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a b s t r a c t 

The unicellular freshwater flagellate Euglena gracilis has a highly developed sensory system. The cells 

use different stimuli such as light and gravity to orient themselves in the surrounding medium to find 

areas for optimal growth. Due to the ability to produce oxygen and consume carbon dioxide, Euglena 

is a suitable candidate for life support systems. Participation in a long-term space experiment would 

allow for the analysis of changes and adaptations to the new environment, and this could bring new 

insights into the mechanism of perception of gravity and the associated signal transduction chain. For 

a molecular analysis of transcription patterns, an automated system is necessary, capable of performing 

all steps from taking a sample, processing it and generating data. One of the developmental steps is to 

find long-term stable reagents and materials and test them for stability at higher-than-recommended 

temperature conditions during extended storage time. We investigated the usability of magnetic beads in 

an Euglena specific lysis buffer after addition of the RNA stabilizer Dithiothreitol over 360 days and the 

lysis buffer with the stabilizer alone over 455 days at the expected storage temperature of 19 °C. We can 

claim that the stability is not impaired at all after an incubation period of over one year. This might be 

an interesting result for researchers who have to work under non-standard lab conditions, as in biological 

or medicinal fieldwork. 

© 2017 Published by Elsevier Ltd on behalf of The Committee on Space Research (COSPAR). 
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1. Introduction 

Euglena gracilis is a motile and photosynthetic unicellular fresh-

water flagellate, able to live either autotrophic or heterotrophic. Eu-

glena gracilis cells can orient themselves in their habitat with re-

spect to different stimuli ( Häder et al., 2003 ). The cells can detect

a wide range of light intensities. At low light levels, the cells swim

towards the light source (positive phototaxis), whereas, in presence

of excessive light, the cells swim away from it (negative photo-

taxis). The light perception is accomplished by a blue light pho-

toreceptor in the photo-sensing organelle called paraxonemal body

( Häder, 1987 ), which is a swelling of the emerged flagellum inside

the reservoir ( Ghetti et al., 1985 ). PAC, a photo-activated adenylyl

cyclase, able to convert adenosine-triphosphate (ATP) into the sec-

ond messenger cyclic adenosine-monophosphate (cAMP), is con-

sidered as the first step in the signal transduction chain of photo-

taxis ( Iseki et al., 2002 ), and is able to affect different downstream

targets ( Ntefidou et al., 2003 ). 
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In absence of light, the cells orient themselves with respect

o the gravity vector. This behavior called gravitaxis is mainly a

hysiological mechanism and was investigated by means of micro-

ravity experiments, such as parabolic flights ( Strauch et al., 2010 ),

EXUS sounding rocket campaigns ( Richter et al., 2001 ), IML-2 on

he Space Shuttle ( Häder et al., 1995 ), and FOTON M-2 ( Häder et

l., 2006 ) and Shenzhou 8 ( Nasir et al., 2014 ), both satellites with

ample return capability. 

A young Euglena cell orients itself by means of positive grav-

taxis, but this alters into negative gravitaxis as soon as they get

lder ( Wayne et al., 1992 ). The cells have no intracellular sta-

oliths for graviperception (other than e.g. Loxodes ( Hemmersbach

nd Häder, 1999 ) or Chara ( Braun, 2002 ), so it is supposed that

he whole cell acts as a statolith, presumed that the surrounding

edium has a lower specific density than the cell. The opening

f mechano-sensitive channels leads to an increase in intracellu-

ar calcium level, which is supposed to activate a calcium binding

rotein called Calmodulin (CaM) ( Daiker et al., 2010 ). This in turn

s used to activate a protein kinase A (PKA) ( Daiker et al., 2011 ),

hich is able to phosphorylate other proteins and thus the flag-

llar beating pattern is altered. The genes involved in gravitaxis

ere found by means of RNA interference studies. However, the
ch (COSPAR). 
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ignal transduction chain underlying gravitaxis is not yet fully un-

erstood. 

In recent years, we exposed Euglena to prolonged periods of mi-

rogravity during the FOTON M-2, Shenzhou 8 and Bion M-1 mis-

ions. In the respective setups, Euglena was not merely the object

f gravi-biological studies; we designed artificial ecosystems with

uglena as producer (or co-producer together with Ceratophyllum ),

sh and/or snails as consumers and allowed for the establishment

f bacterial communities as decomposers in ubiquitous biofilms or

edicated filter compartments. Since Euglena prefers ammonia to

itrate as primary nitrogen source, it does not compete with higher

lants in the same system, but rather provides some detoxification

y reducing the ammonia level. 

