Modelling the impact of automated driving -

Private autonomous vehicle scenarios for Germany and the US

Lars Kröger, Tobias Kuhnimhof, Stefan Trommer European Transport Conference, 5th October 2016

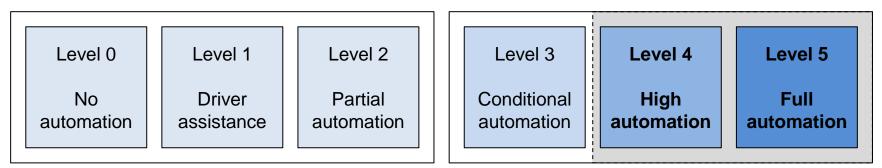
Knowledge for Tomorrow

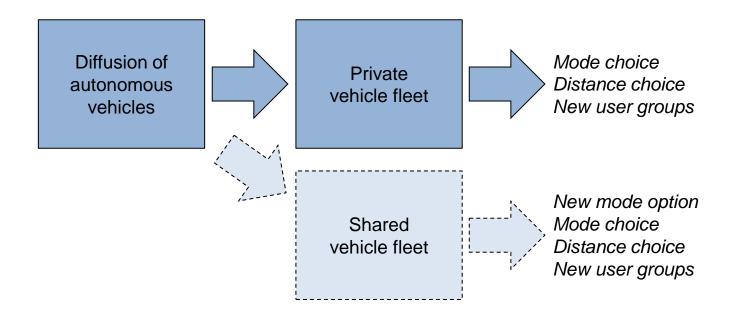
Outline

- Introduction
- Model scheme
 - Vehicle Technology Diffusion Model
 - Travel Demand Model
- Results
- Conclusion and Outlook

Introduction

- Motivation:
 - Market entry of highly and fully automated vehicles (AVs) within next years
 - AVs in private vehicle fleet and new mobility concepts (shared AVs)
 - Impact of autonomous driving on travel demand (VoTTS, new user groups)




Figure 1: Levels of automation (SAE n. d.)

Introduction

• Topic of this study:

Introduction of Level 4 and Level 5 vehicles into the private vehicle fleet, Impact on travel demand, comparison of two scenarios in Germany and the US

Basis for a subsequent study of new mobility concepts with shared AVs

Methodology: Overview

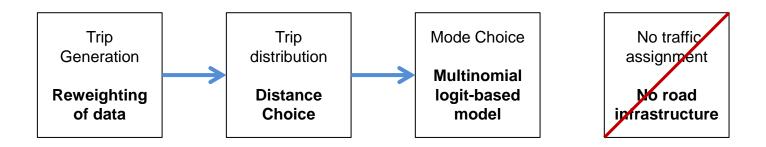


Figure 2: Overview of model scheme

Methodology: Vehicle Technology Diffusion Model

- Estimation of number of newly registered AVs per year
- Differentiated by car segments (specific for the national car market: Germany: small/compact/medium/large, US: small/pick-up/medium/large)
- s-shaped market-take-up
- Differentiation of initial diffusion rates, years of introduction and growth rates
- Number of newly registered AVs P_t in year t:

$$P_t = P_\infty * a^{b^t}$$


With:

- P_{∞} maximal number of newly registered AVs (with the assumption of a maximum 95% rate of AVs);
- a quotient of the initial rate of newly registered AVs in the year of introduction;
- *b factor of growth;*
- number of years since introduction.

Methodology: Aspatial Travel Demand Model

- Macroscopic and highly aggregated travel demand model (no traffic-analysis-zones)
- Input:
 - NHTS (US) and MiD (Germany) data (household travel surveys) (household, person, trip, vehicle data sets)
 - Socio-demographic forecasts, Studies of valuation-of-travel-time-savings

