
Turbo Code Design for Short Blocks
Thomas Jerkovits, Balázs Matuz

Abstract—This work considers the design of short parallel
turbo codes (PTCs) with block lengths in the order of (a few)
hundred code bits. In particular we aim at designing codes with
large minimum distance. To this end a structured approach is
presented to find suitable component code configurations, as well
as interleavers. As a result the proposed turbo codes possess low
error floors and outperform competing binary low-density parity-
check (LDPC) codes by approximately 0.9 dB and state-of-the-art
binary turbo codes by 0.4 dB at a code word error rate (CER) of
about ≈ 10−7. The loss w.r.t. the random coding bound (RCB)
is only about 0.8 dB.

I. INTRODUCTION

The need of powerful short and moderate length codes is
currently raising due to the developments in machine-type
communications, where short data packets are often used,
especially over random access channels [1]. In the context of
satellite communication systems, short codes are typically used
over telecommand links [2]. The design of long channel codes
for iterative decoding is well-established and based on a set of
performance metrics, such as the iterative decoding threshold
[3], or the ensemble typical minimum distance [4]. Those
performance metrics which are derived for code ensembles
under the assumption of infinitely long codewords allow to
restrict the search of good codes at an early stage of the code
design process.

For moderate and short block lengths, though, asymptotic
performance indicators can become inaccurate in predicting
which ensembles contain good codes. Furthermore, the search
of good codes within the selected ensembles plays a more im-
portant role with respect to the large block length setting. This
is done, for instance, for low-density parity-check (LDPC)
codes via semi-heuristic algorithms, such as the progressive
edge growth [5] and the approximate cycle extrinsic message
degree algorithms [6] used to construct bipartite graphs with
large girths. Regarding PTCs, once the ensemble, i.e., the
component codes are fixed, a good code construction requires
a careful design of the interleaver and, if needed, of the
puncturing patterns applied to the code bits.

Among the most powerful solutions for short blocks, non-
binary LDPC [7] codes and PTCs [8] constructed over large
order finite fields gained a prominent role thanks to their
excellent performance down to very low error rates. The price
to pay is a relatively high decoding complexity. It is well
established that for large blocks modern channel codes, such as
binary low-density parity-check (LDPC) codes [4], PTCs [9],
or polar codes [10] provide excellent performance on various
communication channels. For the particular case of polar codes

T. Jerkovits, and B. Matuz are with Institute of Communication
and Navigation of the Deutsches Zentrum für Luft- und Raumfahrt
(DLR), 82234 Wessling, Germany (e-mail: {thomas.jerkovits,
balazs.matuz}@dlr.de).

Π

C1

C2

ui

u′i

u′i

p
(1)
i

p
(2)
i

C1

C2

Fig. 1. Turbo encoder.

it has been recently proven that they are capacity achieving on
any binary-input discrete memoryless channel (DMC) [10].
When considering short blocks, modern codes tend to exhibit
either high error floors or non-negligible coding gain losses
[11] w.r.t. existing benchmarks such as the RCB [12].

Interleaver design for short PTCs has been investigated
in [13] and an improvement of S-random interleaver has
been presented. In [14], it was shown that binary 16-states
turbo codes, though not achieving the performance of non-
binary codes, attain a small performance loss (≈ 0.3 dB) at
moderate CERs (≈ 10−3) while at lower error rates error floors
arise. Likewise, to improve the code performance one may
elaborate on the decoding algorithms for the aforementioned
codes. For instance, approximate maximum-likelihood (ML)
soft-decision decoders [15], [16] are shown to yield a further
performance boost [14]. Yet, those decoding algorithms still
turn out to be too complex for many applications. The same
holds for list decoders recently re-introduced in the setting of
successive cancellation decoding of polar codes [17].

In this paper we focus on binary PTCs. They have the
advantage of low complexity decoding. Further we illustrate
that a structured code design yields very good performances
for short/moderate block lengths together with remarkable low
error floors.

