Innovative Kunststoffanwendungen für ein kleines Stadtbuskonzept

VDI-Fachkonferenz "Kunststoffe in Nutzfahrzeugen 2017" 29. / 30. März 2017, Mannheim

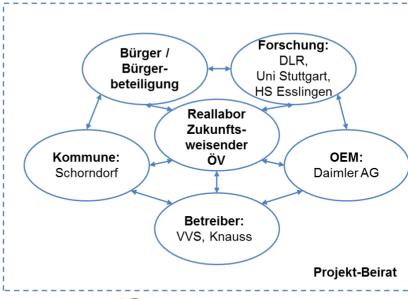
Kopp, Ge. (DLR FK)
Müller, A. (HS Esslingen)
Deißer, O. (DLR FK)

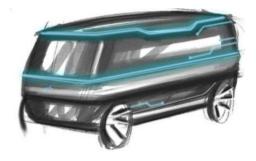
Beyer, S. (HS Esslingen)

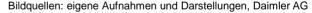
Projekt Reallabor Schorndorf

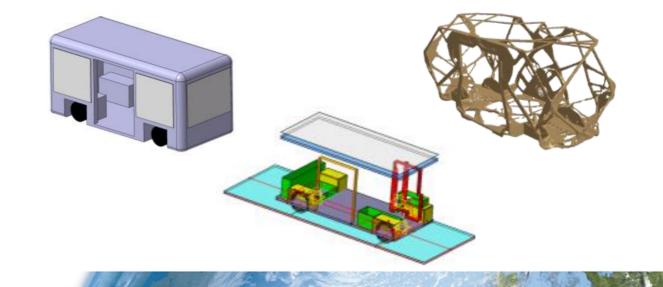
Zukunftsweisender ÖV – Bürgerorientierte Optimierung der Leistungsfähigkeit, Effizienz und Attraktivität im Nahverkehr

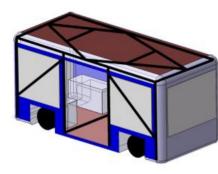
- Idee eines innovativen Konzepts zur Bedienung im ÖPNV
- Konzeption als haltestellenloses Quartiersbussystem
- Umsetzung der Ideen und Ansätze als Pilot in Realumgebung
- · Gefördert vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg




Projekt Reallabor Schorndorf - Ausgangssituation


- Derzeit wird der Busverkehr in Schorndorf mit großen Omnibussen realisiert (>30 Sitzpl.)
- Schwache Auslastung der Busse außerhalb der Stoßzeiten
- Im Rahmen des Reallabors wird der Einsatz kleinerer Bus-Konzepte erprobt
- Aus den Anforderungen und Erfahrungen aus dem Projekt wird ein neues, innovatives Fahrzeugkonzept für den Einsatz in dem neuen Bedienkonzept entwickelt.
- Neben der digitalen Entwicklung wird ein Mock-Up im Maßstab 1:5 aufgebaut





Vorgehensweise Fahrzeugkonzeption

- 1. Anforderungsanalyse aus Kunden / Busnutzer, Betreiber, Bedienkonzept, Stadt / Infrastruktur, Gesellschaft / Trends, Gesetzgebung / Umwelt, Fahrzeugtechnik / Innovationen
- **2. Definition** der funktionalen und technischen **Anforderungen** an das **Gesamtkonzept** (z.B. Sitzplatzanzahl, Barrierefreiheit, ...)
- 3. Ableitung des Fahrzeugkonzepts, der Fahrzeugarchitektur und des Packages (Maßkonzept)
- 4. Analyse der optimalen Strukturlastpfade mittels Topologieoptimierung
- 5. Bauweisenkonzeption, Simulation und Dimensionierung der Fahrzeugstruktur

Sitzplätze	< 10	10 - 15	>15
Niederflur / Fahrgastraum	Gegeben	Nicht gegeben	
Barrierefreiheit / rollstuhlgerecht	Gegeben	Nicht gegeben	
Antrieb	Elektrisch	Hybrid	Verbrennungs- motorisch
Wifi/WLan	gegeben	Nicht gegeben	

Zielsetzung Konzept und Karosseriebauweise

Karosserie:

 Bauweisen aktueller Fahrzeuge sehr unterschiedlich (auch abhängig von Einsatz, Modularisierungsvarianten und Stückzahlen)

(Ford Transit)

(Renault Espace)

Schalenbauweise, ggf. kombiniert mit Profilen, in Stahl, Alu, MMD, ...

