Multiscale simulation of polymeric fluids using massively parallel computers

Finite Elements in Flow Problems 2017 – Rome, Italy
April 5th – 7th

Alexander Rüttgers
German Aerospace Center (DLR)
Simulation and Software Technology
Cologne, Germany
OUTLINE

1. Modeling equations for multiscale approach
2. Numerical discretization
3. Simulation result: 3D contraction flow
4. Computational complexity
MODELING OF POLYMERIC FLUIDS

Two different modeling approaches:

<table>
<thead>
<tr>
<th>overview</th>
<th>macroscopic</th>
<th>multiscale</th>
</tr>
</thead>
<tbody>
<tr>
<td>cost</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>modeling accuracy</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>drawbacks</td>
<td>num. instabilities</td>
<td></td>
</tr>
</tbody>
</table>

1 Le Bris and Lelièvre 2009
Position vector \(x \) in flow space \(\mathcal{O} \subset \mathbb{R}^3 \).

\(q = (q_1, \ldots, q_N) \) in configuration space \(\mathcal{D} \subset \mathbb{R}^{3N} \).
Position vector \(\mathbf{x} \) in flow space \(\mathcal{O} \subset \mathbb{R}^3 \).

\(\mathbf{q} = (q_1, \ldots, q_N) \) in configuration space \(\mathcal{D} \subset \mathbb{R}^{3N} \).

Description of a polymer ensemble

- **Stochastic approach:** random field \(\mathbf{Q} = (Q_1, \ldots, Q_N) \) with \(\mathbf{Q} : (\mathbf{x}, t) \in \mathcal{O} \times \mathcal{T} \mapsto \mathbf{Q}(\mathbf{x}, t) \) as \(\mathcal{D} \)-valued random variable.

\(^1\) Laso and Öttinger 1993
Position vector \(\mathbf{x} \) in flow space \(\mathcal{O} \subset \mathbb{R}^3 \).

\(\mathbf{q} = (q_1, \ldots, q_N) \) in configuration space \(\mathcal{D} \subset \mathbb{R}^{3N} \).

Description of a polymer ensemble

- **Stochastic approach:**\(^1\) random field \(\mathbf{Q} = (Q_1, \ldots, Q_N) \) with \(\mathbf{Q} : (\mathbf{x}, t) \in \mathcal{O} \times \mathcal{T} \mapsto \mathbf{Q}(\mathbf{x}, t) \) as \(\mathcal{D} \)-valued random variable.

- **Fokker-Planck ansatz:**\(^2\) probability density function of field \(\mathbf{Q} \)
 - \(\psi : (\mathbf{x}, \mathbf{q}, t) \in \mathcal{O} \times \mathcal{D} \times \mathcal{T} \subset \mathbb{R}^{3N+4} \mapsto \psi(\mathbf{x}, \mathbf{q}, t) \in \mathbb{R}^+ \).
 - \(\int_{\mathcal{D}} \psi(\mathbf{x}, \mathbf{q}, t) \, d\mathbf{q} = 1 \) for all \((\mathbf{x}, t) \in \mathcal{O} \times \mathcal{T} \).

\(^1\)Laso and Öttinger 1993 \(,\) \(^2\)Lozinski and Chauvière 2003
COUPLING OF MICRO- AND MACROSCOPIC SCALE

- Elastic fluid behavior modeled with macroscopic stress tensor

\[\tau_p : (x, t) \in \mathcal{O} \times \mathcal{T} \mapsto \tau_p(x, t) \in \mathbb{R}^{3 \times 3}. \]
COUPLING OF MICRO- AND MACROSCOPIC SCALE

- Elastic fluid behavior modeled with macroscopic stress tensor $\mathbf{\tau}_p : (\mathbf{x}, t) \in \mathcal{O} \times \mathcal{T} \mapsto \mathbf{\tau}_p(\mathbf{x}, t) \in \mathbb{R}^{3 \times 3}$.