Methodology: Overview

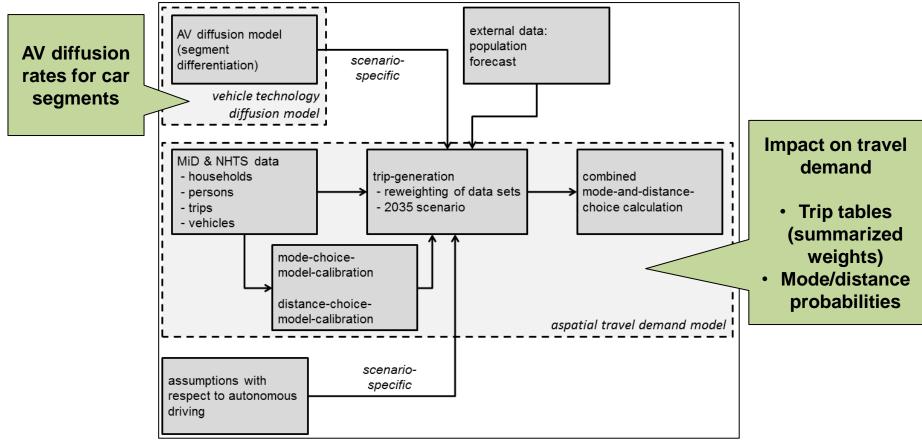


Figure 2: Overview of model scheme

Methodology: Scenarios

	trend scenario 2035	extreme scenario 2035				
Market introduction of AVs						
(differentiated by car segments)						
- Level 4	2025-2030	2022-2025				
- Level 5	2030-2034	2025-2028				
reduction of	reduction of 25% from the 11 th minute of driving on					
value-of-travel-time-savings	reduction of 25% from the 11 th minute of driving on					
reduction of access and egress times	reduction of access and egress time					
to and from AVs	from 5 minutes (GER) resp. 4 minutes (U.S.) to 3 minutes					
car availability of mobility-impaired-people	prioritized distribution of AVs to match the car-availability-ratio of non-mobility-impaired people					
car availabilty of other household members	all household members can use a household-owned AV					
car availability of teenagers	minors from 14 years on can use a	minors from 10 years on can use a				
	household-owned AV	household-owned AV				

Table 1: Overview of scenario assumptions

- Two scenarios for US and Gemany
- Differentiated by AV diffusion rates and assumptions of user groups

Results: Fleet size

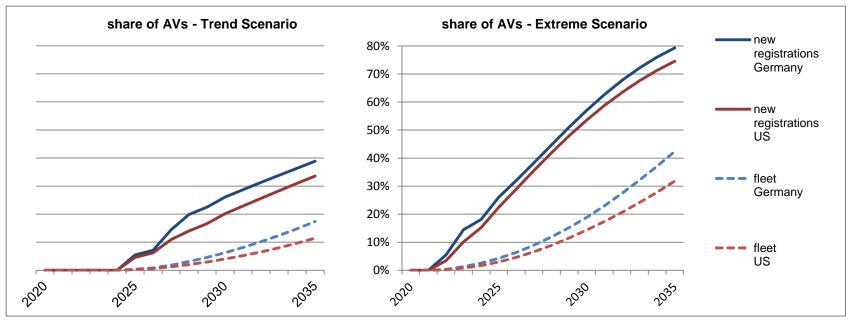


Figure 3: Share of AVs in the fleet and on newly registered vehicles (share as sum of Level 4 and Level 5 vehicles of all car segments) (own scenario calculation)

- Higher AV share in the extreme scenario and
- Higher AV share in Germany than in the US

Results: Impact on travel demand

			US			Germany	
		reference	trend	extreme	reference	trend	extreme
		scenario	scenario	scenario	scenario	scenario	scenario
		2035	2035	2035	2035	2035	2035
Increase in vehicle	mileage -		+3.4%	+8.6%		+2.4%	+8.6%
change to reference	scenario		TJ.4 /0	TO.U /0		TZ.4 /0	TO.0 /0
Modal share car	driver	65.6%	66.9%	69.4%	45.1%	46.1%	48.8%
(based on number	of trips)	05.0%	00.97	09.4 /0	45.170	40.170	40.0 /0
Change compared	- Absolute		+1.3%	+3.8%		+0.9%	+3.7%
to reference scenario	- Relative		+2.0%	+5.7%		+2.1%	+8.2%
Modal share public t	ransport	2.6%	2.4%	2.2%	8.6%	8.3%	7.7%
(based on number of trips)		2.0%	2.4%	2.2%	0.0%	0.3%	1.170
Change compared	- Absolute		-0.2%	-0.4%		-0.2%	-0.9%
to reference scenario	- Relative		-6.3%	-17.6%		-2.8%	-10.6%

Table 2: Overview of the impacts of private AVs on vehicle mileage and modal share

 Moderate increase in vehicle mileage due to new user groups, modal shifts and distance choice