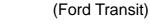
(Daimler Sprinter)

Fahrgestell / Leiterrahmen mit Aufbau

(Daimler AG)

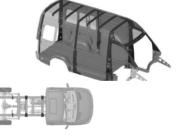
Rahmenbauweise (Edelstahl, Alu) mit Schubfeldern (Stahl, Alu, Kunststoff, ...)

Bildquellen: ARL2016, Buechner2013, Geutling2015, Renault2015a



Zielsetzung Konzept und Karosseriebauweise

Karosserie:



(Renault Espace)

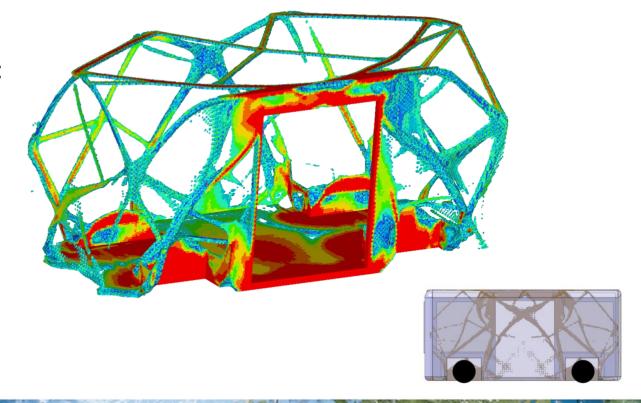
Schalenbauweise, ggf. kombiniert mit Profilen, in Stahl, Alu, MMD, ...

(Daimler Sprinter)

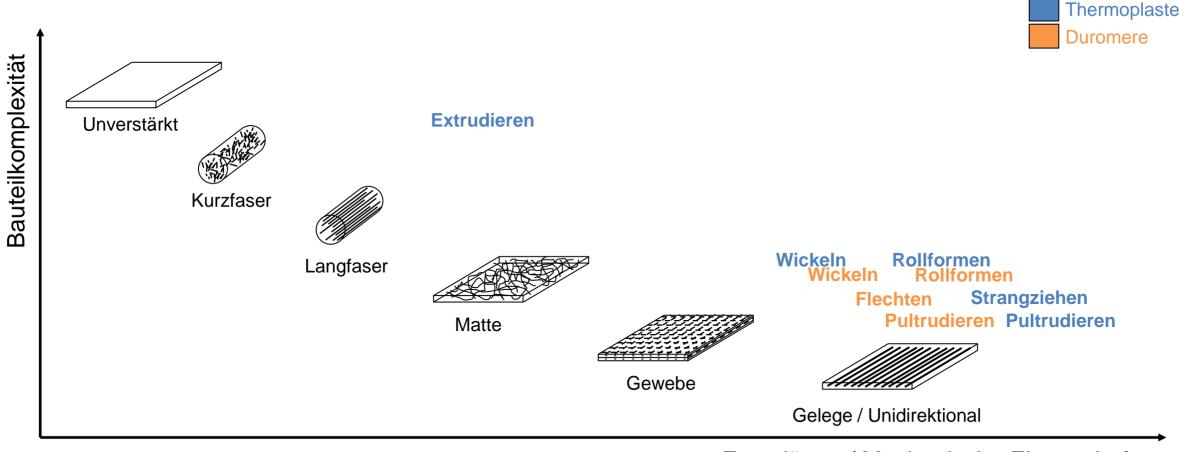
Fahrgestell / Leiterrahmen mit Aufbau

(Daimler AG)