As a next step for a long-term experiment in space, the analysis

f molecular and physiological changes in Euglena cells could elu-

idate the mechanisms of graviperception and clarify the role of

omponents of the attached signal transduction chain. We devel-

ped a concept for a so-called space-PCR in order to monitor ex-

ression levels of genes involved in gravitaxis and photosynthesis

long with house-keeping genes. In our approach, magnetic beads

ill trap the messenger RNA (mRNA) of lysed Euglena cells. The

rapping of mRNA is based on the base-pairing between the Oligo-

T sequence, which is bound to the surface of the beads and the

oly-A tail of the mRNA. To accumulate the beads with the an-

ealed mRNA, a magnet is placed at the side of the silicon tube.

ubsequently, cDNA synthesis is performed directly on the beads.

he expression level of various genes is then detected with mi-

roarrays. 

In an unmanned space mission, certain facts need to be con-

idered: restricted space, long waiting periods between the last

ccess and launch, and environmental conditions. Minimizing the

umber of different reagents by using a common reagent or so-

ution for most purposes will allow for the reduction of the in-

tallation of different tanks and pumps, etc., thereby saving space.

he function of different lysis buffers for cell lysis and extraction

f RNA, beads, and as well as their long-term stability and us-

bility in different conditions needs to be determined. Information

bout the performance of reagents after non-standard storage con-

itions seem to be unknown to the manufacturers and/or regarded

rrelevant. 

Here, the stability analysis of two different mixtures is reported

ver a longer period. The first mixture consists of Euglena spe-

ific lysis buffer (RLA) mixed with the RNA stabilizer Dithiothre-

tol (DTT) and was tested for its ability to keep the RNA stable at

9 °C. The second mixture consists of RLA-lysis buffer, DTT and the

agnetic beads, to evaluate the capability of the magnetic beads to

apture mRNA at different time points with similar concentration

nd quality at 19 °C as well as at 4 °C for control. 

. Materials and methods 

.1. Overview over the experimental procedure 

Finding the optimal beads for this experiment was the first step

n the experimental procedure since the mRNA will not be isolated

n normal Eppendorf tubes but in a silicon tube. Next, different

ysis buffer for the proper lysis of Euglena cells had to be tested.

onsidering the fact that there will be no possibility to centrifuge

ells in space, the optimal buffer-to-cells-ratio had to be found to

et the best results. The manufacturer recommends pelleting cells

efore lysis, which is not possible in this approach. Afterwards RNA

tabilizing additives in the lysis buffer, like β-Mercaptoethanol or

ithiothreithol, were tested. Finally, the optimal incubation time of

ysis buffer, additives and Euglena cells had to be determined to

btain the best results. 
Only after all this steps it was possible to set up the stability

ests. Considering the different effects of the magnetic beads, the

ysis buffer and the additives in the mixture, the stability test #1

as used as a control to see that the lysis buffer is not impaired

y adding the additive at the expected temperature of 19 °C. 

.2. Growth and maintenance of Euglena gracilis 

Euglena was cultured in minimal medium (MM ( Checcucci,

976 )) under continuous white light illumination of 20 W m 

−2 at

8 °C ± 2 °C. Stock cultures of the strain were maintained in mini-

al liquid, as well as agar slants and plates, and propagated twice

efore use. 

.3. Chemicals and reagents 

Two different beads tested for the mRNA isolation included the

ynabeads® Oligo (dT) 25 from Invitrogen (Carlsbad, USA) and the

agJET beads from ThermoScientific (Waltham, USA). The beads

re uniform and paramagnetic polymer particles with Oligo dT se-

uences covalently coupled to the bead surface. 

The three different lysis buffers tested included the RLA buffer

Promega, Madison, USA), RLC and RLT buffer (both Qiagen, Hilden,

ermany). For the stabilization of RNA after lysis, two differ-

nt additives were mixed with the lysis buffer and tested, DL-

ithiothreitol (DTT, ≥ 98 %) and 2-mercaptoethanol (both Sigma-

ldrich, St. Louis, USA). 