Results: Impact on travel demand

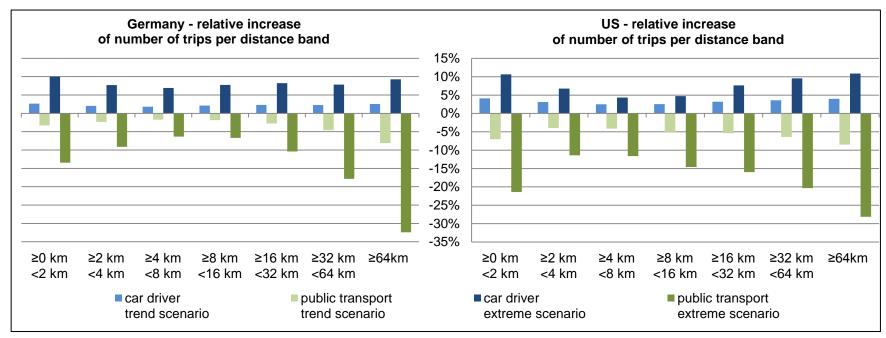


Figure 4: Increase of number of car driver and public transport trips differentiated for distance bands

- Higher increase of trips as car driver for very short and long distance trips
- High rate of decreasing public transport trips for very short and long distance trips
- Stronger effect to the distance travelled in the extreme scenario

Results: Sensitivity analysis

	US		Germany	
	trend	extreme	trend	extreme
	scenario	scenario	scenario	scenario
	2035	2035	2035	2035
	Change compared		Change compared	
	to reference scenario		to reference scenario	
Differentiation of the value-of-travel-time-savings				
VoTTS -0%	+2.0%	+2.6%	+1.4%	+4.9%
VoTTS -25% (original scenario value)	+3.4%	+8.6%	+2.4%	+8.6%
VoTTS -50%	+5.1%	+15.7%	+3.5%	+12.7%
Differentiation of the road traffic travel speed				
velocity +0% (original scenario value)	+3.4%	+8.6%	+2.4%	+8.6%
velocity +2%	+4.2%	+9.3%	+3.3%	+9.5%
velocity +5%	+5.4%	+10.4%	+4.6%	+10.7%
velocity +10%	+7.2%	+10.8%	+6.6%	+12.5%

Table 3: Sensitivity analysis for the value-of-travel-time-savings (VoTTS) and for the differentiation of system velocity

- Uncertainty of decrease of VoTTS and capacity restraint effects
- Higher dependence on change of VoTTS in US than in Germany
- Higher dependence on change of system velocity in Germany than in US

Conclusion and Outlook

- Aggregated models for vehicle technology diffusion and travel demand
- Combining of different models
- Introduction of AVs into the private vehicle fleet leads to a moderate impact on travel demand
 - New user groups
 - Mode shift
 - Distance choice
- Next step: Modelling the introduction of new autonomous mobility concepts (autonomous car sharing & autonomous pooling)
 - Estimation of fleet size, properties of supply and spatial differences
 - Estimation of impact on travel behaviour, in particular mode choice

References

Axhausen, K. W. / I. Ehreke / A. Glemser / S. Hess / Ch. Jödden / K. Nagel / A. Sauer / C. Weis (2014): Ermittlung von Bewertungsansätzen für Reisezeiten und Zuverlässigkeit auf der Basis eines Modells für modale Verlagerungen im nicht-gewerblichen und gewerblichen Personenverkehr für die Bundesverkehrswegeplanung. Entwurf Schlussbericht. FE-Projekt-Nr. 96.996/2011. URL (last access September 04, 2016):

https://www.bmvi.de/SharedDocs/DE/Anlage/VerkehrUndMobilitaet/BVWP/bvwp-2015-zeitkostenpv.pdf?__blob=publicationFile.

- BMVI (Bundesministerium f
 ür Verkehr und digitale Infrastruktur) (n. d.): MiD 2008 Mobilit
 ät in Deutschland. Mikrodaten (Public Use File). Procurement from <u>www.clearingstelle-verkehr.de</u>.
- SAE SAE International (n. d.): Automated driving. Levels of driving automation are defined in new SAE International Standard J3016 URL (last access September 04, 2016): <u>http://www.sae.org/misc/pdfs/ automated_driving.pdf</u>.
- USDOT U.S. Department of Transportation (2015): The Value of Travel Time Savings: Departmental Guidance for Conducting Economic Evaluations Revision 2 (2015 Update).
- USDOT U.S. Department of Transportation (n. d.): NHTS 2009 National Household Travel Survey 2009. Downloads. URL (last access September 04, 2016): <u>http://nhts.ornl.gov/download.shtml#2009</u>.