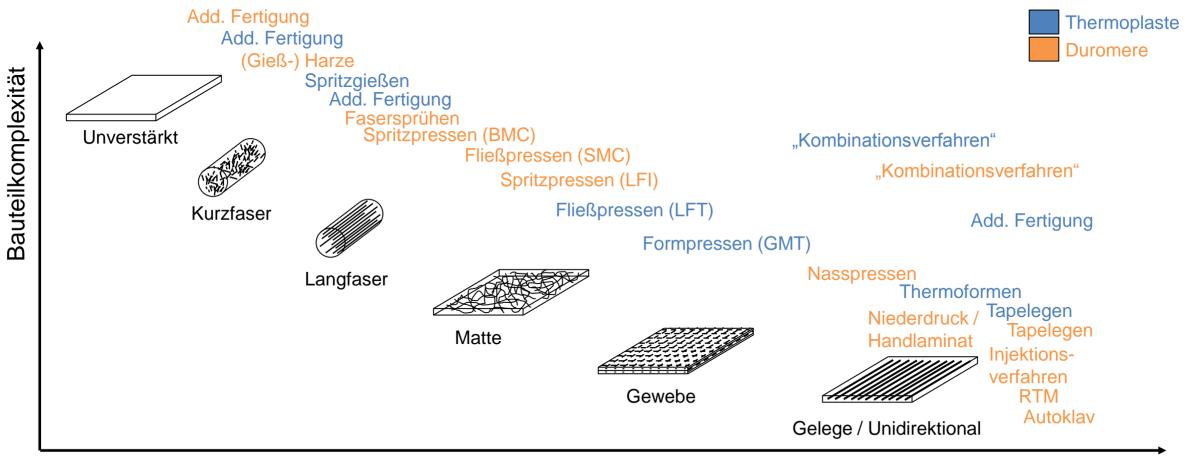
Rahmenbauweise (Edelstahl, Alu) mit Schubfeldern (Stahl, Alu, Kunststoff, ...)


Bildquellen: ARL2016, Buechner2013, Geutling2015, Renault2015a

Fahrzeugkonzept, Fahrzeugarchitektur und Strukturoptimierung


- Analyse von unterschiedlichen Anordnungen der Hauptkomponenten (Antriebsstrang, Speicher, Fahrwerk, Klimaanlage, Interieur, ...)
- Ableitung von Lastpfaden in der Struktur, abhängig von Komponentenanordnung und Package

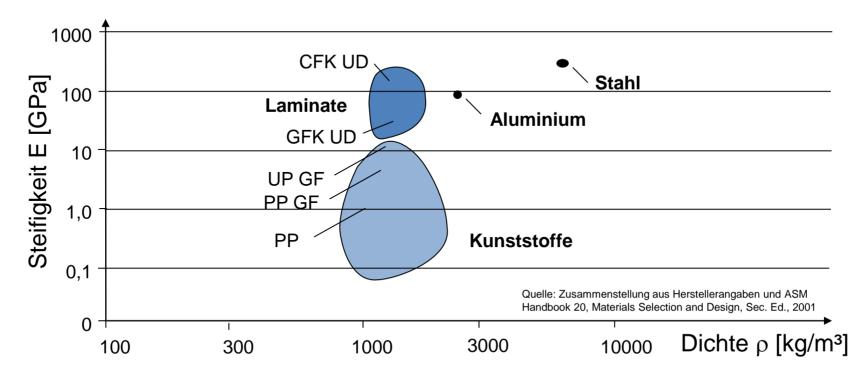
- In der Topologieoptimierung berücksichtigte Lasten:
 - Flächenlast Bodenstruktur
 - Torsionsmoment / Torsionssteifigkeit
 - Lokale Last im Einstiegsbereich


Auswahlvarianten für faserverstärkten Kunststoffen für "profilartige Bauteile" (Auszug)

Auswahlvarianten für faserverstärkten Kunststoffen für "flächige, komplexe Bauteile" (Auszug)

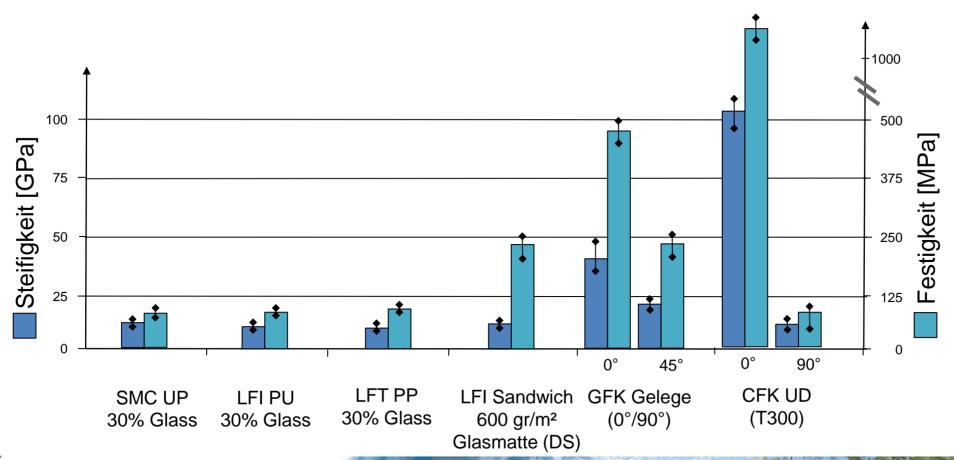
Faserlänge / Mechanische Eigenschaften

Bauweisenkonzeption basierend auf Strukturoptimierungsergebnissen und möglichen Fertigungsverfahren