.4. Preparation of solutions and their storage 

Stability test mixture #1: 

33 mL of the RLA-lysis buffer was mixed with 660 μL of DTT

nd stored at 19 °C in the dark. The mixtures volume was suffi-

ient for 15 months when measuring triplet samples every second

eek. Degradation of RNA by RNases, which are extremely stable

nd active, must be taken into account when working with RNA.

uring the isolation procedure, intracellular RNases are released

hich have to be rapidly inactivated to obtain high-quality RNA.

TT reduces the disulfide bonds of the RNase and thus destroys

he native conformation required for enzyme functionality. 

Stability test mixture #2: 

12 mL of the RLA-lysis buffer, 240 μL of DTT and 720 μL Dyn-

beads® were mixed. Half of the mixture was stored at 19 °C and

he other half as a control at 4 °C. Both solutions were kept in dark

nd samples were measured in triplets every second month. 

Isolation procedure : 

RNA isolation with RNeasy plant mini kit 

For RNA isolation, 350 μL stability test mixture #1 (22 μL DTT

n 328 μL lysis buffer) was incubated with 5 × 10 5 Euglena gracilis

ells in a volume of 350 μL MM. The RNA was isolated using the

Neasy Plant Mini Kit from Qiagen (Hilden, Germany) and eluted

n 30 μL RNAse free water. The RNA concentration and ratio was

easured using a NanoDrop spectrophotometer (ThermoScientific,

altham, USA). RNA was transcribed into cDNA with the Quanti-

ect Transcription Kit (Qiagen, Hilden, Germany). RNA and cDNA

uality was checked on a 1% agarose gel. cDNA quality was also

ested in a polymerase chain reaction (PCR) with primers for α-

ubulin, a housekeeping gene of Euglena gracilis . 

mRNA isolation with Dynabeads® Oligo (dT) 25 

For mRNA isolation, 350 μL of stability test mixture #2 (the

agnetic beads and the RNA stabilizer mixed with the lysis buffer)

as incubated with 350 μL RNA (10 0 0 ng in total) for different time

eriods at room temperature. The isolation took place in a silicon

ube with the help of a magnet placed on the outside: the mixture

as passed through a silicon tube and the beads accumulated next
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to the magnet on the tube wall. Beads were washed by suspend-

ing them first in 100 μL wash buffer A (10 mM Tris-HCl, pH 7.5,

0.15 M LiCl, 1 mM EDTA, 0.1 % LiDS) and afterwards in wash buffer

B (10 mM Tris-HCl, pH 7.5, 0.15 M LiCl, 1 mM EDTA 10 mM Tris-

HCl, pH 7.5). Aliquots of 50 μL of the beads in wash buffer B were

removed for RNA elution and the other 50 μL for cDNA synthesis

with components of the QuantiTect Reverse Transcription Kit from

Qiagen (Hilden, Germany). 

For RNA elution, the beads were resuspended in 10 μL Tris-HCl,

heated up for 2 min at 77 °C and the free mRNA in the supernatant

was collected and quickly transferred into a fresh tube. The RNA

concentration and ratio was measured using a NanoDrop spec-

trophotometer (Thermo Scientific, Waltham, USA). 

For cDNA synthesis, the beads were washed in 10 μL QuantiTect

5 × RT buffer. Afterwards they were suspended in 10 μL 5 × RT

buffer and 0.5 μL QuantiTect Reverse Transcriptase. Synthesis took

place for 15 min at 42 °C and inactivation of transcriptase was car-

ried out at 95 °C for 3 min. cDNA was used for quantitative analysis

in a qPCR with primers specific for the Euglena gracilis housekeep-

ing gene α-Tubulin. 

2.5. Polymerase chain reaction 

PCR was carried out to check the quality of the transcribed

cDNA and therefore also the quality of the trapped mRNA. α-

ubulin was amplified with specific primers, which resulted in a

180 bp long fragment. The PCR reactions were carried out in 25 μL

volume containing 0.4 mM dNTPs; PCR Buffer: 20 mM Tris-HCl, pH

8.3, 100 mM KCl and 3 mM MgCl 2 ; TaKaRa Taq: 1.25 U (Premix Taq

DNA Polymerase from Clonetech, Mountain View, USA); 20 μM of

each primer and template DNA in a thermal cycler (C10 0 0 Touch,

Bio-Rad, USA.) The PCR profile was as follows: 95 °C for 30 s fol-

lowed by 29 cycles of amplification at 95 °C for 20 s, 58 °C for 20 s,

68 °C for 20 s and with a final extension at 68 °C for 5 min. The PCR

products were analyzed on a 1% agarose gel. 