- Kramers’ relation for stress tensor

$$\mathbf{\tau}_p(\mathbf{x}, t) = \begin{pmatrix} \tau_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \tau_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \tau_{zz} \end{pmatrix}(\mathbf{x}, t) = C \sum_{i=1}^{N} \left(\mathbb{E} [\mathbf{Q}_i(\mathbf{x}, t) \otimes \mathbf{F}(\mathbf{Q}_i(\mathbf{x}, t))] - \mathbf{Id} \right)$$

- Expectation $\mathbb{E} [\cdot] = \int_{\mathcal{D}} \cdot \psi(\mathbf{x}, \mathbf{q}, t) \, d\mathbf{q}$ in configuration space \mathcal{D}.
- Spring force $\mathbf{F} : \mathcal{D}_i \subset \mathbb{R}^3 \to \mathbb{R}^3$.

1Kramers 1944
COUPLING OF MICRO- AND MACROSCOPIC SCALE

- Elastic fluid behavior modeled with macroscopic stress tensor
 \(\tau_p : (x, t) \in \mathcal{O} \times \mathcal{T} \mapsto \tau_p(x, t) \in \mathbb{R}^{3 \times 3} \).

- Kramers'\(^1\) relation for stress tensor
 \[
 \tau_p(x, t) = \begin{pmatrix}
 \tau_{xx} & \tau_{xy} & \tau_{xz} \\
 \tau_{yx} & \tau_{yy} & \tau_{yz} \\
 \tau_{zx} & \tau_{zy} & \tau_{zz}
 \end{pmatrix} (x, t) = C \sum_{i=1}^{N} \left(\mathbb{E} \left[Q_i(x, t) \otimes F(Q_i(x, t)) \right] - \text{Id} \right)
 \]

- expectation \(\mathbb{E} [\cdot] = \int_D \cdot \psi(x, q, t) \, dq \) in configuration space \(D \).
- spring force \(F : D_i \subset \mathbb{R}^3 \to \mathbb{R}^3 \).

- Various spring force models \(F \) in the literature
 - **Hooke model**: \(F(Q_i) = Q_i \) \hspace{1cm} (linear)
 - **FENE model\(^2\)**: \(F(Q_i) = \frac{Q_i}{1-\|Q_i\|^2/b} \) with \(\|Q_i\|^2 \leq b \in \mathbb{R}^+ \) \hspace{1cm} (nonlinear)
 - **CPAIL model\(^3\)**: \(F(Q_i) = \frac{1-\|Q_i\|^2/(3b)}{1-\|Q_i\|^2/b} Q_i \) with \(\|Q_i\|^2 \leq b \in \mathbb{R}^+ \) \hspace{1cm} (nonlinear)

\(^1\)Kramers 1944, \(^2\)Warner 1972, \(^3\)Cohen 1991
Stochastic multiscale system

\[
\frac{DU(x, t)}{Dt} = -\nabla P(x, t) + \frac{\beta}{Re} \Delta U(x, t) + \frac{1}{Re} \nabla \cdot \tau_p(x, t) \quad (1)
\]

\[
\nabla \cdot U(x, t) = 0 \quad (2)
\]

\[
dQ(x, t) = \left[-U(x, t)\nabla Q(x, t) + (\nabla U(x, t))^T Q(x, t) - \frac{1}{4De} A \cdot F(Q(x, t)) \right] dt + \sigma dW(t) \quad (3)
\]

\[
\tau_p(x, t) = C \sum_{i=1}^{N} (\mathbb{E}[Q_i(x, t) \otimes F(Q_i(x, t))] - \text{Id}) . \quad (4)
\]

for the unknown random fields \(U, P, Q, \tau_p \),
dimensionless parameters \(De, Re, \beta, \sigma \in \mathbb{R}^+ \)
+ initial and boundary conditions.