• Ableitung von Konzepten für möglichen Rohbauweisen

	Profil - Metalle	Profil - FVK	Kurzf. Kunst- stoff	Langf. Kunst- stoff	FVK Gewebe / Gelege	Sand- wich Komb.	
Rahmenstruktur							
Dachstruktur					Q		
Boden							
Seitenwand, Front, Heck			(
	● FVK	-Profil-Sandw	ichkonzept				
	Metall-Profil-Langfaserkonzept 1 (nicht mittragend und mittragend)						
	Metall-Profil-Langfaserkonzept 2						renwand,
	Metall-Profil-FVK-Konzept					Front,	nt, Heck / \ Boden Dachstrul
1	Meta	all-Profil-Sand	wichkonzept				

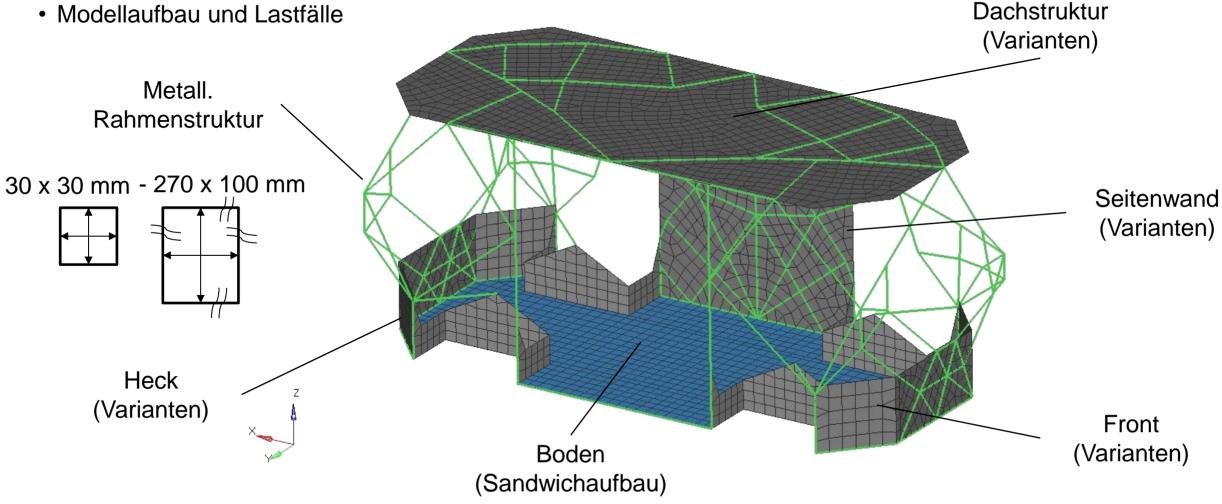
Bauweisenkonzeption und Auswahl Profilstrukturen


 Edelstahl- oder aluminiumintensive Rahmenstruktur auf Grund der Bauraumbeschränkungen ("absolute Steifigkeit relevant"), der Skalierbarkeit / Modularisierbarkeit, der Korrosionsbeständigkeit, der Krafteinleitungspunkte (z.B. im Fahrwerks- und Türbereich) und der einfachen Verbindungstechnik (ohne Knoten)

Bauweisenkonzeption und Auswahl flächiger Strukturen (Exterior) Analyse von Materialeigenschaften

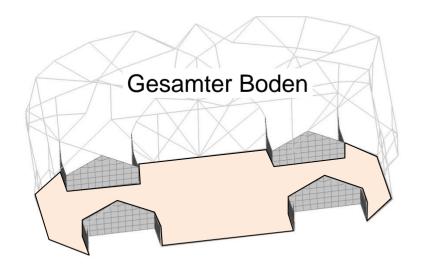
• Zugeigenschaften unterschiedlicher Materialien