2.6. Real time PCR analysis 

For real time PCR analysis the 180 bp big fragment of α-Tubulin

was amplified using the QuantiFast SYBR Green PCR Kit from Qia-

gen (Cat.no. 204054). Total RNA was isolated and exactly 1 μg was

transcribed into cDNA. The real time PCR reactions were carried

out in 25 μL volume according to the manufacturer’s recommen-

dations. The PCR profile was as follows: 95 °C for 30 s followed by

40 cycles of amplification at 95 °C for 60 s, 60 °C for 30 s. A stan-

dard curve was used to determine the exact number of α-Tubulin

molecules/μL. 
Fig. 1. Two different magnetic beads were tested in a silicon tube as well as in an Eppen

using NanoDrop spectrophotometer. (B) RNA-Quality was measured using NanoDrop spec
. Results and discussion 

Planning an experiment in molecular biology in space is not

rivial. A number of factors influence the design of the procedures,

ike limited space and energy, and short or no crew time, to name

he most obvious and challenging ones. Usually the conditions for

torage and the actual performing of the analysis for our purposes

reatly differ from the conditions recommended by the manufac-

urers, and they are not particularly eager to provide tests and

onsulting on non-nominal once-in-a-lifetime-experiments, which

nly cost money and have a poor monetary return value. Therefore,

n this study the stability of mRNA isolation reagents over one year

as evaluated to validate our approach on the analysis of molecu-

ar changes in Euglena during a long-term space flight. The major

ifferences from the procedure recommended by the manufacturer

re the storage temperature of 19 °C instead of 4 °C (for energy rea-

ons: cooling is impossible with the given power budget in our

ission), and a combination of washing buffer, DTT and magnetic

eads (for limited space and handling reasons, only one tank could

e used). Initially selection of potential magnetic beads for proper

RNA trapping was carried out. To isolate messenger RNA, mag-

etic beads with a poly-dT tail were used to trap the polyadeny-

ated mRNA specifically. Therefore, two different magnetic beads

ere tested for their ability to bind mRNA from Euglena gracilis .

he beads were tested in normal Eppendorf tubes according to

he manufacturer’s recommendations and in a silicon tube. Data

uggest that the Dynabeads can bind more mRNA from an equal

mount of input than the MagJET beads ( Fig. 1 (A)). Moreover, the

uality of RNA isolated with the Dynabeads was better compared

o MagJET ( Fig. 1 (B)). Good quality RNA should show a value be-

ween 1.8 and 2 for the absorption ratio at 260 and 280 nm. 

Considering that only 1–5% of the total RNA content of cells

s actually mRNA the magnetic poly-dT technologies is of great

enefit since it targets only the mRNA molecules and pulls them

irectly out of solution. Compared to the common RNA isolation

ethods where up to 80% of the RNA yield is ribosomal RNA,

he magnetic beads only isolate the mRNA free of contaminat-

ng ribosomal RNA, tRNA, miRNA, siRNA, non-Poly-A RNA and pre-

rocessed RNA ( Anonymous, 2016 ). 

We found that 22 μL of magnetic beads can bind up to 130 ng

RNA of Euglena gracilis . This is important for planning further

teps in gene expression analysis. There is no guarantee that

n equal amount of magnetic beads will always bind the same

mount of mRNA, but this will not impair the microarray based

xpression detection since several housekeeping genes will be used

or normalization. After selecting the magnetic based bead system,

t was necessary to choose an optimal buffer for the proper lysis

f the Euglena cells before isolating mRNA. Therefore, three differ-
dorf tube as a control. (A) Messenger RNA (mRNA) concentrations were measured 

trophotometer. 
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Fig. 2. (A) 3 different lysis buffer were tested for the mRNA isolation from Euglena gracilis . Buffer RLA, RLC and RLT were tested using different culture-to-buffer ratios. 