(1)+(2) Navier-Stokes equations *(macroscopic)*

(3) Stochastic PDE *(microscopic)*

(4) upscaling from micro- to macroscopic scale
Stochastic approach for microscale1,2

- Approximation of random field $Q(x_k, t)$ at discrete points x_k with 3N-dimensional **samples** $Q^{(j)}(x_k, t) \sim \psi(x_k, \cdot, t)$ for $j = 1, \ldots, M_s$.

1Hulsen et al. 1997, 2Laso and Öttinger 1993
STOCHASTIC APPROACH FOR MICROSCALE1,2

- Approximation of random field $Q(x_k, t)$ at discrete points x_k with $3N$-dimensional samples $Q^{(j)}(x_k, t) \sim \psi(x_k, \cdot, t)$ for $j = 1, \ldots, M_s$.
- Monte Carlo approximation of expectation

$$
\tau_p(x_k, t) = C \sum_{i=1}^{N} \left(\mathbb{E}[Q_i(x_k, t) \otimes F_i(Q_i(x_k, t))] - Id \right)
$$

$$
\approx C \sum_{i=1}^{N} \left(\frac{1}{M_s} \sum_{j=1}^{M_s} Q_i^{(j)}(x_k, t) \otimes F_i(Q_i^{(j)}(x_k, t)) - Id \right).
$$

1Hulsen et al. 1997, 2Laso and Öttinger 1993
Stochastic Approach for Microscale\(^1,2\)

- Approximation of random field \(Q(x_k, t)\) at discrete points \(x_k\) with 3\(N\)-dimensional samples \(Q^{(j)}(x_k, t) \sim \psi(x_k, \cdot, t)\) for \(j = 1, \ldots, M_s\).

- Monte Carlo approximation of expectation

\[
\tau_p(x_k, t) = C \sum_{i=1}^{N} \left(\mathbb{E}[Q_i(x_k, t) \otimes F_i(Q_i(x_k, t))] - \text{Id} \right)
\]

\[
\approx C \sum_{i=1}^{N} \left(\frac{1}{M_s} \sum_{j=1}^{M_s} Q^{(j)}_i(x_k, t) \otimes F_i(Q^{(j)}_i(x_k, t)) - \text{Id} \right).
\]

- Variance error in \(\tau_p\) is of order \(O(M_s^{-1/2})\).

\(^1\) Hulsen et al. 1997, \(^2\) Laso and Öttinger 1993
Stochastic Approach for Microscale1,2

- Approximation of random field \(Q(x_k, t) \) at discrete points \(x_k \) with 3\(N\)-dimensional **samples** \(Q^{(j)}(x_k, t) \sim \psi(x_k, \cdot, t) \) for \(j = 1, \ldots, M_s \).
- Monte Carlo approximation of expectation

\[
\tau_p(x_k, t) = C \sum_{i=1}^{N} \left(\mathbb{E}[Q_i(x_k, t) \otimes F_i(Q_i(x_k, t))] - \text{Id} \right)
\]

\[
\approx C \sum_{i=1}^{N} \left(\frac{1}{M_s} \sum_{j=1}^{M_s} Q^{(j)}_i(x_k, t) \otimes F_i(Q^{(j)}_i(x_k, t)) - \text{Id} \right).
\]

- **Variance error** in \(\tau_p \) is of order \(\mathcal{O}(M_s^{-1/2}) \).

1Hulsen et al. 1997, 2Laso and Öttinger 1993
Temporal Evolution of Microscopic Scale

- Density ψ only known at $t = 0$ for complex spring models.
- At $t = 0$ create stochastic samples using rejection sampling\(^1\).

\(^1\) von Neumann 1951
TEMPORAL EVOLUTION OF MICROSCOPIC SCALE

- Density ψ only known at $t = 0$ for complex spring models.
- At $t = 0$ create stochastic samples using rejection sampling1.
- For $t > 0$: Semi-implicit Euler-Maruyama scheme with 1. order accuracy in time.

