

American Institute of Aeronautics and Astronautics

1

Automatic Configuration Management:

Autodiscovery of Configuration Items and Automatic

Configuration Verification

Nadine Perera
1

German Aerospace Center (DLR), 82234 Wessling-Oberpfaffenhofen, Germany

Performing Configuration Management (CM) on systems such as an entire space mission

ground system is essential. CM verifies that a system performs as intended, and is identified

and documented in sufficient detail to support its projected life cycle. However, manual

Configuration Management and Change Management on all the hardware, software, and

documentation items comprising a complete ground system is time consuming and error-

prone. An automated configuration discovery approach, where hardware systems are

scanned for software and the results reported into a CM database, limits human error and

saves a lot of time by reducing the need for manual configuration management. This paper

describes the approach taken at GSOC during the preparation of two geostationary

communication satellite missions and low earth orbit satellite missions to automate the task

of hardware and software CM. This makes CM more efficient and transparent, and enables

the Configuration Manager to track the configuration in the CM database during the full

cycle, from configuration deployment to configuration verification.

Nomenclature

CI = Configuration Item

CIDL = Configuration Item Data List

CIL = Critical Item Data List

CM = Configuration Management

CMS = Configuration Management System

ECR = Engineering Change Request

GITS = GSOC Issue Tracking System

GSOC = German Space Operations Center

IP = Internet Protocol

LAN = Local Area Network

OCS = Open Computer and Software (Inventory Next Generation)

OPS = Operations

RAM = Random Access Memory

RPM = Red Hat Package Manager

SCOS = Satellite Control and Operation System

SLES = SUSE Linux Enterprise Server

I. Introduction

onfiguration management is a process closely linked to change management, which is also called configuration

control. Any system that needs to be controlled closely and run with good reliability, maintainability and

performance benefits greatly from configuration management, i.e., the management of system information and

system changes. Configuration management can extend life, reduce cost, reduce risk, and even correct defects. It

should be applied over the life cycle of a system in order to provide visibility and control of its performance as well

1 Configuration Manager, Quality, Configuration and Security Management, GSOC, Münchner Straße 20,

82234 Wessling-Oberpfaffenhofen, Germany, Nadine.Perera@dlr.de

C

American Institute of Aeronautics and Astronautics

2

Figure 1: Configuration Management Activity Cycle

as its functional and physical attributes. Configuration management verifies that a system performs as intended, and

is identified and documented in sufficient detail to support its projected life cycle. In order to effectively control

system change, it is important to model the functional relationships between system parts, components, and

subsystems. This facilitates the systematical consideration of changes with the goal of minimizing resulting errors.

Change control means that system changes are proposed, evaluated, implemented and verified using a standardized

and systematic approach, ensuring consistency and minimizing the risk of changing parts of the system

inadvertently, because the system was not considered in its entirety.

In the case of non-conformances, configuration management and change control support fault analysis, as errors

occur in a specific system configuration or may be introduced by changes (or the lack thereof). Configuration

baselines are recorded for system validations and system tests, such that one knows how the system undergoing the

test was exactly configured at that point in time. For the possibility of disaster recovery, configuration control can

help to re-establish the last known system configuration, provided that the configuration data survive the disaster.

The automatic configuration approach described in this paper has been applied in a pilot project to the geostationary

EDRS
2
 and HAG1 missions, the low Earth orbit TanDEM-X mission, and the Multi-Mission project at GSOC.

Configuration management is a vital concept both in the system engineering and in the software engineering

discipline. When software engineering is combined with system engineering, e.g., because a control center is

building a ground system that has software components, which are developed in-house using a software engineering

process, it is important to clarify the context. Different tools and processes are applied for configuration and change

management of the ground system, consisting of hardware, software, and documentation, and a software system,

consisting of files of source code and possibly libraries and artifacts, and constituting one software configuration

item of the whole ground system. We discuss configuration management in the context of systems engineering.

A. Configuration Management Activities

Configuration management is often depicted
1
 as

a sequential process of the activities

Configuration Identification, Configuration

Control and Change Management,

Configuration Status Accounting, Configuration

Reporting, Configuration Verification and Audit.

In practice, configuration management is a

cyclic process, similar to the Plan-Do-Check-Act

continuous improvement cycle known from

quality management
2
, cf. Figure 1:

Configuration Identification, Configuration

Control and Change Management,

Configuration Deployment, and Configuration

Verification are activities that happen

sequentially, while Configuration Status

Accounting and Reporting is undertaken during

all stages of the cyclic process. The process

starts again with Configuration Identification

based on deviations encountered at the

Configuration Verification stage, or with

configuration items that are added to or removed

from a mission during its lifespan.

Configuration Identification is an activity usually associated with the creation of the product tree, the list of

Configuration Items, i.e., hardware, software and documentation that will make up a project’s infrastructure, at

GSOC usually a ground segment for spacecraft operations. The project manager has to plan, name, and procure the

assets that are intended to operate the mission. Sometimes, the configuration items are defined based on a Critical

Item List (CIL), since all potentially critical items need to be defined in that list as well.

