iterations needed

to achieve a steady-state solution is 6 times higher for the hybrid MDF/FV

scheme.

Based on the results of the previous test cases approach 3 can be used for

practical high speed applications. Without the described technique to treat the

molecular transport as part of the Wiener process, it was impossible to simulate

the experiments from next Sects. 6.7 and 6.8.

6.7. Supersonic Mixing Channel

Finally, two practical test cases are presented. The first one is related to su-

personic combustion and treats a Mach 2 non-reacting supersonic mixing chan-

nel with hydrogen supply by a strut injector. The turbulent flow simulation

starts at the air nozzle throat (required in the experiment) with sonic condi-
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Figure 17: Pressure contours for simulations of a supersonic mixing channel with hydrogen

strut injection. Upper figure pure FV simulation, lower figure hybrid MDF/FV solution.

tions and 240 K and 2.05 bar for temperature and pressure, respectively [58].

Inside the blunt end of the strut is a nozzle through which hydrogen is injected.

The nozzle is resolved by the computational grid. The sonic hydrogen injection

conditions are 260 K and 1.95 bar for temperature and pressure, respectively

[58]. In this case the thermochemical MDF covers the enthalpy and the mass

fractions of oxygen, hydrogen, and nitrogen. The computational grid consists

of 3 blocks (which later are divided for the parallel simulation) with 472 · 33,

442 · 56, and 672 · 96 volumes, respectively. The grid is strongly refined in

the mixing zone and close to solid walls. Figure 17 shows calculated pressure

contours using the fifth order MLP discretization [29] in both FV parts. In the

upper figure results of a pure FV simulation are given, in the lower one from

the hybrid MDF/FV calculation. To our knowledge this is the first simula-

tion where such a multiple shock reflection test case is simulated by a hybrid

FV/Lagrangian particle method. In case of the MDF simulation the pressure

contours are somewhat noisy downstream of the strut. The implicit smoothing

of transferred variables was essential in this test case (ε = 0.1). Moreover, a

moving-time-averaging of transferred MDF data was possible over a relatively

small number of previous time-steps (≤ 40) only. Otherwise artificial shock

systems are induced. However, the shock resolution of the MDF simulation is

very good and better than expected for a test case with strong pressure and

temperature gradients.
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indicate the positions of profiles plotted in Fig. 19.

For a more detailed analysis, pressure and temperature profiles are com-

pared. The locations of the 6 profiles p1 to p6 investigated (along the curvilin-

ear grid) are shown in Fig. 18 in an extension of the region around the strut

injector. Profile p1 is along the upper wall, p2 is in the first part in the middle

of the channel, p3 is in the first part along the symmetry axis and on the strut

surface, p6 is along the symmetry axis in the rear part, and p4 and p5 are in be-

tween. Figure 19 shows the six pressure (left side) and temperature (right side)

profiles obtained from the pure FV and hybrid MDF/FV simulation. Along the

channel wall experimentally measured pressures are available which are given

in the pressure plot, too. The pressure profiles demonstrate, that the strong

pressure differences due to expansion in the nozzle and the pressure changes

over the shock waves are well reproduced in the MDF solution. The differences

compared to the high order pure FV solution are marginal. This is in contrast to

the temperature profiles, which, at least further downstream, show some minor

deficiencies compared to the FV results. Nevertheless, the agreement is very

good. The results show that the pressure derivatives in the enthalpy equation

as well as viscous transport and dissipation in the boundary layer are correctly

predicted by the Lagrangian particle method. No negative influence is observed

from the lower spatial order of the particle solver, what probably is an advan-

tage of using a thermochemical MDF. Thus, all requirements are fulfilled to use

the thermochemical MDF for compressible combustion in high speed flows.
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(right) profiles for a supersonic mixing channel. The position of the strut is also given in both
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6.8. PennState Preburner Combustor

The final test case is a model rocket combustor which has been investigated

experimentally at the Pennsylvania State University [59]. The experiment has

been designed to characterize the wall heat transfer, which is an important issue

in rocket combustor design. The combustor is axisymmetric and has a diameter

of 38.1 mm and a length of 286 mm. Two upstream preburners produce oxidizer-

rich and fuel-rich gases, respectively. The combustor is operated at a pressure

of 5.42 MPa. Details concerning geometry and operating conditions may be

found in Ref. [59]. Steady-state RANS and hybrid MDF/FV simulations are

performed for this test case. It is known [60], that there are unsteady effects in

the flow field of this combustor and that a LES or DDES should be preferred.

However, the emphasis of this paper is not on an accurate simulation of the test

case but on the demonstration of the ability of the hybrid solver to deal with such

problems. For hydrogen/oxygen combustion a reduced 7-species, 7-step reaction

mechanism is used [57] and for turbulence closure the q-ω low-Reynolds number

turbulence model [30]. In the experiment combustor wall temperatures have

been measured. These temperatures are used in a least square fit to obtain the
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Figure 20: Calculated total and element (O and H) mass fluxes along the combustor length.

Given are instantaneous and averaged MDF/FV results as well as pure FV values for simula-

tions of the PennState model rocket combustor).

wall temperatures for the numerical simulation. The computational grid has

about 50,000 volumes and is strongly refined near the oxidizer post tip and at

all near wall regions. A constant mass flow boundary condition is chosen for

both inflows.