This paper is structured as follows. Section II gives an in-
troduction to the considered class of turbo codes and provides
the necessary notation. In Section III we illustrate component
code, puncturing and interleaver choice. Numerical results
are then provided in Section IV, followed by a wrap-up in
Section V.

II. PRELIMINARIES

A. Parallel Turbo Codes

In this work we focus on PTCs, i.e. in our case a parallel
concatenation of two tail-biting recursive systematic convolu-
tional (RSC) codes. Denote the binary information sequence
of length K at the first encoder input by u = (u0, . . . , uK−1)

+ s1(i) s2(i) . . . sm(i)
ui

× × × ×

× × × ×b1 b2 bmb0

a0 a1 a2 am

+ + . . .

+ + +. . . p
(l)
i

Fig. 2. Recursive convolutional encoder structure of the l-th component code.

and its permuted version at the second encoder input by u′ =
(u′0, . . . , u

′
K−1). Further, c(1) = (u,p(1)) is a codeword of

the first (N1,K) component code C1 and by c(2) = (u′,p(2))
a codeword of the second (N2,K) component code C2. As
depicted in Figure 1 the (N,K) PTC codeword c is finally
formed by the concatenation

c = (u,p(1),p(2))

where we assume that the permuted information symbols u′

are not transmitted. The resulting code rate R is given by

R =
K

N1 + N2 −K
.

Assuming rate 1/2 component codes, this construction allows
code rates of R = 1/3. To obtain PTCs of higher rate,
puncturing of the PTC codewords is required. In this paper
we restrict to puncturing the non-systematic part of the RSC
component codes equally, such that N1 = N2. Due to the
puncturing it follows that N1 < 2K and N2 < 2K and our
component codes C1 and C2 in Figure 1 become time-variant.

Throughout this work we use the following notations for the
Hamming weight of the systematic part and the parity parts
of a PTC codeword

w , wH (u) = wH (u′)

r1 , wH (p(1))

r2 , wH (p(2)).

Furthermore, we define the interleaving rule of
the interleaver Π as follows. Let the interleaver
Π = (Π (0) , . . . ,Π (K − 1)) be a vector of length K
containing indices 0, . . . ,K − 1 in a predefined order. The
relation between ui and u′i is then given by

u′Π(i) = ui, ∀i = 0, 1, . . . ,K − 1 .

B. Component Code Description

Figure 2 depicts the recursive convolutional encoder struc-
ture for the parity output p(l) = (p

(l)
0 , p

(l)
1 , . . . , p

(l)
K−1) of

the l-th component code. The content of the vector s(i) =
(s1(i), s2(i), . . . , sm(i)) defines the state of the encoder at

time step i. The binary vector b = (b0, b1, . . . , bm) contains
the feedback coefficients and the vector a = (a0, a1, . . . , am)
the feed-forward coefficients.

We use the right-justified octal notations to represent the
feedback and feed-forward coefficients by an integer. For
example consider an RSC code with memory m = 4 and
b = (1, 0, 1, 1, 1). The right-justified binary notation of the
feedback coefficients is thus 010111 and the octal integer
representation is 27. In the following, we consider the case of
periodically punctured component codes. Periodic puncturing
can be obtained by employing a time-variant encoder. To
describe the feedback and feed-forward coefficients at time
step i when no parity bit is punctured we write

g(i) = [b,a]

while if the parity bit is punctured at time step i we write

g(i) = [b].

A time-variant RSC code is said to be periodic with period T
if g(i) = g(i + T) for all i = 0, 1, . . . ,K − T − 1 [18]. To
denote a time-variant RSC code with period T we write

gT = (g(0),g(1), . . . ,g(T − 1)).

We call gT the descriptor of a time-variant RSC code.
Moreover, we use a tail-biting technique for the RSC codes

as described in [19] where we impose the constraint that initial
state s(0) equals the last state s(K − 1) after the message u
has been encoded.