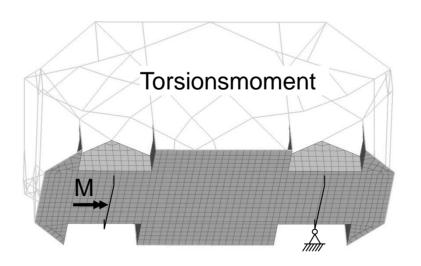
Quelle: Zusammenstellung aus eigenen Messungen

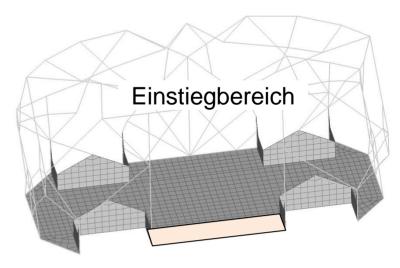


Bauweisenkonzeption und Auswahl flächiger Strukturen (Exterior) Analyse von Materialeigenschaften

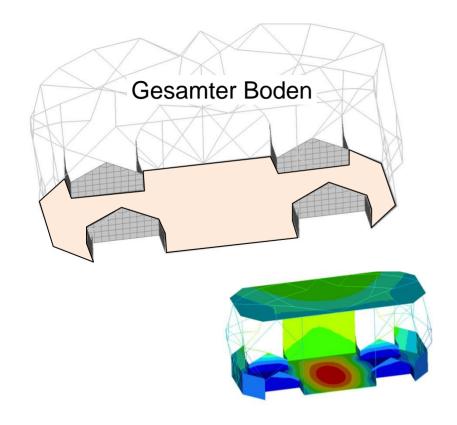
• Zugeigenschaften unterschiedlicher Materialien

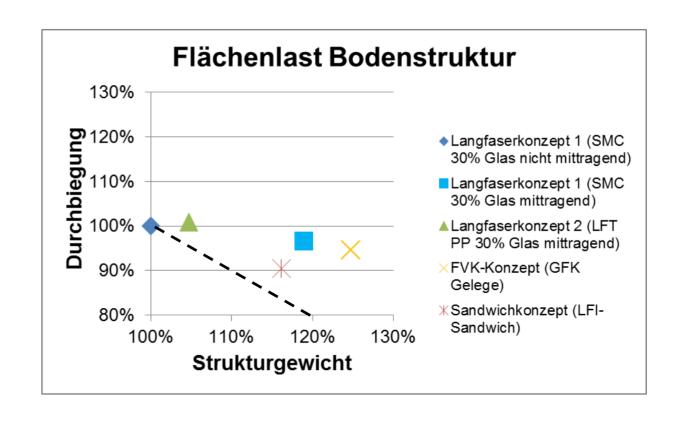

• Welchen Mehrwert bieten mittragende Strukturen (Dach, Seite, Front und Heck) bei Fahrzeugen mit geringem Achsstand und tragender Rahmenstruktur? 1000 100 500 Steifigkeit [GPa] estigkeit [MPa 125 90° LFT PP **CFK UD** SMC UP LFI PU LFI Sandwich/ **GFK Gelege** Quelle: Zusammenstellung aus eigenen Messungen 30% Glass (T300)30% Glass 600 gr/m² (0°/90°) 30% Glass Glasmatte (DS)