2
 https://en.wikipedia.org/wiki/PDCA

American Institute of Aeronautics and Astronautics

3

Configuration Control and Change Management are terms used synonymously. Controlling the configuration means

that changes to the configuration are managed and documented. At GSOC, we use GITS (the GSOC Issue Tracking

System) to write and process Engineering Change Requests (ECRs) for change management on the ground system

configuration items. An ECR in GITS specifies at the very least the “system affected”, i.e., the mission subsystem

that the change affects, more detailed information may be entered in the field “system affected version”. This

information allows the responsible configuration manager to link the affected Configuration Item in the CMS to the

change report, such that all changes to a CI, and all CIs affected by a change, are documented.

Configuration Deployment is an activity that is usually not considered as part of the configuration management

process, or just as a part of change management. The approach undertaken at GSOC relies to a certain extent on

automatic configuration deployment; therefore, we chose to list this activity specifically. Typically, there are an OPS

(operational), a SIM (simulation), and a TEST chain of hardware CIs with associated software CIs in an operational

setting, and quite often, a standard configuration for hosts is required. Automatic configuration deployment tools are

tailored to the need of rolling out operating systems, software package combinations and configurations to multiple

hosts.

Configuration Verification is the activity of verifying that the configuration depicted in the CMS concurs with

reality, i.e., what is actually installed and configured on the configuration items. It has to be verified that the correct

versions of the software CIs are installed on the correct hardware CIs, and that only the correct versions of the

software CIs are installed there (and not anywhere else).

Configuration Status Accounting and Reporting is the activity of generating reports such as the Configuration Item

Data List (CIDL), and creating configuration baselines, also called snapshots, which list the system configuration at

a specific point in time. This creates the option to compare the configuration of two points in time by comparing the

two snapshots, generating a list of configuration items that have been added or removed in the time between the two

dates. The parameters of a configuration baseline can be connected into a URL, such that the baseline within the

CMS can be reached directly by clicking the link and logging into the CMS. This URL is helpful in order to store

the system configuration with test reports, as described in Ref. 3.

In Figure 1, Configuration Reporting and Status Accounting is shown as an activity that is ongoing in the

background and not a step in the cycle of configuration identification, control, deployment and verification, since the

status of configuration items can always be reported, even while all the configuration items are still only in planning.

In fact, “In Planning” is in fact the first lifecycle status that a Configuration Item can have, cf. Section B5, Lifecycle

States.

B. Configuration Management System HP uCMDB

The Configuration Management System (CMS) in use at GSOC is the Hewlett Packard Universal Configuration

Management Database; HP uCMDB
3
. With the HP uCMDB, CM data can be edited manually via a GUI,

manipulated in batch imports and exports via CVS and XML files of a certain format, and configuration baselines

can be compared in a graphical user interface. A “Related CI View” is available in the detailed view for each CI,

which shows the CIs with a relation to the currently viewed CI.

1. Entity Relationship Data Model

The entity and relationship model
4
 is a very popular data model and implemented by our configuration management

system. The entities of configuration management are called Configuration Items (CIs) and are commonly of the

type hardware, software, or documentation. However, quite a few other types exist, e.g., location. The entities or CIs

are structured in a tree of configuration types that allows different shades of specification, for instance, all CIs are of

the type Configuration Item, some of them are of the type Hardware, which is a more specific type, and of the

hardware CIs, some are hosts, while others are routers or switches, and yet others may be a specific voice system

hardware. Figure 2 shows part of the CI Type hierarchy, and some of the many relationship types modeled in the

HP uCMDB.

3
 http://www8.hp.com/de/de/software-solutions/software.html?compURI=1172882#.UxcKzIXy2HM

4
 https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

http://www8.hp.com/de/de/software-solutions/software.html?compURI=1172882#.UxcKzIXy2HM

American Institute of Aeronautics and Astronautics

4

2. CI Attributes and Relationships

All CIs have a list of attributes that can be defined on different levels of the CI type tree, e.g., all configuration items

have a name and an ID attribute, but only documentation CIs have an author attribute, while hardware and software

CIs can have a manufacturer and a serial number attribute. Software and document CIs have a version attribute and

a release date, or install date in case of the software, attribute. Attributes are filled with values, which may be of

different types, such as text of a certain length, numbers, or enumeration values.

The CIs can be in relationships with one another, the most interesting relationship in this context is the software

isInstalledOn hardware relationship. All relationships are bidirectional, which means that if a software CI has an

isInstalledOn relationship to a hardware CI, the hardware has the reverse hasInstalled relationship to the software

CI. Rather than model the location of physical CIs, i.e., hardware CIs, with an attribute, the locations are modeled as

entities, such that entering the location information for a hardware CI by creating a relationship between hardware

and location will also provide the information to the room which hardware CIs are located there. The benefit of

using entities and relationships instead of storing the information into entity attributes can be seen at the example of

software to hardware relationships: one single hardware CI can easily have over one thousand software CIs installed,

of which many can be installed on hundreds of other hardware CIs. Documenting those lists of related configuration

items in an attribute field would be difficult to impossible, and not allow for the bidirectional information flow that

relationships provide. In regard to virtualization, host CIs may be physical hardware or virtual machines clustered on

ESXi Servers. Figure 2 shows all the relationships that a voice system keyset can have with all the other CI Types.