In the following, we focus on a specific design which targets
a (128, 64) PTC. We consider the period T = 2 puncturing
pattern of the Consultative Committee for Space Data Systems
(CCSDS) standard in [20]. Puncturing patterns with larger
periodicity are also appealing [21]. However, by increasing
the periodicity the search space also grows. We denote by
g

(1)
2 = (g(1)(0),g(1)(1)) and g

(2)
2 = (g(2)(0),g(2)(1)) the

descriptors of the first and second component code, respec-
tively. We have for the first component code

g
(1)
2 = ([b,a], [b]) (1)

and for the second component code

g
(2)
2 = ([b], [b,a]). (2)

C. Turbo Code Ensemble
Definition 1 (Uniform Turbo Code Ensemble): Let two

component codes C1 and C2 with information block size K
be given. Define the set

C = {CTC1 , CTC2 , CTC3 , . . . , CTCK!}

where CTCi for i = 1, . . . ,K! are PTCs obtained by all K!
possible interleavers. The uniform turbo code ensemble (TCE)
is given by C , where each element of C is picked with
probability 1

K! .

The average weight enumerator for the uniform TCE is
known to be

Ād =

K∑
w=0

∑
r1+r2=d−w

A
(1)
w,r1 ·A

(2)
w,r2(

K
w

)

where Ād is the expected number of codewords with weight d
in the TCE and A

(1)
w,r1 and A

(2)
w,r2 are the input-redundancy-

weight enumerators for the component codes C1 and C2,
respectively.

D. Union Bound

The block error probability PB(C) of a (N,K) block code C
with weight enumerator Ad under ML decoding can be upper
bounded by an union bound (UB) as

PB(C) ≤ 1

2
·

N∑
d=1

Ad · erfc

(√
d ·R · Eb

N0

)
.

The UB above can also be applied on a TCE with average
weight enumerators Ād. It is of interest, since it guarantees
that there exists at least one code in the ensemble that achieves
for a certain Eb/N0 the codeword error probability obtained by
the UB [22]. We use this UB on a TCE in the next section
for the choice of our component codes.

III. TURBO CODE DESIGN

A. Ensemble Search

We want to identify suitable code ensembles for given
(N,K). In particular we aim at low codeword error proba-
bilities at high values of Eb/N0. In a first step we proceed as
follows.
• Randomly generate a set of (time variant) component

codes.
• For each component code in the set generate a second

component code. In our case the descriptors have the form
as in (1) and (2).

• Each pair of component codes in the set forms a (uniform)
TCE. For each TCE compute the corresponding average
weight enumerators Ād.

• Evaluate the UB on the uniform TCEs at a sufficiently
low target codeword error probability P ◦B . In our case
P ◦B = 10−8.

• Obtain (Eb/N0)◦ for which the UB achieves P ◦B .
• Order the set of uniform TCEs according to their (Eb/N0)◦

values in an increasing order.
In a second step we evaluate the iterative decoding thresholds
(Eb/N0)∗ of the TCEs in the set [23]. We start with the first
TCE in the ordered set, i.e., the one with lowest (Eb/N0)◦.
If (Eb/N0)∗ is above a predefined threshold, we discard the
ensemble and take the next TCE in the ordered set. We
then check again for the iterative decoding threshold and
proceed until we obtain a component configuration that yields
a (Eb/N0)∗ below the predefined threshold (and has a low
(Eb/N0)◦). If the search does not yield a single TCE we
repeat the two design steps above and increase (Eb/N0)∗. We
performed a search for (N = 128,K = 64), where puncturing
is done by making use of time variant component codes as
described in Section II. We restricted the memory m of the
component encoders to m ∈ {3, 4, 5}. The result of that
search is summarized in Table I showing the memory m of
the component codes, the descriptors as g

(1)
T=2 for the first

component code and g
(2)
T=2 for the second component code, the

TABLE I
RESULTING COMPONENT CODES FROM THE ENSEMBLE SEARCH.