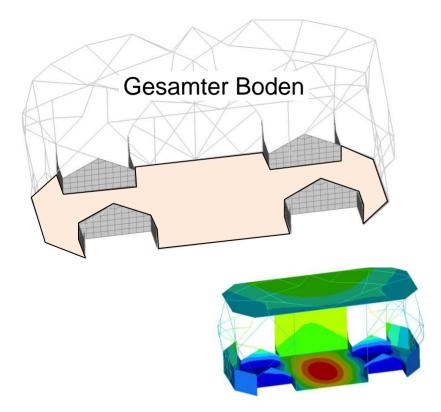


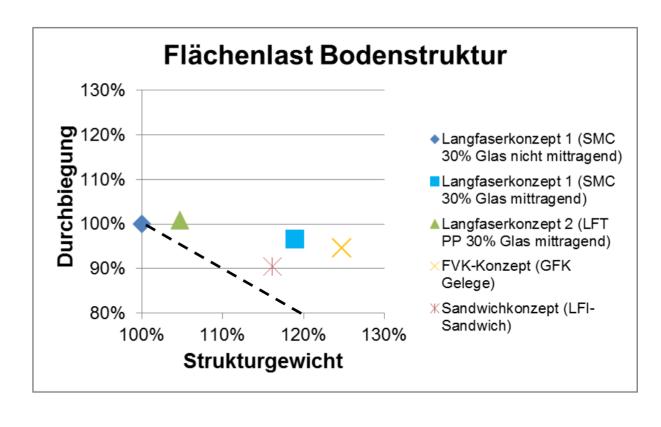


- Modellaufbau und Lastfälle
 - Flächenlast Bodenstruktur
 - Torsionsmoment / Torsionssteifigkeit
 - Lokale Last im Einstiegsbereich

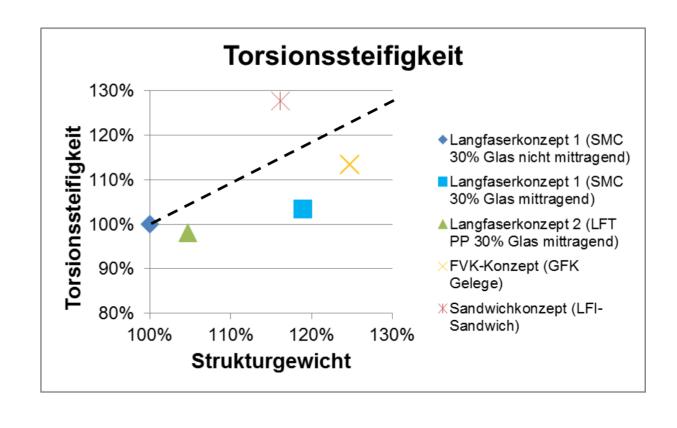




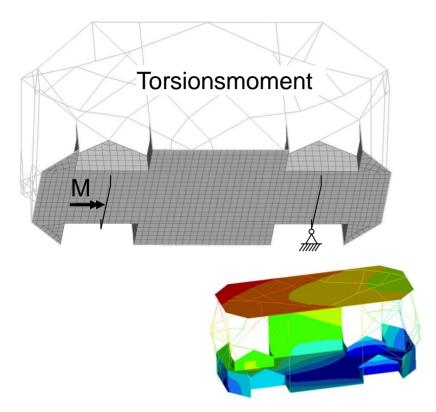

• Simulationsergebnisse

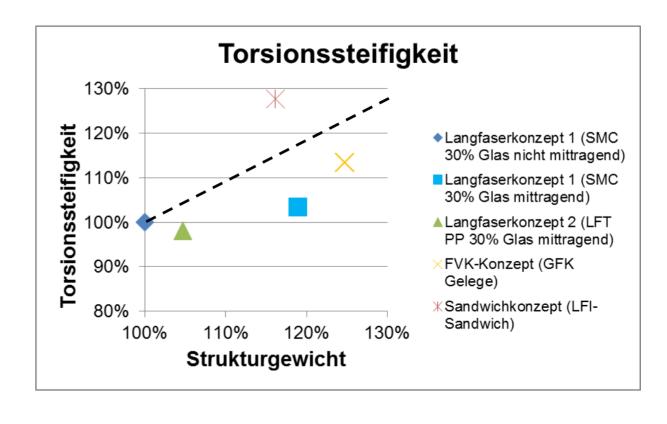



Simulationsergebnisse

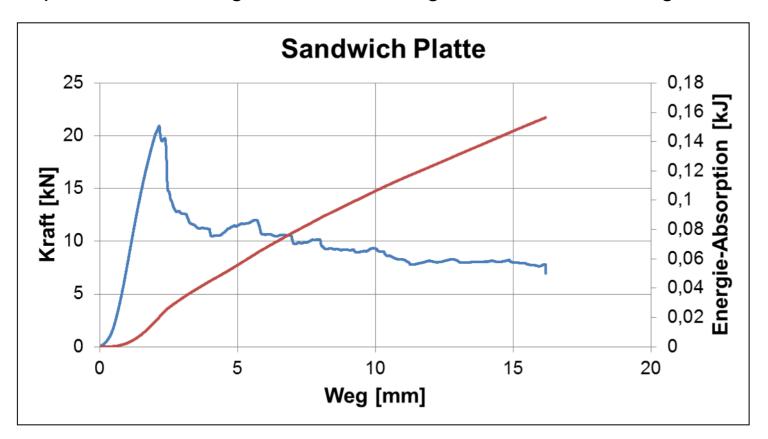


> Kein signifikanten Mehrwert durch mittragende Strukturen (Dach, Seite, Front und Heck) bei geringem Achsstand und großen Glasflächen