The isInstalledOn relationship (not shown in Figure 2) is considered the most relevant for configuration automation.

3. Mission vs. Multi-Mission CIs

GSOC has a multi-mission control center strategy, meaning that some resources are shared among different satellite

missions, or even between manned missions and satellite missions. The shared resources in the CM context are

called multi-mission configuration items and may be any of the CI types, e.g., rooms, hardware, or software.

Everything that is not mission-specific is by definition multi-mission. Multi-mission CIs that are part of a particular

mission configuration may be linked under all the individual missions which make use of them. Linked CIs are part

of the CIDL of the mission(s). The definition of a software CI as part of the CIDL of a mission is that there is at

least one piece of hardware that has this software CI (in the version given in its version attribute) installed at that

point in time.

Figure 2: CI Type Hierarchy: the left side shows the hierarchy of CI Types, the right side details the relationships

of the CI Type Keyset to other Configuration Items.

American Institute of Aeronautics and Astronautics

5

4. Modelling CI Versions as Single or as Separate CIs

Software or documentation CIs both have a version attribute, consisting of a text field into which text can be

entered, typically (but not enforced) of the form x.y.z, with x,y, and z being natural numbers including 0. For a

documentation CI, it makes sense to change the version number with any update of the document, i.e., from 1.0.0 to

2.0.0. The document CI is one instance, and the old version 1.0.0 will lose its validity as soon as version 2.0.0 is

approved. However, for software CIs, the case is not that clear. If the software CI exists in one instance only, and the

change from one version to the next one affects all the hardware where this software CI is installed, it is valid to just

update the software CI version number. However, if several instances of the software CI are installed on some

hardware items at the same time, and the update only affects some of the instances, we clearly need an additional

software CI to model the other, coexisting versions, as one single software CI instance can only have one version at

a time. In a control center setting, where there are typically an OPS, a SIM, and a TEST chain of redundant

hardware components, it is quite often the case that a new software version will be rolled out onto the TEST chain

first, while the other chains remain with the older software version until the new features have been properly tested.

In this case, more than one instances of the software CI are in use. This should be reflected in the CMS.

The consequence of modeling a series of software CI versions as separate software CIs is that the software CI

history will not show the version changes at a glance, as is the case for single instances of CIs whose version

attribute is changed with every update. However, via the Related CI View, one can immediately see which software

CI versions are installed on which hosts, and in the history of the host, the history of software CI versions including

the installation date remains visible.

5. Lifecycle status of CIs

One important attribute that all software and hardware CIs in our data model possess is the lifecycle state. It is an

enumeration attribute, i.e., one value can be selected from a list of possible states:

1. In Planning: there is no physical CI yet, only the idea of a hardware or software component

2. In Purchase: physical machines or operating system licenses for virtual machines, or COTS (Commercial

Off The Shelf) software is being ordered

3. On Stock: the CI is on site, but not part of the active configuration, e.g., hardware spare parts or undeployed

software CIs

4. Under Development: a hardware is being assembled or a software CI is being developed

5. In Test: the CI is installed in a TEST chain, but not part of the operative configuration

6. Active: the CI is part of the operative configuration

7. In Repair/Maintenance: a hardware CI is being repaired or a software CI has been deinstalled to be

overhauled

8. Phased Out: a hardware CI is not part of the active configuration any more, but still on the premises, or a

software CI has been deinstalled, both are waiting to be sold or scrapped.

9. Removed: the CI is removed from the premises.

CIs that are set to status “9 – Removed” are not shown in the default CMS view, but there is a view including the

removed items that can be switched on if necessary. In Planning is the default status for manually created CIs. The

logical status transition diagram for hardware and software CIs is shown in Figure 3.

Since one CI can only ever have one state at a time, a software configuration item is active as long as there is at least

one hardware that has an isInstalledOn relationship to the software CI. At the moment where the last isInstalledOn

relationship is severed, because the software CI is deleted from the last hardware CI, the software CI ceases to be

part of the system configuration.

6. Current CI numbers

Currently, there are about 32,000 CIs modeled in the CMS. Of these, 2,974 are host computers, of which 977 are in

lifecycle state active today. There are 13,255 software CIs in the CMS.

Within the last year, the Autodiscovery has created 10,948 of the total 13,255 software CIs. Only 1,646 of the

10,948 software CIs are in lifecycle state active today, with 49,576 automatically added isInstalledOn relationships.

By comparison, the manually modelled CIs from the last 5-8 years consist of 2,307 of the total 13,255 software CIs.

Of the 2,307 manually added software CIs, 2,140 are in lifecycle state active today, with 749 manually added

isInstalledOn relationships.

American Institute of Aeronautics and Astronautics

6

C. Automatic Configuration Item Discovery

One can easily imagine that it is a time-consuming and error-prone process to try and model the relationship

between software and hardware CIs manually. The CMS Tool allows to manually add relationships, even to select

multiple CIs and connect them to one CI, or the other way around, but in the case of ~1500 software packages that

comprise a standard SUSE Linux Enterprise Server (SLES) operating system, it will be time consuming even to

manually select all those software packages from a list, let alone to figure out which few of the thousands of

software packages are or are not installed on the hardware CI in question. Therefore, manual input of the

configuration status will always be limited to a rather high level of abstraction. If the information about the

installation of a new software CI on one or more hardware CIs will only reach the configuration manager via the

GITS ECR, she has no means of controlling or verifying the actual configuration, therefore, discrepancies between

the configuration modeled in the CMS and the reality will arise quickly.