m g
(1)
T=2,g

(2)
T=2 d

(1)
min/d

(2)
min (Eb/N0)∗ (Eb/N0)◦

3 ([013, 015], [013]), 4 0.62 dB 7.5 dB
([013], [013, 015]) 4

4 ([023, 033], [023]), 5 0.63 dB 6.5 dB
([023], [023, 033]) 5

5 ([067, 045], [067]), 5 0.77 dB 5.5 dB
([067], [067, 045]) 5

Algorithm 1 Algorithm to test an interleaver for the d◦min

constraint.
Require:

Interleaver: Π
Target minimum distance: d◦min

Set of harmful patterns of C1: U (1)
w,r1 s.t. w + r1 < d◦min

Second component code: C2

1: for w ∈ 1, . . . , d◦min − 1 do
2: for r1 ∈ {0, . . . , d◦min − w − 1} do
3: for u ∈ U (1)

w,r1 do
4: u′Π(i) = ui, ∀i = 0, . . . ,K − 1

5: c(2) = (u′,p(2)) . encode u′ by C2
6: r2 = wH (p(2))
7: if w + r1 + r2 < d◦min then
8: return “discard Π.”
9: end if

10: end for
11: end for
12: end for
13: return “Π fulfills d◦min constraint.”

minimum distance d
(1)
min and d

(2)
min of the component codes, the

iterative decoding threshold (Eb/N0)∗ and in the last column
the optimization parameter (Eb/N0)◦ from the UB. Observe
that increasing the memory size only slightly worsens the
threshold, but considerably improves the (Eb/N0)◦, thus the
average distance spectrum of the ensemble. In Section IV this
will be underpinned by CER performances.

B. Interleaver Design

The interleaver plays an important role for the turbo codes
minimum distance and thus also for its error floor perfor-
mance. We consider two classes of interleavers from literature
and select the interleaver parameters, in a way that the code’s
minimum distance is maximized (within our optimization).
We call those interleavers code matched interleavers. The first
class of interleavers are S-random interleavers [24] which
spread neighboring input symbols apart after interleaving.
Since our component code configurations use tail-biting RSC
codes the properties of the interleaver are defined in a circular
sense.

Definition 2 (Circular Minimum Spread Constraint): Let an
interleaver Π of size K be given. The interleaver has circular

spread S if and only if

dL (i1, i2) < S ⇒ dL (Π (i1) ,Π (i2)) ≥ S

∀i1, i2 ∈ {0, 1, . . . ,K − 1} and dL(i1, i2) being the distance
of two indices i1, i2 in Lee metric defined as

dL (i1, i2) = min (|i1 − i2| ,K − |i1 − i2|) .

An interleaver that guarantees to have at least a circular
minimum spread Smin, thus

S ≥ Smin

satisfies the circular minimum spread constraint.

Due to the absence of structure the search space for S-random
interleavers can become large and we may not always find a
suitable interleaver. We therefore consider also dithered rela-
tive prime (DRP) interleavers [25]. The amount of randomness
can be controlled by the size of the read and write dither
namely r̃ = (r̃0, . . . , r̃R−1) and w̃ = (w̃0, . . . , w̃W−1) to be
chosen freely. The interleaver is completely defined by

ΠDRP(i) = Πa(Πb(Πc(i))), ∀i ∈ {0, . . . ,K − 1} .

We have that

Πa(i) = R

⌊
i

R

⌋
+ r̃(i modR)

Πb(i) = (s̃ + p̃ · i) modK

Πc(i) = W

⌊
i

W

⌋
+ w̃(i modW)

with s̃ = 0, . . . ,K − 1 and gcd (p̃,K) = 1, where gcd(a, b)
denotes the greatest common divisor of two integers a and b.
In the sequel we discuss how to find good interleavers under
the S-random and DRP constraints.

We introduce basic concepts for the interleaver design. Let
U (l)
w,r be the set of input sequences of Hamming weight w

for which the l-th component encoder generates codewords of
parity Hamming weight rl, i.e.,

U (l)
w,rl

= {u|wH (u) = w,wH (p(l)) = rl}.