Messenger RNA (mRNA) concentrations were measured using NanoDrop spectrophotometer. (B) The two RNA stabilizer β-Mercaptoethanol and Dithiotreithol were tested in 

the RLA-lysis buffer in different culture-to-buffer ratio. Messenger RNA (mRNA) concentrations were measured using NanoDrop spectrophotometer. 
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Fig. 3. RLA-lysis buffer incubation test. Real time PCR analysis of the housekeeping 

gene α-Tubulin. The RLA-lysis buffer was incubated with 15 μL beads and 35.500 

cells, with or without the RNA stabilizer DTT for 60 min, 150 min and 240 min. RNA 

was isolated, cDNA was transcribed and the amount of α-Tubulin was achieved us- 

ing real-time PCR. 

m  
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s  
nt lysis buffer RLA, RLC and RLT were tested at different buffer-

o-culture ratios. Cells were pelleted before lysis due to the man-

facturer’s recommendations and were used as a control. Since it

s not possible to centrifuge cells in the satellite, we had to test

he different buffer-to-culture ratios. Among the three, the RLA-

ysis buffer with the buffer-to-culture ratio of 1:1 was found to be

deal for yielding highest amount of RNA ( Fig. 2 (A)). Further ex-

eriments were then carried out using the RLA-lysis buffer. Next, a

NA stabilizer had to be found, since the incubation time needed

or the proper binding of the magnetic beads with the mRNA is

uite long, and the degradation of mRNA by RNAses is very fast.

he RLA-lysis buffer was then mixed with the two different RNA

tabilizer, DTT or β-Mercaptoethanol. Data indicates a higher RNA

ontent when using DTT as RNA stabilizer with a buffer to cul-

ure ratio of 1:1 compared to β-Mercaptoethanol or without any

dditives ( Fig. 2 (B)). The higher yield in RNA concentration when

sing a buffer to culture ratio of 1:1 than using the cell pellet, ac-

ording to the manufacturer’s recommendations, is an advantage

f the standard protocol. Although the company producing these

agnetic beads claimed that the functionality of the Dynabeads

ould be impaired when using reducing agents like DTT, our re-

ults showed no such effect. 

Finally, the effective incubation time of lysis buffer with the

agnetic beads and Euglena gracilis cells with and without DTT

ad to be found. Therefore, RNA was isolated and same amounts

f cDNA have been transcribed. The housekeeping gene α-Tubulin

as amplified in real time PCR to figure out the highest amount of

olecules per μL of used cDNA ( Fig. 3 ). The long incubation time

f up to 240 min at room temperature with the addition of DTT

eems to receive the highest amount of α-Tubulin molecules com-

ared to the other data. 

After all this important pre-experiments it was finally possi-

le to set up the stability test mixtures. And additionally, the

ong term stability of our different reagents at different temper-

tures was investigated. The RNA isolated with the stability test
ixture #1 and separated on a 1% agarose gel shows that the

NA yield is similar for all triplicates throughout the whole test

 Fig. 4 (1A) and (B)). After RNA isolation, the cDNA was transcribed

nd analyzed in PCR using the α-Tubulin primers, which resulted

n a 180 bp long amplicon as expected. In stability test mixture

1 there is a strong band both at the beginning of the test as

ell as at the end ( Fig. 4 (1C) and (D)). The same α-Tubulin PCR

as performed for stability test mixture #2, where the intensity

f the band is lower at the end of the test than at the begin-

ing ( Fig. 4 (2A) and (B)), but this will be no problem in the end,

ince the gene expression analysis will be done using housekeep-
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Fig. 4. (1) stability test mixture #1: 1% agarose gel of RNA and cDNA quality and quantity, and PCR analysis with α-Tubulin primers for a fragment of 180 bp. (A) RNA 

and cDNA on �t [0]. L1 Gene Ruler Mix (ThermoScientific), L2: RNA of isolation 1, L3: RNA of isolation 2, L4: RNA of isolation 3, L5: cDNA of isolation 1, L6: cDNA of 

isolation 2 and L7: cDNA of isolation 3. (B) RNA and cDNA on �t [455]. Lanes loaded as in (A). (C) PCR analysis with primers for α-Tubulin on �t [0]. L1: Gene Ruler Mix 

(ThermoScientific), L2: PCR product isolation 1, L3: PCR product isolation 2 and L4: PCR product isolation 3. (D) PCR analysis with primers for α-Tubulin on �t [455]. Lanes 

loaded as in (C). (2) Stability test mixture #2: PCR analysis with α-Tubulin primers for a fragment of 180 bp. A) PCR analysis on �t [0]. L1: Gene Ruler Mix (ThermoScientific), 

L2: PCR product isolation 1, L3: PCR product isolation 2 and L4: PCR product isolation 3. (B) PCR analysis on �t [360]. Lanes loaded as in 2 (A). 