A smarter approach would be for the hardware CI to inform the CMS which software CIs it has installed. Errors

could be discovered much quicker that way, i.e., if one of the hardware CIs was forgotten in the installation process,

or if the software CI was installed on a wrong hardware CI. The information from the hardware CI even allows for

an automatic verification of the ECR that the software CI in question, in the correct version, has actually been

installed on the correct hardware CIs (and optionally, that the previous version of the software CI has been

removed). This idea is not a new one, in fact, the HP uCDMB system in use at GSOC comes with an already

implemented Autodiscovery function, using probes in different network segments which, given the correct

credentials, collect data via a number of network protocols and inventory the installed software. However, GSOC

has a concentrical network structure, where the network areas are separated by firewalls which only allow

unidirectional information flow in the outward direction. Even if a network probe were allowed in the operational

area (which it is not), the instructions that would have to be sent to the probe from the main CMS application in the

office area could not pass through the firewall in the inward direction. Therefore, the out-of-the-box Autodiscovery

provided by HP cannot be implemented in our control center due to security reasons. However, we have devised a

workaround that transfers the configuration information across network boundaries via file transfers and then makes

use of the built-in HP reconciliation engine. Our method of implementing agent-based Autodiscovery in this secure

Figure 3: Lifecycle States: Software and hardware CIs are always in one of the states 1-9, from being purchased

or developed to a testing phase, and active phase after successful testing and installation, ending with deinstallation

and removal from site by selling or scrapping the CI.

American Institute of Aeronautics and Astronautics

7

network setting, and in the described multi-mission context, in order to reap the benefits of automatic CI discovery

is described in this paper.

II. Autodiscovery of Configuration Items

Several actions must be combined in order to automate the complete cycle of configuration management as

described in Section IA, most importantly the automation of configuration deployment and the automation of

configuration verification. The Autodiscovery process is described in detail in this section.

A. Automatic Configuration Deployment

Any automatic configuration management approach that makes use of scanning a piece of hardware and returning a

list of installed software CIs requires a concise definition of a software package. Typically, scanning inventory

agents read data from the Windows Registry and/or the software listed in the Control Panel under “Programs”. For

Linux machines, the RPM package manager
5
 is widely distributed and also a part of the SUSE Linux Enterprise

Server used at GSOC. For software installation and maintenance, the use of package management tools rather than

building packages manually has advantages such as simplicity and consistency. Package management is a

prerequisite for the automation of build and deployment processes. If a piece of software is installed without the use

of a RPM package, or without an installer that enters data into the Windows registry, this piece of software cannot

be retrieved by a scanning application. Automatic deployment of the software package via installation servers is also

impossible without software packaging. In a control center system architecture, where both physical hardware and

virtual machines are usually designed redundantly, resulting in many hosts which should have an identical or similar

configuration, installation servers present an obvious advantage over installing and configuring a collection of

hardware or virtual hosts manually and one by one. RPM package management offers the additional advantage of

dependency tracking, as RPM management tools track how software packages rely on other software packages, e.g.,

Perl or Python libraries for tools which were written in one of those languages. At GSOC, we already have

automatic configuration deployment tools implemented and strive to gradually apply them to all the missions. For

the Autodiscovery pilot missions, automatic configuration deployment was used for nearly all the hosts after the

early testing phase. This implies that mission-critical software packages developed in-house are required to be

delivered within an installer package, which creates some additional effort for the software developers, but also

enables them to observe proper release management.

Another advantage of the automatic configuration deployment concerns the deployment of the Inventory agent

itself: by packaging it into an RPM of its own, or a MSI installer, respectively, it was possible to deploy the

Inventory agent and the Linux cron job or Windows scheduled task, calling it once a night, onto all the hosts with

minimal effort. More details on the installation server tools can be found in Ref. 2 and Ref. 3.

B. Automatic Configuration Verification

Configuration verification, as defined above, is the activity of checking if the configuration reflected in the CMS

concurs with what is actually installed and configured on the configuration items, e.g., that the correct versions of

the software CIs are installed on the correct hardware CIs, and that only the correct versions of the software CIs are

installed there. The only way to manually verify the configuration is to log into each machine and compare the

installed software CIs to data from the CMS. Since the operational machines are situated in a different logical

network area than the CMS database, it might be practical to use a Configuration Item Data List (CIDL) from the

CMS and compare the listed CIs to the reality. Any discrepancies, e.g., software CIs in different versions than they

should have according to the CIDL, must then be noted in the list and updated manually in the CMS at a later point.

This was the observed practice at GSOC prior to the introduction of the automatic discovery. If software CIs are

found on the machine that are not in the CIDL, and hence should not be part of the configuration, those software CIs

must be noted as well, and it must be researched if they should be added to the configuration, because they are

required for some reason, or if they should be deleted on all machines, in the case of potentially harmful software

that was installed without permission. The deletion of such software again has to be done manually, if no installation

server is used. Therefore, automatic configuration verification is what we strive to achieve with the implementation

of the Autodiscovery process.

