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Estimation of Rice Crop Height From X- and C-Band
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Abstract—Rice crops are important in global food economy and
are monitored by precise agricultural methods, in which crop mor-
phology in high spatial resolution becomes the point of interest.
Synthetic aperture radar (SAR) technology is being used for such
agricultural purposes. Using polarimetric SAR (PolSAR) data,
plant morphology dependent electromagnetic scattering models
can be used to approximate the backscattering behaviors of the
crops. However, the inversion of such models for the morphology
estimation is complex, ill-posed, and computationally expensive.
Here, a metamodel-based probabilistic inversion algorithm is pro-
posed to invert the morphology-based scattering model for the crop
biophysical parameter mainly focusing on the crop height estima-
tion. The accuracy of the proposed approach is tested with ground
measured biophysical parameters on rice fields in two different
bands (X and C) and several channel combinations. Results show
that in C-band the combination of the HH and VV channels has
the highest overall accuracy through the crop growth cycle. Finally,
the proposed metamodel-based probabilistic biophysical parame-
ter retrieval algorithm allows estimation of rice crop height using
PolSAR data with high accuracy and low computation cost. This
research provides a new perspective on the use of PolSAR data in
modern precise agriculture studies.

Index Terms—Agriculture, optimization methods, polarimetry,
polynomial approximation, synthetic aperture radar (SAR).

I. INTRODUCTION

R ICE is an important crop, whose cultivation is an impor-
tant building blocks of several economies in the world.

In the history of the agriculture, rice goes back to 8000 BC
and even today, it keeps it’s economical importance for the ru-
ral communities. Therefore, like many other crops, rice needs
to be monitored frequently to optimize it’s competitiveness
in the global food market. Because of these reasons, there is
a wealth of knowledge about rice in the literature, including
it’s morphology, phenology, and the impacts of environmental
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factors on growth. Efficient monitoring techniques such as re-
mote sensing exist for precise agricultural monitoring.

Remote sensing systems provide solutions over large areas.
As an advantage, synthetic aperture radar (SAR) systems pro-
vide day-and-night and all-weather operation capability and un-
like other remote sensing systems, they are sensitive on the
physical properties of the target in the three-dimensional (3-D)
space. Thus, SAR becomes the perfect candidate for precise
agriculture studies in terms of [1], [2] biophysical parameter
estimation.

Considering the precise agriculture concept, the estimation of
crop parameters by means of SAR includes various techniques
such as polarimetry (PolSAR) [3], [4], interferometry (InSAR)
[5], [6], differential interferometry (DInSAR) [7], [8], polari-
metric interferometry (PolInSAR) [9], [10], and tomography
(TOMO-SAR) [11]. In principle these methods, except PolSAR,
allow the estimation of crop parameters such as canopy height.
Also, they do not require any a priori information. However, it
is not always so trivial to acquire such SAR data. At this point by
combining the knowledge of the agricultural and environmental
principles with the fundamentals of the SAR polarimetry, it is
possible to increase the accuracy of low-cost analysis. In this
case, it is possible to combine a priori information such as bi-
ological growth rules and boundaries of a specific crop, with
PolSAR methods which focus on figuring out the interaction of
the electromagnetic waves with the canopy. In this paper, polari-
metric channel and frequency-based comparisons are provided
for a scattering model inversion algorithm, which estimates the
observables from the measurements, to exploit the efficiency of
polarimetric SAR data in estimation of the crop morphology by
focusing on the stalk height.

The growth stage of agricultural crops can be coarsely deter-
mined using methods that employ single [12]–[14] or multiple
[15]–[17] acquisitions. However, none of these methods are ca-
pable of explaining the crop morphology. To estimate the mor-
phology, a deeper relation is required. In the literature, this ex-
planation is covered by two different approaches: backward and
forward. The backward approach [12], [18] shows the relation of
the biophysical parameters and the backscattering coefficients
under different frequencies and incidence angles. On the other
hand, the forward approach uses the scattering models [19]–
[22] to approximate the backscattering coefficients from a given
complex plant morphology. Due to the underdetermined char-
acter of such morphology-based scattering models, analytical
inversion is extremely challenging. Towards solving this issue,
Zhang et al. [4] have applied a genetic algorithm (GA) to esti-
mate the height and density of paddy rice from RADARSAT-2
data. Apart from the methods present in the literature, this study
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focuses on the multi-dimensional distribution of the possible
morphologies by following a probabilistic approach using the
well-known particle swarm optimization (PSO) [23].

