Status of the PK-4 project

nowledge for Tomorro

M. Pustylnik

German Aerospace Center (DLR), Research Group for Complex Plasmas, Oberpfaffenhofen, Germany

Introduction

DLR

Dusty plasmas

Dusty plasma — quasineutral medium, containing electrons, ions, neutral molecules, radiation and dust \rightarrow Dust unavoidably gets charged.

Justification of complex plasmas

Coupling parameter

$$\Gamma = \frac{Z^2 e^2}{T d^2} \exp\left(-\frac{d}{\lambda_{scr}}\right) >> 1$$

Generic condensed matter physics can be potentially modeled!

Stretched space- and timescales

$$d \sim \lambda_{scr} \sim 0.1 \, mm$$

 $\omega \sim 1 - 100 \, Hz \propto \sqrt{\frac{Ze}{M}}$

Very easy to observe!

Complex plasmas – dusty plasmas designed for the modeling of generic condensed matter phenomena

Dusty and complex plasmas

Need for microgravity

PK3-plus

μ**-**g

Instrumental publication

CrossMark

REVIEW OF SCIENTIFIC INSTRUMENTS 87, 093505 (2016)

Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station

M. Y. Pustylnik,^{1,a)} M. A. Fink,¹ V. Nosenko,¹ T. Antonova,¹ T. Nogo, A. M. Thomas,¹ A. V. Zobnin,² A. M. Lipaev,² A. D. Usachev,² V. I. Molotikov,² O. Petrov,² V. E. Fortov,² C. Rau,³ C. Deysenroth,³ S. Albrecht,³ M. Kretschmer,⁴ M. Thoma,⁴ G. E. Morfill,⁵ C. Rau³ C. Deysenroth,³ S. Albrecht,³ M. Kretschmer,^{*} M. Thoma, S. E. Marko, R. Seurig,⁶ A. Stettner,⁶ V. A. Alyamovskaya,⁷ A. Orr,¹ E. Johr,¹ E. G. Lavrenko,⁹ G. I. Padalka,¹⁰ E. O. Serova,¹⁰ A. M. Samokutyayev,¹ G. S. Christoforetti¹¹ Describer 2 and Markov and Markov and Markov and Manufalm, Manchement 82234 Weßling, Germany ²Joint Institute for High Temperatures, Russian Academy es, Izhorskava 13/19, 125412 Moscow, Russia Max-Planck-Institut für Extraterrestrische Physik, Gi 41. Physikalisches Institut, Justus-Liebig-Univerität ⁵Terraplasma GmbH, Lichtenbergstraße 8, 85748 C OHB System AG, Manfred-Fuchs-Straße 1, 82 ⁷S.P. Korolev RSC "Energia," 4A Lenin Stree ⁸European Space Research and Technolog 2200 Noordwijk, The Netherlands 9Central Research Institute for Mach Moscow Region, Russia ¹⁰Gagarin Research and Test Co 11 European Astronaut Cer ber 2016) has been country commissioned on board the system of ran-sized microparticles immersed becomes strongly coupled due to the high New complex-plast International Space in low-press tich surface. D microparticle subsystem of complex kinetic larger which makes complex plasmas appropriate (103-104 e) her phenomena. The main purpose of PK-4 elerate plasma, PK-4 makes use of a classical e switched with the frequency of the order of felt by the relatively heavy microparticles. The to varied allowing to vary the drift velocity of the them. The facility is equipped with two videocameras microna o e imaging, kaleidoscopic plasma glow observation sysand tem and minispectrosector or plas inclingnostics and various microparticle manipulation devices (e.g., powerful manipulation last scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control cent read/DMOS in Toulouse, France) with the support of the space station

written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control centre ADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis. *Published by AIP Publishing*. [http://dx.doi.org/10.1063/1.4962696]

Open access!

8

Hardware

DLR

Automatization: PK-4 CSL-based programming language

About 400 physical commands

10

DLF

Operations

Data retrieval3 TB per mission!!!

DLR

History and outlook

Launch	Oct. 29, 2014
Installation (talk by A. Samokutyaev)	Nov. 27-28, 2014
Commissioning (first scientific operation)	Jun. 1-6, 2015
Campaign 01: • Charge and ion drag	Oct 25-30, 2015
Campaign 02: • Dust-acoustic waves	Jun. 12-17, 2016
Campaign 03: • Charge and ion drag • Shear flow • String fluid	Oct. 9-14, 2016
Campaign 04 (in preparation)	Feb. 12-17, 2017

Scrip

. 23

International collaborations

Scientific collaborations

Core team: immediate access to all data and 50% experiment time

ESA science team

Space agencies and industry

- European-Russian joint project (ESA-Roscosmos special agreement)
- Hardware contracted by ESA
- Accomodation in Columbus module on ISS inside the European Physiological Module (EPM)
- Control center CADMOS in Toulouse
- Roscosmos: Launch and crew support
- NASA is in the process of proposal selection for PK-4 utilisation

Scientific results

DLR

Motion in dc and polarity-switched electric field

Measurement of microparticle velocities vs. polarity switching duty cycle

Talk by T. Antonova

Shear flow

Campaign 3

Talk by V. Nosenko

DLR

Transverse instability of a microparticle cloud

Talk by A. Zobnin

Waves excited by the EM electrode

Spectroscopic diagnostics

Talk by A. Usachev

Problems

DLR

Residual gas flow

•Flow controller valve closes not as good as expected

Leak rate 10 time higher than during the reference measurements at the launch site
Supposed root cause – solid foreign particle stuck in the valve

•Recovery unlikely. Problem can be solved by installing an external valve.

"Stratification"

- Microparticles are confined in local "striations"
- Application of plasma parameters measured on ground questionable
- Problem under investigation, reason unclear

Temperature gradients accross the plasma chamber

• Microparticle clouds loose radial symmetry with time

• Most probable root cause is the thermophoretic force (due to the transverse temperature gradients)

• Smaller (20-30 min) experiment fragments to be separated by cooling intervals (~60 min)

• To be tested in the Campaign 4

Gas-jet dispensers

- Performance unstable
- Problem under investigation

Campaign 4: 12-17 February 2017

Campaign content

- Microparticle charge and ion drag measurements
- String fluid
- Lane formation
- Shear flow
- Laser wave excitation
- Some other tests

PK-4 Core Team

A. Zobnin A. Usachev A. Lipaev V. Molotkov T. Antonova T. Hagl V. Nosenko M. Pustylnik M. Rubin-Zuzic M. Schwabe H. Thomas

M. Thoma M. Kretschmer

UNIVERSITÄT GIESSEN

JUSTUS-LIEBIG-

Special thanks

DLR