Fokker-Planck approach

stochastic approach

1 von Neumann 1951
Simulation: 3D contraction flow

- Applications: injection moulding, polymer processing, . . .
- Discretization in space with 3D flow solver *NaSt3dGPF*1,2,3 on a staggered grid of size M_g with center x_k.

1Griebel et al. 1998, 2Croce et al. 2009 3For non-profit use: http://wissrech.ins.uni-bonn.de
SIMULATION: 3D contraction flow

- Applications: injection moulding, polymer processing, ...
- Discretization in space with 3D flow solver NaSt3dGPF1,2,3 on a staggered grid of size M_g with center x_k.
- Dimensionless characteristic units:

 \begin{align*}
 &\textbf{Reynolds number:} \quad Re = \frac{2L \rho U}{\eta(\dot{\gamma})}, \\
 &\textbf{Deborah number:} \quad De = \frac{\lambda U}{L}
 \end{align*}

 U average velocity, λ relaxation time, $\eta(\dot{\gamma})$ viscosity, $\dot{\gamma}$ shear rate, L characteristic length

1Griebel et al. 1998, 2Croce et al. 2009 3For non-profit use: http://wissrech.ins.uni-bonn.de
Shear-thinning fluid in 4:1 contraction

- Experimental measurements:
 - fluid: Glycerol + water + PAA (600ppm)
 - relaxation time: $\lambda = 32s$
 - experimental Deborah numbers: $De = 1, \ldots, 200$

Figure: Visualization of contraction flow\(^1\) with $Re = 2.37$, $De = 174$

\(^1\) Sousa, Coelho, Oliveira and Alves 2011
Shear-thinning fluid in 4 : 1 contraction

- Experimental measurements:\(^1\)
 - fluid: Glycerol + water + PAA (600ppm)
 - relaxation time: \(\lambda = 32\) s
 - experimental Deborah numbers: \(De = 1, \ldots, 200\)
- For high Deborah number flows:
 - large corner vortices occur
 - streamline divergence
 - inverted streamline rotation
- Macroscopic approaches often suffer from numerical instabilities\(^2,^3\).

Figure: Visualization of contraction flow\(^1\) with \(Re = 2.37, De = 174\)

\(^1\) Sousa, Coelho, Oliveira and Alves 2011, \(^2\) Keunings 1986, \(^3\) Mangoubi et al. 2009
3D SIMULATION RESULTS

- 8 multiscale simulations.

<table>
<thead>
<tr>
<th>Simulation parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deborah number De</td>
<td>24.1, 108, 157</td>
</tr>
<tr>
<td>spring model FENE chain</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>spring segments N</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>resolution M_g</td>
<td>$380 \times 64 \times 64$</td>
</tr>
<tr>
<td>samples per cell M_s</td>
<td>1200</td>
</tr>
</tbody>
</table>

1 partial results in Griebel and R. 2014
3D SIMULATION RESULTS

- 8 multiscale simulations.
- All elastic effects reproduced in simulation.
- No stability issues occurred.

<table>
<thead>
<tr>
<th>Simulation parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deborah number De</td>
<td>24.1, 108, 157</td>
</tr>
<tr>
<td>spring model FENE chain</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>spring segments N</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>resolution M_g</td>
<td>$380 \times 64 \times 64$</td>
</tr>
<tr>
<td>samples per cell M_s</td>
<td>1200</td>
</tr>
</tbody>
</table>

FIGURE: Simulation of 5-segment chain with $De = 157$.

1 partial results in Griebel and R. 2014
3D SIMULATION RESULTS

- 8 multiscale simulations.
- All elastic effects reproduced in simulation.
- No stability issues occurred.