5
 https://en.wikipedia.org/wiki/RPM_Package_Manager

American Institute of Aeronautics and Astronautics

8

C. Autodiscovery Process and Methods

Both configuration deployment and configuration verification could be automated on their own, but if both activities

are combined, one can make use of the full cycle and verify that the automatically deployed configuration is indeed

the correct configuration, and, to a certain extent, that the deployed configuration has not been tampered with.

The method that we have chosen to roll out the Autodiscovery on all relevant parts of the pilot project missions

comprises the following steps:

1. Create Mission FTP User: An FTP user specific to the mission is created. The mission FTP user and its

credentials are used to transfer the scanned configuration data of the respective mission, such that the need-to-

know principle is observed.

2. Implement Installation Servers for Mission Software Package Deployment: Automatic configuration tools

(Puppet and OPSI) are used for structured configuration deployment of software packages on multiple hardware

items within each mission.

3. Deploy Inventory Agent and Daily Inventory Job: Installation servers are also used to deploy the OCS Inventory

NG Agent software package.

4. Transfer the XML Files: Copy the XML Files

from the OPS FTP server across segmented

network boundaries to the Office FTP, from

where they are in turn collected by the CMS

Server.

5. Transform the XML Files: Run the XML

Files through an XML schema

transformation such that the end XML

format matches the format used for XML

imports into the HP uCMDB.

6. Import Configuration Data into CMS:

Import the XML files into the CMS, where

they are converted to configuration items

and relationships between the items.

7. Set the CI Lifecycle States: Intelligent rules in

the CMDB automatically set the lifecycle

states of configuration items depending on

the scan state to account for removed CIs.

8. Automatic Configuration Reporting and

Status Accounting: Intelligent reports alert

the configuration managers to changes in the

configuration as deployed in the system, i.e.,

new CIs in the DISCOVERY Subsystem are

shown.

Figure 4 shows an overview of the process steps,

which are detailed in the following sections.

1. Create Mission FTP User

A mission-specific FTP user and its credentials

are used to transfer the scanned configuration

data of each mission, such that the need-to-know

principle is observed and only persons with

access rights for each mission may see the data

contained in the inventory files collected in the

Autodiscovery process. The mission specific FTP

user and its password need to be specified in the

mission-specific configuration file for the Linux

cron job or Windows scheduled task that runs the

inventory agent every night and transfers the

XML files to the OPS FTP, cf. Subsection 3. In

Figure 4: Autodiscovery Process and Methods: Configuration

Deployment via Installation Servers, Inventory File Transfer, File

Transformation and Import into the CMS followed by automated

Configuration Reporting and Status Accounting.

American Institute of Aeronautics and Astronautics

9

addition to the mission FTP user, new missions, or missions which wish to start deploying the Autodiscovery while

already operational, should create an ECR listing in detail all the hosts on which the Autodiscovery is to be

deployed. A new mission whose CIs are still in the “In Planning” state shall make use of its design documentation to

provide the host list. The list will ensure that no host is forgotten in the deployment, and verify that the

Autodiscovery data arrive in the CMS from all relevant CIs.

2. Implement Installation Servers for Mission Software Package Deployment

The automatic configuration deployment tools already in use at GSOC are Puppet for Linux (SLES 11 in our case)

and OPSI for Windows. They are used for structured configuration deployment of software packages on multiple

hosts (both physical and virtual machines) within each mission. This ensures that the software packages including

their configuration information (mainly their version numbers), can be deployed in a remote and automated manner,

and that those software packages are registered in the Linux RPM Manager or the Windows Registry. Thus, the

software packages are installed in a format that can be recognized by the inventory agent. It also allows us to roll out

both the inventory agent and the agent job to run it every night in an efficient risk-reduced manner. Of course, both

the inventory agent software package and the agent job software package will be listed in the CMS in their

appropriate version, as installed on each host, after the Autodiscovery process has been completed.

3. Deploy Inventory Agent and Daily XML File Creation Job

OCS Inventory NG
6
 is an Open Source inventory discovery agent available online. The agent should be configured

to store its scanning result in a local XML file with extension “.ocs” or “.xml”, which can then be shipped to the

uCMDB. We use the established installation servers for the mission to deploy the OCS Inventory NG Agent

software package and the daily Linux cron job or Windows scheduled task that runs the agent, creates the inventory

XML file, and uploads the scan file via FTP to the OPS FTP server. The mission specific configuration file

containing the mission name, mission FTP user name and its password, is also rolled out automatically by the

installation servers. The configuration file is placed in the root’s home directory for Linux and in the

Administrator’s “MyDocuments” folder for Windows, with privileges set appropriately in order to ensure that the

password in the file is protected against unauthorized access.