Strong oscillations in mass flow but also in other variables occurred during

the transient phases of the hybrid MDF/FV simulation (before the moving-time-

averaging is started). This caused stability problems for the solver and required

a much stronger implicit smoothing of the transferred MDF data (ε = 0.6) than

before. Moreover, similar time-steps had to be chosen in the FV and particle

solvers. Thus the CFL number of 0.4 is maintained in the particle part, while

the CFL number in the FV step is reduced to 1. Figure 20 shows cross section

averaged mass fluxes along the combustor length which, at steady-state condi-

tions, should be constant. Besides the total mass flux the calculated element
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Figure 21: Calculated temperature contours of the PennState model rocket combustor. Upper

figure pure FV simulation, lower figure hybrid MDF/FV calculation.

mass fluxes of O and H (calculated from the different species mass fractions)

are plotted. For the total mass flux two instantaneous profiles are given at arbi-

trarily chosen times shortly before the moving-time averaging is started. They

show strong fluctuations of this already cross section averaged value. Close to

the injector at x = 0 mm, the total mass flux fluctuates by more than 25 % in

positive and negative direction. With increasing combustor length the instan-

taneous mass flux is more and more overpredicted. Reaching the combustor

nozzle at x ≈ 315 mm, both instantaneous mass fluxes are more than 10 % too

high. The strong fluctuations of the instantaneous flow field are induced by the

particle solver and do not appear in the pure FV simulation. After a statistically

steady-state solution is obtained, the MDF data is averaged over 2000 previous

time-steps. This stabilizes the simulation and causes averaged mass fluxes for

the MDF/FV simulation which are almost identical to the pure FV results (see

Fig. 20). However, in contrast to some of the previous test cases, the strong

spatial smoothing of the transferred MDF data could not be switched off after

the averaging process is started.

In the Figs. 21 and 22 temperature and OH mass fraction contours are given

for both types of simulation, respectively. Each upper figure shows results from

a pure FV simulation, the lower figures are from the hybrid MDF/FV scheme.

Significant differences are obtained between both simulations which are purely

attributed to the treatment of the chemical source term. In the hybrid MDF/FV

solution both temperature and OH are more diffuse with lower maximum values.

This differing flame behavior affects the wall heat flux, too. Figure 23 shows
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Figure 22: Calculated OH mass fraction contours of the PennState model rocket combustor.

Upper figure pure FV simulation, lower figure hybrid MDF/FV calculation.

calculated and measured wall heat fluxes along the combustor length. Even

if the differences are not very strong, the MDF/FV solution represents the

experimental tendencies better than the pure FV results.

Finally, the thermochemical particle data is investigated. Figure 24 shows

scatter plots of particle temperatures over and the mass fractions of OH (upper

figures) and O (lower figures). These data is obtained on vertical lines through

the combustor. Both plotted results are on lines close to the oxygen and hydro-

gen supply tubes, the first one 0.5 mm, the second one 2 mm downstream of the

injector. Symbols indicate different regions along these lines (squares are from

the region of the oxygen jet close to the symmetry axis, circles are downstream

of the injector post which is the next block in radial direction). A strong scat-

tering occurs at these positions. This is despite the high pressure of 54 bar and

the resulting fast chemistry and demonstrates, that simple combustion models

can fail in such regions. To our knowledge this is the first Lagrangian particle

MDF solution with finite-rate chemistry of a model rocket combustor.

Conclusions

A thermochemical MDF/FV approach for compressible high speed flows

(RANS) is presented. Due to the high cell aspect ratios required to resolve the

viscous sublayer, stability problems for the particle solver arise. It was found,

that the treatment of molecular transport by the stochastic Wiener process
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Figure 23: Calculated wall heat fluxes of a pure FV and a hybrid MDF/FV simulation and

experimental values [59] for the PennState model rocket combustor.

stabilizes the simulation even in complex cases. Based on this result a new

model for differential diffusion is developed. The new model can be used in

LES, too. In a detailed analysis it is shown, that for the required modeling

constant a good compromise can be achieved between numerical dissipation

and non-physical variance. In a number of test cases it is demonstrated, that

• terms only appearing in compressible flows (e.g. pressure derivatives, vis-

cous work) are implemented consistently to the FV solver,

• high speed boundary layers with adiabatic and isothermal walls are well

predicted,

• complex shock systems can be simulated with particle methods and that

an excellent shock resolution is achieved,

• all simulations are relatively stable, what is important for practical appli-

cations. However, an implicit smoothing of transferred particle data was

required in some cases.
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Figure 24: Scatter plots of MDF particle data along vertical lines at x = 0.5 and x = 2 mm

downstream of the injector. Test case is the PennState model rocket combustor

Moreover, the first simulations of a supersonic mixing channel with multiple

shock reflections and of a model rocket combustor with finite-rate chemistry are

presented. Results from the latter case show, that MDF methods are impor-

tant in rocket combustion because the described features are neglected in less

sophisticated combustion models.
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[58] P. Gerlinger, D. Brüggemann, Numerical investigation of hydrogen strut

injections into supersonic airflows, Journal of Propulsion and Power 16

(2000) 22–28.

62



[59] W. Marshall, S. Pal, R. Woodward, R. Santoro, Benchmark wall heat flux

data for a GO2/GH2 single element combustor, AIAA paper 2005–3572

(2005).

[60] M. Lempke, R. Keller, P. Gerlinger, Influence of spatial discretization and

unsteadyness on the simulation of rocket combustors, International Journal

for Numerical Methods in Fluids 79 (9) (2015) 437–455.

63