Morphology-based scattering models consider the real phys-
ical structure of the plants and, therefore, have complex algo-
rithms. In this complexity, the importance of the parameters
should be known, which is achieved by means of global sensi-
tivity analysis (GSA). This allows understanding of the physics
behind the scattering behavior. The model proposed by [19]
is a well-known example of such scattering models. For the
chosen model, the GSA analysis has been done using Sobel’ in-
dices using a high-dimensional model representation (HDMR),
in terms of the polynomial chaos expansion (PCE) metamodel.
It showed that canopy height and the vertical structural density
are the most important biophysical parameters for the model
output [24]. As a forward step, in this paper, we focus on the
height estimation accuracy of the complex scattering model un-
der different frequencies and channel combinations by taking
coarse growth phase information as a priori.

The paper is structured in four main sections. The proposed
methodology as shown in Fig. 1 is explained including the de-
tails of the scattering model and the metamodel in Section II.
Section III provides a brief explanation of the ground and the
SAR data, and the results of the frequency and the polarimetric
channel comparisons are presented in Section IV. Finally, the
outcomes are summarized in Section V.

II. METHODOLOGY

A. Theoretical Model and the PCE Metamodel

Temporal changes in the SAR backscattering signature of a
rice canopy is closely related to variations in the biophysical
properties (e.g., stalk, leaf, and panicle structure) and the water
content of the canopy in time. This section focuses on the HDMR
of a morphology-based incoherent theoretical scattering model
with the PCE metamodel.

The model used in this study to simulate the rice canopy is
one of the more complex ones in the literature, which considers
complete plant structure. To start with, it considers the complete
plant morphology by allowing for the inclusion of the location
of the scatterers and their quantitative densities. Moreover, it
also takes into account the backscattering enhancement and the
clustering effects of the scatterers [25]. The structural random-
ness of the canopy is considered by means of Monte Carlo (MC)
simulations. Thus, the final backscattering coefficients for dif-
ferent polarimetric channels are calculated by MC simulations
over a group of dielectric cylinders and elliptical disks over a
dielectric half space [26].

The model simulates a unit illuminated area, A. Inside A, the
plants are randomly placed and made sure that none of them are
overlapping. In area A, there are ns plants with nt stalks with
a height of hs and a diameter of ds . Each stalk has nl leaves
with a length of ll and a width of wl . Last but not the least in the
list of plant structures, there are np panicles with a length of hp

and a diameter of dp . In addition, complex dielectric constants
(εs,l) include the effect of the moisture content. Finally, flooded
ground is characterized by the complex dielectric constant εg .

Fig. 1. Block diagram of the proposed approach.

Fig. 2. Scattering mechanisms of an electromagnetic wave and the
corresponding plant elements involved in the chosen backscattering model.

The corresponding theoretical backscattering algorithm con-
siders four independent scattering mechanisms (Sn ), visualized
in Fig. 2.
S1 : Direct scattering from the scatterers.
S2 : Scattering from the canopy followed by reflection from the

ground.
S3 : Reflection from the ground followed by scattering from

the canopy.
S4 : Reflection from the ground followed by scattering from

the canopy and followed by reflection from the ground.
The sum of these four scattering mechanisms relate the inci-

dent (i) wave Ēi to the scattered (s) wave Ēs as follows:

Es
q (r̄) =

eikr

r
(S1 + S2 + S3 + S4) Ēi

p . (1)

In (1), q and p correspond to transmitted and received polar-
ization channels, respectively. Lastly, the backscattering coef-
ficients for the different channels, qp, are approximated from
the ratio between Es

q and Ei
p while the wave travels through the
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distance between the sensor and the target, r, as follows:

σo
qp =

4πr2

A

〈|Es
q |2〉

|Ei
p |2

. (2)

The chosen complex morphology-based scattering model is
computationally expensive due to the included MC simulations,
requiring long computation times. In this paper, this issue is han-
dled by introducing HDMR methods. Such high-dimensional
representations substitute any mathematical model to an input–
output metamodel by applying a polynomial expansion. Such
that, for a function f with input vector x the expansion is written
as

f(x) = f0 +
n∑

i=1

fi(xi) +
∑

i �=j

fij (xi, xj )

+ · · · + f12...n (x1 , x2 , ..., xn ). (3)

The metamodels are the response surface of a surrogate model
with unknown coefficients. Since they are polynomial expan-
sions, their coefficients can be estimated by means of opti-
mization algorithms. Fortunately, when they are compared to
the original model, they provide significantly similar behavior.
With their polynomial-based algorithm, they are memory effi-
cient and computationally inexpensive. It should be mentioned
that using such models as a substitute to the complex mod-
els boosts the efficiency up to 104 times. In this study, PCE,
developed by [27], was implemented in MATLAB using the
Uncertainty Quantification Laboratory (UQLab) toolbox [28].
In this way, it reduces the computational cost of the approach
by handling the multidimensionality of the retrieval problem.