4. Transfer the XML Files

An automatic FTP Transfer from OPS-Lan to Office LAN has been set up for transferring configuration XML files

to the uCMDB server. The FTP servers can be reached via "ftp ftp.nos.office" from the Office Lan and via "ftp

ftp.nos.ops" from the OPS LAN. All files placed onto the OPS FTP will be transferred within minutes to the Office

FTP server. From the Office FTP, the files are collected to the CMS server once a night by a batch job. The job

stores the inventory XML files (with file extension .ocs for the OCS Inventory NG Agent) in mission-specific

directories and deletes the files on the Office FTP server afterwards. The process is also implemented on the CMS

test server, with the exception that the batch job on the test system does not delete the XML files, as they need to be

collected by the operative CMS server first, which is in charge of deletion.

5. Transform the XML Files

XML files created by OCS Inventory NG cannot be imported directly into the uCMDB. An XSLT transformation

has been prepared to convert the format of the incoming files to the format recognized by the XML import job of the

uCMDB. The transformation schema can be fed to the Saxon XSLT processor
7
 for transformation of an input file.

This conversion is wrapped in a Windows batch file, which reads all files with extension “.ocs” and “.xml” in the

FTP download directories and places the resulting files in the input directory for the next stage.

During the transformation, additional CIs are placed in the XML file to ensure proper connection of the scanned CI

to the existing infrastructure in the uCMDB, namely

 a project/mission CI, named after the directory where the inventory file is taken from,

 a subsystem CI named “<mission>_DISCOVERY” (with a short name of “DISCOVERY”),

 a CI collection named “<hostname>-<yyyy-mm-dd-hh-mm-ss>” using the hostname of the scanned host and the

scan timestamp.

These CIs are linked to each other and to the host and software CIs created from the inventory file by “containment”

relationships. A scheduled Windows job automatically performs the conversion task every night for all the files

collected from the Office FTP server.

6
 www.ocsinventory-ng.org

7
 saxon.sourceforge.net

American Institute of Aeronautics and Astronautics

10

6. Import Configuration Data into CMS

CIs are “reconciliated” by the Reconciliation Engine of the commercial software HP uCMDB, i.e., scanned CIs

with the same configuration identification (typically name and version) as existing CIs from previous scans are

merged into one single CI. This automatically creates and updates configuration items in the CMDB with

information found by the agent while scanning the hardware configuration items.

XML files formatted according to the schema used by the uCMDB Snapshot facility or a more concise format can

be imported into the uCMDB using a Discovery import job, see Figure 5.

uCMDB_XML_Autoimport: a custom Discovery job based on the Jython script “uCMDB_XML_import.py” to

import files from arbitrary directories on the uCMDB application server in both the snapshot and the concise

formats.

As with all uCMDB Discovery processes, it is not possible to delete CIs or relationships from the uCMDB using

XML imports. For example, if the installed software on a host changes, relationships to previously installed software

items are not broken, and now obsolete software CIs are not deleted in the CMS. To this end, we use intelligent

Lifecycle Status rules, cf. Subsection 7.

The import job displayed in Figure 5 can be controlled using the following parameter settings:

 concise: Process files in concise format, default setting: false

 destinationDirectory: Full path of the directory to move the correctly processed files to

 errorDirectory: Full path of the directory to move the files with processing errors to

 fileFilter: Full path to input files (including “*” and “?” wild cards)

 useUcmdbIds: Interpret “Id” elements/attributes as uCMDB Global IDs and use them for CI identification

(this is useful for reimporting CIs previously exported using the uCMDB snapshot function or the XML

export function), default setting: false

There are several Autoimport Jobs for the pilot missions where before, there was only one Autoimport Job, due to

the Java heap space problems described in Section IIID. Each Autoimport Job runs at a scheduled time every night,

after the previous data collection steps have been completed. After importing XML files created by the XML

transformation step, CIs which had existed previously in the uCMDB will have more than one “containment”

relationship: One to the CI collection to which they already belonged, and at least one to the artificial CI collection

“<hostname>-<timestamp>” created by transforming and importing the inventory file. Since multiple “containment”

Figure 5: Inventory XML File Import: the left side shows the hierarchy of discovery modules, the right side

details the settings of the uCMDB XML Autoimport of EDRS inventory XML files.

American Institute of Aeronautics and Astronautics

11

links are not allowed in the DLR data model, any unnecessary links will be removed by a customized uCMDB batch

process (a so-called “enrichment rule”). The cleanup of unnecessary links will leave such CI collections empty

which contained only pre-existing CIs (e.g. a new scan of a basically unchanged host). Any such collection will be

removed by the enrichment rule “DLR_Cleanup_Discovery_Folders” which is scheduled to run once per day in the

uCMDB scheduler (job schedule “CleanupDiscoveryFolders”).

Both the import job and the enrichment rule cleanup jobs are scheduled in the CMS to run every night at a fixed

time, just after the jobs mentioned in the previous steps.

