C/C-SiC Sandwich Structures for Lightweight TPS and Hot Structures

Bernhard Heidenreich¹, Nicole Gottschalk², Yves Klett², Thomas Reimer¹, Dietmar Koch¹

¹ DLR, Institute of Structures and Design, Stuttgart, Germany
² University of Stuttgart, Institute of Aircraft Design, Stuttgart, Germany

8th European Workshop on Thermal Protection Systems and Hot Structures

Wissen für Morgen

April 19 – 22. 2016 Noordwijk

Outline

- → Motivation
- → Manufacture of C/C-SiC sandwich structures via LSI
- → Test results
- → Summary and outlook

Why Sandwich?

		Solid		Sandwid	ch
Bending stiffness/b ¹	[Nm²/mm]	E·J	1	E _{Skin} -J	
Panel thickness	[mm]	6		7	17% higher thickness
Panel weight ¹	[kg/m²]	11.4		4.4	62 % less weight
Prepreg layers		24		8	

¹ panel width = 1 mm

DLR

CMC Sandwich Application: Thermally Stable Structures

- Optical benches
- → Telescope structures

- Charging carriers for high temperature furnaces
- → High temperature heat exchangers
- フ ...

R. Barho, M. Schmid, 2003

Schunk Kohlenstofftechnik

CMC Sandwich Application: Acreage TPS

- Current DLR concept proposes functional separation of insulation and load bearing CMC shell
- Self-standing CMC panels resting on dedicated CMC load introduction elements
- Design for stiffness according to pressure requirements
- SHEFEX design e.g. proposes un-stiffened plates with uniform thickness as panels
- Easy to manufacture but not effective → Increases mass and limits panel size
- Sandwich can be designed exactly to pressure requirement to optimise area mass and size of acreage TPS

Shefex II

CMC Sandwich Application: Hot Control Surfaces

- Hot control surfaces essential for hypersonic cruise and entry vehicles
- High pressure loads, temperature gradients
- Stiffness required for shape stability
- Hot structures preferred (low temperature gradients and distortions, limited space)
- Low inertia required for fast-moving control systems
- Sandwich design can be tailored to structural / thermal requirements

SpaceLiner concept, DLR

C/C-SiC / SiC Honeycomb

- high core masses
- Brittle facture behaviour of core

M. Kütemeyer (DLR), M. Kuhn (DLR), A. Ortona (SUPSI), Gianella (EngiCer), 2015

Manufacture of All C/C-SiC Sandwich Structures

CFRP Preform Manufacture

	Core	Skin Panel			
Raw Material	Prepreg: C fibre fabric (2	Prepreg: C fibre fabric (245 g/m ²) + Phenol-Resol			
Lay up	1 layer 0°/90° and ±45°	3 layers 0°/90°			
CFRP preform manufacture	Folding + Warm pressing	Warm pressing			
p _{max} [kPa]	5.8	3.9			
T _{max} [°C]	210	220			

Folded Core Technology

University of Stuttgart, Institute of Aircraft Design

Manufacture of CFRP Cores via Folding Technology

- \neg Prepreg with release tapes
- \neg Folding and forming in wooden mould (380 x 400 mm²)
- \neg Curing + Postcuring at T = 130°C/3h + 210 °C/4.5h
- → CFRP fold core (360 x 330 x 13 mm³)

Folded Core - Geometry

Joining

- Joining paste: Phenolic resin (JK 60) + C 7 particles (PC 40; < 45 μ m)
- C/C-core preform dipped in joining paste with 7 constant film thickness (3 mm)
- Curing of joining paste (220 °C / 4h) 7
- Joining of second skin $\overline{\mathbf{Z}}$
- \rightarrow C/C sandwich preform (360 x 330 x 15 mm³)

Core Structure and Joining after Siliconication

- → Single layer core material with characteristic C/C-SiC microstructure
- → C-rich joining after siliconization (71% C;18% SiC; 11% Si)
- Homogeneously joined contact lines
- \neg C/C-SiC core density \approx 100 kg /m³

C/C-SiC Sandwich Geometry

		[mm]
Total thickness	h	15
Skin thickness (0°/90°)	t	1
Core height	С	13
Core wall thickness (0°/90° and ± 45°) 45°)	t _c	0.3

Fibre orientation in core

0°/90°

±45°

N. Gottschalk 2015

Coupon Geometry and Test Set Up

4 Pt. Bending according to DIN 53239

Results-Bending of Sandwich Structures

- ✓ Failure by tension fracture of lower skin
 - (2 coupons out of 20 show shear failure of core)
- \neg Load factor for the skins > 70 %
- → Highest Stiffness in W-direction (joining lines II to sample length)

Sandwich Effectivity

Effective / measured stiffness > theoretical stiffness (+ 63 %)

- Core is increasing stiffness of sandwich structure
- Lighter core possible?

Comparison Sandwich Structure – Solid Panel

Solid panel of same stiffness \rightarrow t_{solid} = 11 mm; m_{solid} = 4 x m_{sandwich}

Summary

- \neg Sandwich structures entirely made of C/C-SiC realized via LSI.
- Lightweight cores based on single layer C/C-SiC and LSI are possible (similar microstructure compared to multilayer C/C-SiC).
- C/C-SiC Sandwich design based on folded cores offer highly stiff and lightweight C/C-SiC structures.

Outlook

- → Use of high performance skin materials.
- → Lighter core materials by using lighter fabrics (245 \rightarrow 80 g/m²).
- Grid / honeycomb core types with wall structures perpendicular to skins.
- ✓ Upscaling to praxis relevant sandwich structure (ca. 500 x 500 x 70 mm²).
- → Demonstrator.