We can now formalize the interleaver constraint used for our
code design.

Definition 3 (Minimum Distance Constraint): An interleaver
guarantees to yield a lower bound d◦min on the minimum
distance dmin of the resulting PTC, i.e. dmin ≥ d◦min, if

∀u ∈ U (1)
w,r1 ⇒ u′ /∈ U (2)

w,r2

s.t. w + r1 + r2 < d◦min.

Hence, a straightforward approach to the interleaver design is
to discard all interleavers for which the condition provided by
Definition 3 is not fulfilled. This can be achieved by checking,
for all u ∈ U (1)

w,r1 with w+r1 < d◦min, if the interleaved vector
u′ belongs to U (2)

w,r2 , with r2 < d◦min−(w+r1). This approach
is summarized in Algorithm 1. Instead of testing if u′ belongs
to U (2)

w,r2 we may encode the interleaved input vector u′ to
obtain r2. If w + r1 + r2 < d◦min the testing procedure is
stopped and we know that the resulting PTC produces at least
one codeword with output weight smaller than d◦min and thus
the interleaver does not fulfill the d◦min constraint.

3 3.5 4 4.5 5
10−7

10−6

10−5

10−4

10−3

Eb/N0 [dB]

C
E

R

S-random
S-random + d◦min

TCE union bound
RCB

Fig. 3. PTCs peformances for S-random and code matched S-random
interleavers.

IV. NUMERICAL RESULTS

A. S-Random Interleaver with d◦min Constraint

We exemplify how to obtain good S-random interleavers for
a (128, 64) memory m = 4 PTC. However, our technique is
also applicable to other code rates, block lengths and different
types of interleavers. For the design we choose d◦min = 12 and
identify all harmful input sequences of the first component
code, i.e., all vectors in the sets U (1)

w,r1(t1), s.t. w + r1 < 12.
The component codes are specified in Table I as a result of
our ensemble search. We generate S-random interleavers with
Smin = 5 and apply Algorithm 1 to discard those not fulfilling
d◦min. We call the resulting interleavers code matched S-
random interleavers. In Figure 3 we present CERs versus Eb/N0

for five PTCs obtained by this approach. As reference the
RCB for rate-1/2 block codes with dimension 64 is depicted as
well [12]. Likewise, we designed five PTCs with Smin = 5, but
without a d◦min constraint. Observe that for PTCs with standard
S-random interleavers the error floor already starts to show
up at a Eb/N0 ≈ 4.5 dB, whereas the slope of the simulation
curves of PTCs with code matched S-random interleavers
shows lower error floors. These simulations suggest that by
selecting an interleaver only w.r.t. its minimum spread is not
sufficient to obtain a PTC with excellent distance properties
for that short block lengths.

B. DRP Interleavers with d◦min Constraint

Likewise, we designed a set of code matched DRP inter-
leavers for the component code configurations given in Table I
yielding (128, 64) PTCs. We first generated a set of DRP in-
terleavers that satisfy a minimum spread of Smin = 5 allowing
W ≤ 8 and R ≤ 8 and then used Algorithm 1 to select those
interleavers that satisfy the d◦min constraint. The parameters of
the best interleavers resulting from our search are summarized

TABLE II
PARAMETERS FOR DRP INTERLEAVERS WITH d◦min CONSTRAINT.

m Smin dmin r̃ w̃ p̃ s̃

3 5 12 (1, 0, 6, 7, 2, 5, 4, 3) (7, 2, 5, 0, 3, 1, 4, 6) 19 61

4 6 14 (2, 3, 0, 1) (3, 2, 1, 0) 7 31

5 6 16 (0, 3, 2, 1) (0, 1, 2, 3) 9 10

2 2.5 3 3.5 4 4.5 5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

C
E

R

PTC m = 5

PTC m = 4

PTC m = 3

PTC m = 4 of [14]
RCB

Fig. 4. CER versus Eb/N0 of (128, 64) PTCs with different memories m.