7. Set the CI Lifecycle States

Intelligent rules in the CMDB automatically set the lifecycle states of configuration items depending on the scan

state, i.e., if a software is not found on a given day on any machine belonging to the mission, the software CI

lifecycle state is set to “Removed”, thus hiding it from the standard views and from default CIDLs, which only show

CIs in state “Active”. This ensures that old versions of software CIs will not clog up the CIDLs indefinitely, but

disappear once there is no single instance of them installed on some hardware belonging to the mission, just as

defined in Section IB3. The Autodiscovery creates new CI instances for every software CI version, e.g., the

OCSInventoryAgent in version 1.0.0 is a different CI than the OCSInventoryAgent in version 1.0.1 – it must be,

because while Automatic Configuration Deployment would in theory allow us to update every single hardware

across all the missions from version 1.0.0 to version 1.0.1 at virtually the same time, this rarely happens in practice,

as each mission has its own constraints and global changes are a source of errors. Also, there are often good reasons

to keep an older version of a software component active within one mission while a component is upgraded for other

missions, or even to keep different versions active on different chains on the mission, e.g., the TEST chain for

testing purposes, as mentioned in Section 1A. Nevertheless, it makes no sense to list all the previous version of a

software CI as part of the CIDL, only the active ones should be part of the CIDL – therefore, the intelligent lifecycle

rules set the status of uninstalled software CIs to removed.

8. Automatic Configuration Reporting and Status Accounting

Regular reports alert the configuration managers to changes in the configuration as deployed in the system, i.e., new

CIs in the DISCOVERY Subsystem are shown. This enables the configuration managers to link the new

configuration items to the corresponding change request, to verify planned changes, and to discover unplanned

changes (e.g., if there is no change request for the addition of the CI in question!) Thereby, CM integration with the

change management system is enforced and the deployed configuration is verified automatically.

New hardware CIs are always visible in the DISCOVERY subsystem, newly installed software CIs are only visible

there if they are not installed already on some other hardware CI. If a software CI is merely added to another

hardware CI in the mission, but the software CI was already part of the CIDL, the addition is merely seen in the

“Related CIs View” of both the software and the hardware CI.

III. Results and Discussion

The introduction of the Autodiscovery has led to the desired effect for the affected missions; both regarding

automatic configuration deployment and automatic configuration verification. Configuration managers report a

much better understanding of the actually installed software packages. In several cases, human errors have been

discovered, e.g., when an engineer had forgotten to install a new software package version on one of three machines,

which was observed in the CMS by the configuration manager, who made the engineer realize his mistake before

any errors driven by the incorrect configuration could occur in tests. This ensures accountability and traceability for

all configuration items.

A. Automatic Configuration Deployment

As mentioned in Section IIA, we have already implemented automatic configuration deployment tools for the

Autodiscovery pilot missions. Therefore, the mission-critical software packages developed in-house were required

to provide an RPM installer package for Linux machines, or an MSI (MicroSoft Installer) or setup.exe installer for

Windows machines.

The additional effort for the software developers depended on the complexity of the software package, for instance,

for SCOS, our monitoring and control system, it was quite difficult to build RPM packages due to hard coded device

paths and host names within the software, but our developers and engineers succeeded in the end. In the case of

SCOS, a second RPM was built for the configuration files, which are extensive in number and complexity and a

American Institute of Aeronautics and Astronautics

12

known source of errors, if edited manually. The efforts undertaken to package the SCOS software and even its

configuration will be well rewarded in terms of stability and failure resistance, and also enables us to observe proper

release management. However, this also means that our automatic configuration management only works for our

definition of software package CIs that can be recognized by the OCS Inventory Agent. Local scripts, or software

binaries copied onto a machine and executed manually will not be detected by our system, only software CIs with an

RPM or Registry entry will show up in the CMS. As it is forbidden to change operational configurations without an

ECR, such locally copied and executed software should not exist in theory, but cannot be disproven with our

approach without strict adherence to the prescribed CM processes.

B. Automatic Configuration Verification

The most obvious benefit of the daily Autodiscovery scan is that newly discovered CIs are visible within less than

24 hours in the DISCOVERY Subsystem of the corresponding mission. This enables the configuration manager to

directly verify that a change has been implemented, even before the person implementing the change has set the

ECR status to implemented in GITS. In the case of unplanned changes or undesired software installations, the

configuration manager and the system engineer benefit from the information that new software CIs have been

discovered by the Autodiscovery, and can start the investigation for the reasons much more quickly. The same is

true for hardware CIs that have been forgotten in the installation process; if the CMS shows that the old software

version has not been replaced on all required hardware CIs, errors are more likely to be uncovered at an early stage.

Compared to the scenario described in Section IIB, the improvement thanks to the Autodiscovery process is

obvious. This enables us to actively verify configurations consistently which otherwise would just not have been

manageable to verify manually.

C. Filtering: Automatic Configuration Item Data Lists vs. Manual CIDLs

As discussed in Section IB6, the use of the Autodiscovery results in the creation of an increased amount of software

CIs, ca. by a factor 50 compared to the manual software CI creation. The number of isInstalledOn relationships is

increased by a factor larger than 100. While this is very good news, as it allows us to model many entities and

relationships which would otherwise have been excluded from the CMS, there was a drawback:

The many software packages inventoried by the discovery agent for SUSE Linux (~1500), but also for Windows