Table 1 

Data of each measurement of stability test mixture #1. Given is the date of isolation, the concentration of the isolation in ng/μL and the R value ( = quality 

ratio A260/A280, which should be between 1.8 and 2 for RNA). Mean percentage and standard deviation of the RNA concentration compared to the value at 

the start are also given. 

�t[days] 1. Isolation 2. Isolation 3. Isolation Mean % Percentage Standard deviation 

RNA[ng/μl] R RNA[ng/μl] R RNA[ng/μl] R 

0 39 .3 1 .96 39 .6 1 .99 39 .6 1 .98 39 .50 100 0 .17320508 

14 58 .2 2 .04 53 .4 2 .05 38 1 .98 49 .87 126 10 .5533565 

28 12 1 .75 9 .1 2 .03 12 .4 1 .8 11 .17 28 1 .80092569 

42 34 .4 1 .97 26 2 .1 32 .1 1 .88 30 .83 78 4 .34089085 

56 15 .8 1 .74 13 .4 1 .79 12 .4 1 .88 13 .87 35 1 .74737899 

70 23 .5 2 .07 19 .4 1 .91 16 .3 1 .99 19 .73 50 3 .61155553 

84 27 .4 2 30 .4 1 .98 29 .6 2 .06 29 .13 74 1 .55349069 

98 22 .8 1 .75 23 .4 1 .95 21 .3 1 .91 22 .50 57 1 .08166538 

112 22 .2 1 .86 18 1 .56 16 .5 1 .83 18 .90 48 2 .95465734 

126 19 .5 1 .79 21 1 .76 19 .6 1 .72 20 .03 51 0 .83864971 

140 27 .8 1 .93 21 .3 1 .86 25 1 .87 24 .70 63 3 .26036808 

154 26 .3 1 .85 19 .9 1 .79 21 .5 1 .81 22 .57 57 3 .3306656 

168 31 .7 1 .59 27 .1 1 .72 22 .9 1 .71 27 .23 69 4 .40151489 

183 28 .8 1 .92 30 1 .91 27 .8 1 .87 28 .87 73 1 .10151411 

196 30 1 .81 29 .4 1 .72 25 .8 1 .78 28 .40 72 2 .27156334 

210 37 .7 1 .87 33 .2 1 .88 39 .3 1 .86 36 .73 93 3 .16280466 

224 14 .8 1 .69 15 .2 1 .66 16 .3 1 .73 15 .43 39 0 .77674535 

238 31 .6 1 .95 33 .5 1 .99 32 .9 2 .05 32 .67 83 0 .97125349 

252 17 .5 1 .76 17 .2 1 .77 12 .3 1 .68 15 .67 40 2 .91947484 

266 26 .4 2 30 .6 2 .12 21 1 .93 26 .00 66 4 .81248377 

280 51 .2 2 .06 56 .5 2 .02 53 .5 2 .03 53 .73 136 2 .65769324 

294 44 .8 2 .06 66 .8 1 .87 56 .1 1 .97 55 .90 142 11 .0013636 

308 44 .1 1 .81 46 .3 1 .86 37 .35 1 .71 42 .58 108 4 .66377887 

336 27 .1 2 .03 30 .2 1 .66 32 .3 1 .59 29 .87 76 2 .61597655 

351 27 .5 1 .94 34 .25 1 .67 30 .5 1 .91 30 .75 78 3 .38193731 

364 28 .8 2 .03 37 .6 1 .71 32 .2 1 .89 32 .87 83 4 .43771713 

378 18 .5 1 .96 38 .6 1 .6 29 .7 1 .67 28 .93 73 10 .0719081 

393 33 .5 2 .05 36 2 .06 37 .3 1 .88 35 .60 90 1 .93132079 

406 33 1 .6 24 1 .64 20 .5 1 .86 25 .83 65 6 .44851404 

422 24 2 .01 19 .9 2 .01 20 .6 1 .96 21 .50 54 2 .19317122 

4 4 4 15 .7 1 .99 17 .1 1 .87 20 .4 1 .99 17 .73 45 2 .41315837 

455 27 .7 1 .97 15 .8 1 .89 19 .3 1 .99 20 .93 53 6 .11582646 
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q  

p

ing gens where the difference in cDNA amount will be normalized

with these genes. 