Simulation parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deborah number De</td>
<td>24.1, 108, 157</td>
</tr>
<tr>
<td>Spring model FENE chain</td>
<td></td>
</tr>
<tr>
<td>Spring segments N</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>Resolution M_g</td>
<td>$380 \times 64 \times 64$</td>
</tr>
<tr>
<td>Samples per cell M_s</td>
<td>1200</td>
</tr>
</tbody>
</table>

Figure: Simulation of 5-segment chain with $De = 157$.

1 partial results in Griebel and R. 2014
COMPARISON OF EXPERIMENT AND SIMULATION

- **Velocity profiles** compared on the channel’s centerline (a).
- **Inverted 3D streamline rotation** compared to Newtonian flow (b+c).
- Simulation results correspond with experimental measurements.

(a) velocity profile $De=24$

(b) streamlines $De=1.0$

(c) streamlines $De=157$
Complexity of multiscale simulations

Clusters for multiscale simulations

<table>
<thead>
<tr>
<th></th>
<th>Atacama</th>
<th>JUROPA</th>
</tr>
</thead>
<tbody>
<tr>
<td># cores</td>
<td>1,248 CPUs</td>
<td>17,664 CPUs</td>
</tr>
<tr>
<td>memory</td>
<td>4,992 GB</td>
<td>52,992 GB</td>
</tr>
<tr>
<td>Linpack</td>
<td>≈ 21 TFlops/s</td>
<td>207 TFlops/s</td>
</tr>
<tr>
<td>installation</td>
<td>Mar 2014</td>
<td>access: 11/2013 - 10/2014</td>
</tr>
</tbody>
</table>

Institute for Numerical Simulation, University of Bonn
Jülich Supercomputing Centre, Jülich Research Centre
Complexity of multiscale simulations

- M_g grid cells in space,
- M_s samples per grid cell,
- spring model with N segments.
Complexity of multiscale simulations

- \(M_g \) grid cells in space,
- \(M_s \) samples per grid cell,
- Spring model with \(N \) segments.

<table>
<thead>
<tr>
<th>Complexity of stochastic microscale</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>spatial grid (M_g)</td>
<td>380 (\times) 64 (\times) 64</td>
</tr>
<tr>
<td>samples per cell (M_s)</td>
<td>1200</td>
</tr>
<tr>
<td>total samples</td>
<td>(1.87 \cdot 10^9)</td>
</tr>
<tr>
<td>spring segments (N)</td>
<td>5</td>
</tr>
<tr>
<td>sample dimensionality</td>
<td>15-dim</td>
</tr>
<tr>
<td>storage</td>
<td>208 GB</td>
</tr>
<tr>
<td>computing time (256 CPUs)</td>
<td>7-8 weeks</td>
</tr>
</tbody>
</table>
Complexity of multiscale simulations

- M_g grid cells in space,
- M_s samples per grid cell,
- Spring model with N segments.

<table>
<thead>
<tr>
<th>Complexity of stochastic microscale</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>spatial grid M_g</td>
<td>$380 \times 64 \times 64$</td>
</tr>
<tr>
<td>samples per cell M_s</td>
<td>1200</td>
</tr>
<tr>
<td>total samples</td>
<td>$1.87 \cdot 10^9$</td>
</tr>
<tr>
<td>spring segments N</td>
<td>5</td>
</tr>
<tr>
<td>sample dimensionality</td>
<td>15-dim</td>
</tr>
<tr>
<td>storage</td>
<td>208 GB</td>
</tr>
<tr>
<td>computing time (256 CPUs)</td>
<td>7-8 weeks</td>
</tr>
</tbody>
</table>

Solution approach

1. Parallelization
2. Model reduction:
 - proper generalized decomposition (PGD)
 - sparse grids

1Chinesta, Ammar, Leygue and Keunings 2011, 2Delaunay, Lozinski and Owens 2007
Sparse grid combination technique

- Approximation of full grid solution \(u_l \in V_l \) as a combination of coarse full grid solution spaces \(u_m \in V_m \).
- Multi-indices \(m, l \in \mathbb{N}^d \) denote discretization accuracy.