Server (~500) have posed a small problem for the readability of the Configuration Item Data List. This list usually

contains fewer than 50 software configuration items, manually modeled after the components described in the

product tree for each mission. Flooding that list of 50 specific, important and mission-critical software configuration

items with an additional 1500 software items that comprise the standard installation of a SLES 11 is obviously not

an option. The CIDL is often a deliverable that has to be sent to the customer for milestones and reviews, who is

interested in the versions of the ~50 specific, mission-designed software items, and not in detail in all the libraries

that make up the SLES 11. These libraries in their various versions, as installed on different hardware CIs, may

however be very interesting and helpful to the engineers for error analysis. Hence, it would be unwise to just discard

the information. Our preferred solution was to group the software packages comprising a standard SLES 11 into a

software CI Collection under the multi-mission project and link the top-level CI collection under all the missions

which use that operating system on at least one host CI. The same was done with the Windows packages of the hosts

running Windows Server. This way, each host in each project is still connected to the up to 1500 software packages

that it has installed, and this information can be accessed either starting from the host end of the relationship or from

the software package end, and is very useful in error analysis. On the other hand, the mission specific CIDLs

produced for the customer contain only the more prominent packages specific to the mission and relevant for the

change control process, and therefore remain human readable.

D. Autodiscovery Effects on System Resources

The dramatic increase in configuration items contained in the database due to the automatic collection has led to

some issues with the CMS system. The CMS application server RAM of 8 GB was sometimes not enough to

correctly import all the XML files due to memory exhaustion. We have solved this problem by segmenting the XML

files into missions, or parts of missions, and only processing the files from one mission, one mission after the other,

thus restricting the import to fewer than 15 files at a time, cf. Figure 5.

The CMS database server’s hard drive is filling up much more quickly than before, due to the nightly changes that

add to the data in the history databases, even if nothing actually changes. We have temporarily solved this problem

American Institute of Aeronautics and Astronautics

13

by storing a smaller amount of history data, but we shall have to increase the hard drive volume soon, especially

with new missions requiring the Autodiscovery.

In addition, there was an issue with the FTP transfer: as all the machines in the OPS LAN were set to scan their

inventory and upload it to the OPS FTP server in the same second, this sometimes resulted in a problem similar to a

denial of service attack for the OPS FTP server. This issue was solved by randomly assigning different transfer

times to the local clients, such that the same machine always transfers its inventory file at the same second every

night, but the other clients do so a few seconds later or earlier.

IV. Conclusion and Outlook

In this paper, we have discussed how we have reaped the expected benefits while addressing the arising

challenges in the process of successfully implementing Autodiscovery of configuration items. The automation of

both configuration deployment and configuration verification enables the Configuration Managers to observe the

full configuration management cycle and verify that the auto-deployed configuration is indeed the correct one, and

that it has not been changed by errors in the deployment process, or manually. In addition, the importing of CI data

from the OCS Inventory Agent facilitates the quick and detailed collection of CI data that could never have been

managed manually.

Our method renders manual life cycle changes and manual creation of newly installed software items unnecessary,

thus saving substantial time and effort. It also enables the verification of installed software configuration items

(uncovering both false positives and true negatives) without additional effort. By integrating the change

management and issue tracking tool with the CMS, the issues affecting, and changes effected on a configuration

item during its lifecycle are recorded and traceable in both directions.

Future steps include the deployment of the Autodiscovery to all other GSOC missions, if possible. Thanks to the

configuration deployment automation, it shall be relatively effortless to extend the Autodiscovery to more missions,

provided they are running the same operating systems as the pilot missions.

The Columbus project, currently the only manned mission at GSOC and a large project in terms of configuration

items, complexity, and personnel, would benefit greatly from the Autodiscovery. However, as the Columbus mission

is contractually required not to upgrade the operating system from SLES 10 for many hosts, this requires building an

OCS Inventory Agent RPM package for SLES 10 first.

In addition, the HP uCMDB allows for the creation of gold standards, against which configuration baselines may be

checked automatically, and even impact analyses, given that the CIs are modeled in a cluster hierarchy in the CMS,

which is not yet the case, but facilitated by the Autodiscovery. Those two features would be very interesting to apply

to GSOC’s missions in the future.

Acknowledgments

I would like to thank Dr. Thomas Bassler, Dr. Thorsten Beck, Tarsicio Lopez Delgado, Manfred Schmid, and

Steffen Zimmermann for helping with the implementation and the infrastructure needed to make the Autodiscovery

work. Séverine Bernonville and Julia Hachmann deserve my thanks for continuously supporting and testing the

process, working with the autodiscovered CIs and providing constructive criticism. I thank Dr. Thomas Bassler and

Friedrich Gruschke for proof-reading this paper, while I would like to thank Dr. Josef Friedrich for his constant

support and helpful knowledge, for being a general joy to work with and for proof-reading this paper.

References
1ECSS, ESA-ESTEC, ECSS-M-ST-40 C, Configuration and information management, Third issue Revision 1, 06 March

2009, Noordwijk, The Netherlands.

2Beck, T., Schmidhuber, M, and Scharringhausen, J., Automation of Complex Operational Scenarios - Providing 24/7 Inter-

Satellite Links with EDRS, Daejeon, Korea: submitted for publication, 2016. Proceedings of the 16th International Conference on

Space Operations, May 2016.
3Lopez Delgado, T., Requirements, Configuration and Testing: Improved Management through Semi-automatic Processes,

Pasadena, California: 2014. Proceedings of the 15th International Conference on Space Operations, May 2014.