Although there are high differences in the RNA content of sta-

bility test mixture #1 ( Table 1 and Fig. 5 ), the stability of the sam-

ples remained between 50–90% until the end of the test. The graph

shows that there are also higher differences for the RNA content

isolated with stability test mixture #2 ( Table 2 , Fig. 6 ). Tables 1 and

2 show the mean values of the triplicates. In both tests, the R value
s usually well within the limits. Obviously, the RNA concentration

n Table 1 is much higher than in Table 2 ; this is due the fact that

he total RNA was isolated in test #1 using a total RNA Kit, while

n test #2 it is only the mRNA trapped by the magnetic beads. One

ajor advantage using the Dynabeads is that the subsequent cDNA

ynthesis is directly performed on the beads since the Oligo-dT se-

uence cannot only be used to bind the mRNA but also act as a

rimer for the reverse transcriptase. 
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Fig. 5. Stability test mixture #1 of RNA lysis buffer (RLA buffer, Promega) and Dithiotreithol (DTT). Reagents were mixed and stored at room temperature. RNA was isolated 

every 2 weeks and concentration was measured using the NanoDrop spectrophotometer. 

Table 2 

Data given for each measurement of stability test mixture #2. Analysis took place every second month. Given is the date of isolation, the concentration of the isolation in 

ng/μL and the R value ( = quality ratio A260/A280, which should be between 1.8 and 2 for RNA). Mean, percentage and standard deviation of the RNA concentration are 

also given. 3. Isolation on �t [360]: Not enough solution left (200 μL instead 350 μL left). 

�t[days] 1. Isolation 2. Isolation 3. Isolation Mean 4 °C Mean 19 °C % 4 °C % 19 °C Standard deviation 

RNA [ng/μl] R RNA [ng/μl] R RNA [ng/μl] R 

0 3 .55 1 .95 4 .4 1 .85 3 .1 1 .93 3 .7 3 .7 100 .00 100 .00 0 .66 

59 2 .1 1 .62 3 .1 1 .72 3 .1 1 .71 2 .8 75 .18 0 .58 

59 1 .6 1 .62 3 .1 1 .76 3 .1 1 .67 2 .6 70 .59 0 .87 

122 4 .3 1 .75 7 .6 1 .97 7 .4 1 .95 6 .4 174 .82 1 .85 

122 4 .3 2 .03 3 .5 2 .41 3 .8 1 .87 3 .9 104 .98 0 .40 

178 3 .7 1 .79 4 .1 1 .85 3 .1 1 .88 3 .6 98 .73 0 .50 

178 4 .3 1 .89 2 .9 1 .87 4 .4 1 .9 3 .9 104 .98 0 .84 

241 6 .1 1 .93 5 .3 1 .91 3 1 .85 4 .8 130 .43 1 .61 

241 8 .6 1 .94 8 .2 1 .95 6 .7 1 .94 7 .8 212 .67 1 .00 

290 3 .5 1 .71 3 .9 1 .97 4 1 .82 3 .8 103 .26 0 .26 

290 4 .1 1 .74 3 .3 1 .72 3 .4 1 .74 3 .6 97 .74 0 .44 

360 3 .9 1 .78 3 .9 1 .76 4 .45 1 .89 4 .1 110 .96 0 .32 

360 2 .4 1 .72 2 .9 1 .87 1 .8 1 .78 2 .7 71 .95 0 .55 

Fig. 6. Stability test mixture #2 of RNA lysis buffer (RLA buffer, Promega) with 

Dithiotreithol (DTT) and Dynabeads® Oligo (dT) 25 magnetic beads (Invitrogen). 

Reagents were mixed and stored at 19 °C (expected temperature) and at 4 °C as rec- 

ommended by the manufacturer as a control. Messenger RNA (mRNA) was isolated 

every 2 month from a total RNA sample and concentration was measured using the 

NanoDrop spectrophotometer. 
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. Conclusion 

It can be claimed that the Dynabeads isolate more mRNA than

he MagJet. Furthermore, the lysis of Euglena gracilis with RLA
uffer worked best with the addition of DTT and a culture to buffer

atio of 1:1. The long incubation of the lysis buffer and the Eu-

lena cells for up to 240 min resulted in the highest yield of RNA.

he long lasting stability of both the incubation of RLA-lysis buffer

ith the RNA stabilizer DTT (stability test mixture #1) as well as

he Dynabeads in the RLA-lysis buffer with DTT (stability test mix-

ure #2) was verified. Differences in the RNA concentration of the

riplicates of the stability tests will be compensated in the experi-

ent by proper controls. 
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