in Table II. In Figure 4 we compare performances of PTCs
with the proposed code matched DRP interleavers. Again the
RCB for rate-1/2 block codes with dimension 64 is depicted
as a reference. Note that both memory m = 3 and memory
m = 4 codes perform virtually the same in the waterfall
region, whereas the latter one outperforms in the error floor
region. Interestingly, our m = 3 code outperforms the m = 4
code from [14] that is added here as a reference. In [14], zero-
tail terminated convolutional codes as component codes are
used and a rate-1/2 PTC is obtained by puncturing as a last step
of the code design. For memory m = 5 a loss in performance
of about ≈ 0.15 dB in the waterfall region is visible which is
in alignment with iterative decoding threshold predictions. It is
expected that due to the higher dmin the memory m = 5 code
will have the best performance for CERs lower than 10−7.

Figure 5 compares the performance of the proposed mem-
ory 4, (128, 64) PTC with codes of same length and rate: a
binary m = 4 PTC with dmin = 10 [14], a non-binary LDPC
code over the finite field of order 256 with dmin = 14 [26]
and the CCSDS telecommand which is a binary LDPC code
with dmin = 14 [2]. The proposed PTC gains 0.4 dB at a CER
of about ≈ 3 · 10−7 w.r.t. to the PTC from [14], while a
gain of about 0.85 dB w.r.t. the binary LDPC code is shown.
Compared to the non-binary code only a loss of about 0.5 dB
is visible making the proposed code an interesting candidate
for low-complexity applications. Note that we estimated the

2 3 4 5 6
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 [dB]

C
E

R

Binary LDPC
PTC m = 4 of [14]
PTC m = 4, proposed
Non-binary LDPC
RCB

Fig. 5. Comparison of the proposed (128, 64) PTC with m = 4, with
binary and non-binary (128, 64) LDPC and the (128, 64) PTC with m = 4
from [14].

algorithmic decoding complexity of the non-binary LDPC
code to be approximately 60 times higher than that of its binary
counterpart. The results illustrate that a structured turbo code
design as proposed in this work allows low error floors paired
with excellent waterfall performance even for short blocks.

V. CONCLUSIONS

This paper provides a methodical way to construct PTCs
with high minimum distances for short block lengths and
arbitrary rates. The obtained codes outperform state-of-the-
art binary turbo and LDPC codes at comparable decoding
complexity. We also illustrate that for short blocks PTCs using
larger memory RSC codes as component codes bring only a
minor performance loss in the waterfall region while the error
floor can be lowered considerably.

ACKNOWLEDGMENT

The authors wish to thank Gianluigi Liva for the fruitful
discussions and helpful comments around the topic of the
paper.

REFERENCES

[1] G. Durisi, T. Koch, and P. Popovski, “Towards massive, ultra-
reliable, and low-latency wireless: The art of sending short
packets,” CoRR, vol. abs/1504.06526, 2015. [Online]. Available:
http://arxiv.org/abs/1504.06526

[2] Next Generation Uplink, Green Book, Issue 1, Consultative Committee
for Space Data Systems (CCSDS) Report Concerning Space Data
System Standards 230.2-G-1, Jul. 2014.

[3] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Im-
proved low-density parity-check codes using irregular graphs,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 585–598, Feb. 2001.

[4] R. Gallager, Low-density parity-check codes. Cambridge, MA, USA:
MIT Press, 1963.

[5] X.-Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular pro-
gressive edge-growth Tanner graphs,” IEEE Trans. Inf. Theory, vol. 51,
no. 1, pp. 386–398, Jan. 2005.

[6] T. Tian, C. Jones, J. D. Villasenor, and R. Wesel, “Selective avoidance
of cycles in irregular LDPC code construction,” IEEE Trans. Commun.,
vol. 52, no. 8, pp. 1242–1247, Aug. 2004.

[7] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over
GF(2q),” in Proc. IEEE Inf. Theory Workshop, Paris, France, Mar. 2003,
pp. 70–73.