• Simulationsergebnisse



Simulationsergebnisse



Mehrwert durch mittragende Strukturen (insb. Dach und Seitenwand) auch bei geringem Achsstand (bei geeigneter Wahl der flächigen Strukturkomponenten)

• Beispiel:

• In-plane Druckversagen durch Crushing einer Sandwichkonfiguration

^{*} Sandwich plate: L/B/H: 200mm x 210mm x 30mm; mass: 170 gr. / app. 4 kg/m²; faces: randomly oriented glass fiber with polyurethane matrix; core: paper based honeycombs

Zusammenfassung und Ausblick

- Ableitung eines Fahrzeug- und Karosseriekonzepts für einen kleinen Stadtbus
- Entwickeltes Rohbaukonzept ist durch Rahmenbauweise mit Schubflächen variantenflexibel
- Systematischer Vergleich von Leichtbaupotentialen ausgewählter Bauweisen zur Erhöhung der Nutzlast und Einhaltung der Achslasten auch für elektrische und hochautomatisierte Fahrzeuge
- Integration von Boden-, Seiten- und Dachstrukturen z.B. bei Torsionsbelastungen; Front- und Heckstrukturen als "selbsttragende Anbauteile"

Zusammenfassung und Ausblick

- Ableitung eines Fahrzeug- und Karosseriekonzepts für einen kleinen Stadtbus
- Entwickeltes Rohbaukonzept ist durch Rahmenbauweise mit Schubflächen variantenflexibel
- Systematischer Vergleich von Leichtbaupotentialen ausgewählter Bauweisen zur Erhöhung der Nutzlast und Einhaltung der Achslasten auch für elektrische und hochautomatisierte Fahrzeuge
- Integration von Boden-, Seiten- und Dachstrukturen z.B. bei Torsionsbelastungen; Front- und Heckstrukturen als "selbsttragende Anbauteile"
- Detailoptimierung einzelner Bauteile und Komponenten in Bezug auf relevante Lastfälle
- Analyse von Funktionsintegrationsmöglichkeiten in die Front-und Heckelemente (z.B. Sensoren, Aktuatoren, Sicherheitskomponenten für Mobilitätsteilnehmer (Fußgänger, Fahrradfahrer, ...))
- Integration z.B. von passiver Wärmeisolation oder Heizungselementen in die flächigen Strukturbauteile
- Alternative Sandwich-/ Schaumstrukturen und Fertigungsverfahren

Vielen Dank

Kontakt:

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institut für Fahrzeugkonzepte

Pfaffenwaldring 38-40 70569 Stuttgart

Dr.-Ing. Gerhard Kopp Telefon 0711 6862-8307 gerhard.kopp@dlr.de www.DLR.de

Quellen

ARI 2016

- N.N.: Aufbaurichtlinien Transporter Neuer Sprinter BM 906, https://bb-portal.mercedes-benz.com/portal/vans.html?&L=de#/katalog_ar2_57?f%5Ba%5D%5BKLASSE%5D=111&title=typeselection&f%5Bu%5D%5BANTRIEB%5D=4X2&f%5Bu%5D%5B_SA2CODE%5D=-&f%5Bc%5D%5BKATALOG_NAME%5D=ar2_57&f%5Ba%5D%5BKATALOG_NAME%5D=ar2_57, Internetabfrage am 06.12.2016
- Buechner2013
 - Büchner, J.; Dogan, G.; Ylmazer, E.: Ford Transit & Tourneo Custom, Automotive Circle Internationl, Euro Car Body 2013, Bad Nauheim, Germany, 2013
- Geutling2015
 - Geutling, P.: Sandwich-Strukturen im Nutzfahrzeugbereich Herausforderungen und Potentiale, 7.
 Landshuter Leichtbau-Colloquium, Monolithische und hybride Strukturen für den Leichtbau, Hochschule Landshut, 25. / 26. Februar 2016
- Renault2015a
 - N.N.: New Renault Espace, Renault, Automotive Circle Internationl, Euro Car Body 2015, Bad Nauheim, Germany, 2015