Figure: Combination technique (left), sparse grid (center) and full grid (right).

\(^{1}\) Griebel, Schneider, Zenger 1992, \(^{2}\) R. and Griebel, submitted to Appl Math & Comput
Sparse grid combination technique

- Approximation of full grid solution \(u_l \in V_l \) as a combination of coarse full grid solution spaces \(u_m \in V_m \).
- Multi-indices \(m, l \in \mathbb{N}^d \) denote discretization accuracy.
- Combination technique is intrinsically parallel.
- Existing multiscale solver can be reused.
- **Numerical result:** Computational effort reduced by one order of magnitude in shear and extensional flows.

Figure: Combination technique (left), sparse grid (center) and full grid (right).

Summary

1. Simulation of 3D contraction flow with multiscale model:
 - Results compared with experimental measurements from the literature.
 - Experimental phenomena could be reproduced.

Thank you for your attention!
Summary

1. Simulation of 3D contraction flow with multiscale model:
 - Results compared with experimental measurements from the literature.
 - Experimental phenomena could be reproduced.

2. Reduction of enormous computing time with (twofold parallelism)
 - parallelization (Atacama 1248 CPUs).
 - sparse grid combination technique.

Thank you for your attention!
Summary

1. Simulation of 3D contraction flow with multiscale model:
 - Results compared with experimental measurements from the literature.
 - Experimental phenomena could be reproduced.

2. Reduction of enormous computing time with (twofold parallelism)
 - parallelization (Atacama 1248 CPUs).
 - sparse grid combination technique.

Thank you for your attention!
C. Le Bris, T. Lelièvre.
Multiscale modelling of complex fluids: a mathematical initiation
Multiscale Modeling and Simulation in Science, 49–137, 2009

M. Laso, H. Öttinger.
Calculation of viscoelastic flow using molecular models
J Non-Newton Fluid Mech, 47:1–20, 1993

A. Lozinski, C. Chauvière.
A fast solver for Fokker–Planck equation applied to viscoelastic flows calculations

H. Warner.
Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells

A. Cohen.
A Padé approximant to the inverse Langevin function

A. Chorin
Numerical solution of the Navier-Stokes equations

M. Hulsen, A. Van Heel, B. Van Den Brule
Simulation of viscoelastic flows using Brownian configuration fields
8. J. von Neumann
 Various techniques used in connection with random digits. Monte Carlo methods
 Nat Bur Stand, 12:36–38, 1951

 Numerical Simulation in Fluid Dynamics, a Practical Introduction
 SIAM, Philadelphia, 1998

10. R. Croce, M. Griebel, M.A. Schweitzer
 Numerical simulation of bubble and droplet-deformation by a level set approach
 with surface tension in three dimensions

11. P. Sousa, P. Celho, M. Oliveira, M. Alves
 Effect of the contraction ratio upon viscoelastic fluid flow in three-dimensional
 square–square contractions

12. R. Keunings
 On the high Weissenberg number problem

13. C. Mangoubi, M. Hulsen, R. Kupferman
 Numerical stability of the method of Brownian configuration fields

14. M. Griebel, A. Rüttgers
 Multiscale simulations of 3D viscoelastic flows in a square-square contraction
15. F. Chinesta, A. Ammar, A. Leygue, R. Keunings
An overview of the proper generalized decomposition with applications in computational rheology

16. P. Delaunay, A. Lozinski, R. Owens
Sparse tensor-product Fokker-Planck-based methods for nonlinear bead-spring chain models of dilute polymer solutions

17. M. Griebel, M. Schneider, C. Zenger
A combination technique for the solution of sparse grid problems
Iterative Meth Lin Alg, 263–281, 1992

18. A. Rüttgers, M. Griebel
Multiscale simulation of polymeric fluids using the sparse grid combination technique submitted to *Appl Math & Comput*