[8] G. Liva, E. Paolini, B. Matuz, S. Scalise, and M. Chiani, “Short turbo
codes over high order fields,” IEEE Trans. Commun., vol. 61, no. 6, pp.
2201–2211, Jun. 2013.

[9] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” in Proc. IEEE Int.
Conf. Commun., Geneva, Switzerland, May 1993.

[10] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[11] D. Divsalar, S. Dolinar, and C. Jones, “Short protograph-based LDPC
codes,” in Proc. Int. Conf. Mil. Commun., Orlando, FL, USA, Oct. 2007,
pp. 1–6.

[12] R. Gallager, “The random coding bound is tight for the average code
(corresp.),” IEEE Transactions on Information Theory, vol. 19, no. 2,
pp. 244–246, Mar. 1973.

[13] H. R. Sadjadpour, M. Salehi, N. J. A. Sloane, and G. Nebe, “Interleaver
design for short block length turbo codes,” in Proc. IEEE Int. Conf.
Commun., vol. 2, New Orleans, LA, USA, Jun. 2000, pp. 628–632.

[14] M. Baldi, M. Bianchi, F. Chiaraluce, R. Garello, I. Sanchez, and S. Cioni,
“Advanced channel coding for space mission telecommand links,” in
Proc. IEEE Vehicular Technology Conference Fall, Las Vegas, NV, USA,
Sep. 2013, pp. 1–5.

[15] A. Valembois and M. Fossorier, “Box and match techniques applied to
soft-decision decoding,” IEEE Trans. Inf. Theory, vol. 50, no. 5, pp.
796–810, May 2004.

[16] Y. Wu and C. N. Hadjicostis, “Soft-decision decoding using ordered
recodings on the most reliable basis,” IEEE Trans. Inf. Theory, vol. 53,
no. 2, pp. 829–836, Feb. 2007.

[17] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

[18] M. Mooser, “Some periodic convolutional codes better than any fixed
code,” IEEE Trans. Inf. Theory, vol. 29, no. 5, pp. 750–751, Sep. 1983.

[19] C. Weiss, C. Bettstetter, and S. Riedel, “Code construction and decoding
of parallel concatenated tail-biting codes,” IEEE Trans. Inf. Theory,
vol. 47, no. 1, pp. 366–386, Jan. 2001.

[20] TM Synchronization and Channel Coding, Blue Book, Issue 2, Consul-
tative Committee for Space Data Systems (CCSDS) Recommendation
for Space Data System Standard 131.0.B.2, Aug. 2011.

[21] A. R. Calderbank, G. D. Forney, and A. Vardy, “Minimal tail-biting
trellises: the golay code and more,” IEEE Trans. Inf. Theory, vol. 45,
no. 5, pp. 1435–1455, Jul. 1999.

[22] S. Benedetto and G. Montorsi, “Unveiling turbo codes: some results on
parallel concatenated coding schemes,” IEEE Trans. Inf. Theory, vol. 42,
no. 2, pp. 409–428, Mar. 1996.

[23] S. ten Brink, “Convergence behavior of iteratively decoded parallel
concatenated codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–
1737, Oct. 2001.

[24] D. Divsalar and F. Pollara, “Multiple turbo codes for deep-space com-
munications,” NASA JPL, Pasadena, CA, USA, TDA Progress Report
42-121, May 1995.

[25] S. Crozier and P. Guinand, “High-performance low-memory interleaver
banks for turbo-codes,” in Proc. IEEE Vehicular Technology Conference
Fall, Atlantic City, NJ, USA, Oct. 2001, pp. 2394–2398.

[26] G. Liva, E. Paolini, T. de Cola, and M. Chiani, “Codes on high-
order fields for the ccsds next generation uplink,” in Advanced Satellite
Multimedia Systems Conference (ASMS) and 12th Signal Processing for
Space Communications Workshop (SPSC), 2012 6th, Baiona, Spain, Sep.
2012, pp. 44–48.