B. Probabilistic PSO

Agricultural crops are biophysically complex structures
through their growth cycle. Inverting the complex mathematical
relation between the morphology and an electromagnetic
wave travelling inside the canopy creates an underdetermined
problem. In such problems, the number of unknowns (i.e.,
morphological parameters) are higher than the number of
equations (i.e., polarimetric backscattering intensities). Select-
ing optimization algorithms is a good tool to overcome this
shortcoming. Using optimization, the extrema (e.g., minima and
maxima) points of the model can be determined empirically.
However, use of data with high variation may reduce their
accuracy by leading to a local extrema. To reduce this uncer-
tainty, a probabilistic approach is preferred, which considers a
constrained region in the parameter space and provides a set of
solutions that includes the function extrema as well. In the prob-
abilistic methods, multiple initiations have been done aiming the
same output to have an idea of the distribution of the solution set.

In the literature, there are several optimization methods to
handle multivariate problems. Methods like GA, artificial neu-
ral networks, and evolution strategy are some examples for flex-
ible and intelligent algorithms. However, due to the complex
logic behind, they require numerous adjustments. In this study,
to keep the inversion approach simple and effective, PSO is
considered. The PSO algorithm optimizes a problem by itera-

tively improving the solution using a population of candidates
based on the initial velocity and position of each particle. Dur-
ing an iteration, each particle is affected by the particle that has
the best position in the search space. Thus, the particle swarm
continuously moves to find the local/global extremes inside
given boundaries [23].

In this study, the fitness function for the PSO algorithm is
developed using the PCE metamodel of the morphology-based
backscattering model. As the PCE metamodel mimics the scat-
tering model, morphology vector X , given in (4), is taken as
an input and the backscattering intensities, σqp is produced as
output

X = [hs, ds , ns, ll , wl , nl , lp , dp , np ]. (4)

The PSO algorithm is used to minimize the output of the fit-
ness function by varying the X vector in every ith initiation. The
full-polarization fitness function of the corresponding optimiza-
tion problem for the ith iteration is given in (5). The structure
of the designed fitness function is flexible and it can be modi-
fied for different channel combinations (e.g., single-, dual-, or
quad-polarization). In other words, based on the preferred po-
larimetric channels, unused components of the fitness function
can be eliminated from the linear equation. The idea behind us-
ing multiple polarimetric channels in the same fitness function is
to consider the same morphological structure and, therefore, to
fix the parameter space. In (5), σqp and σ̄qp correspond to mea-
sured and PCE estimated backscattering intensities in several
qp (HH, HV, VV) channels, respectively

minCi = (σHH − σ̄HHi
)2 + (σHV − σ̄HVi

)2 + (σVV − σ̄VVi
)2 .
(5)

Almost all of the optimization algorithms require boundary
conditions, also called constraints, to reduce the complexity of
the problem and to avoid the presence of misleading results.
In this study, constraints are chosen based on the biophysical
principles of the agricultural crops. The PSO algorithm, used in
this paper, considers the following three given constraints:

1) Positivity Constraint: In the physical world with the bio-
logical growth rules, a plant dimension cannot be negative.
Therefore, this constraint forces the optimizer to keep the
sizes of the all morphological parameters positive under
all conditions.

2) Min–Max Constraint: Based on the coarse growth phase
of the crop, the biophysical parameters have specific mini-
mum and maximum values. The ranges are given in Fig. 5.
For this constraint, the growth boundaries are extended by
10% to take the extreme conditions into account.

3) Morphological Constraint: Within a crop type, each bio-
physical parameter evolves in accordance with the oth-
ers following biological growth rules. Because of this,
some crop morphologies are biophysically impossible to
observe under healthy conditions. Such as, it is not pos-
sible to observe a rice plant with 2-m-height and 1 leaf
with 10 cm in length. Thus, they are eliminated using the
convex hull obtained from the ground-based morphology
dataset. By this, biophysically possible morphologies are
obtained.
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Fig. 3. Location of the test area (TA) (Ipsala, Turkey). The test fields for the
ground measurement are also marked in the figure. Photos at the left represent
rice fields in given dates for the field marked with red color.

Such constraints bound the optimizer, thus, reduce the com-
putational cost. Additionally, the use of morphological growth
boundaries increases the accuracy of the analysis. The opti-
mization procedure is stopped after the percent change in the
elements of the morphological vector is less than 1%. In this
study, the PSO algorithm has been initialized 200 times to gen-
erate representative parameter distributions. Lastly, the mode
of the resulting distribution is used as the extrema point of the
fitness function.

III. DATASETS

A. Ipsala Test Site and Ground Data

The investigated area is near the Lake Gala National Park in
the Thrace region, north west of Istanbul, Turkey. It is centered
at 37◦7′53′′N and 6◦19′32′′E and has a flat topography. It is
one of the major rice cultivation areas in Turkey with an area
of 20 km×30 km. In the region, single season rice cultivation
is done from late April to early October. The Meriç (Evros
or Maritsa) river flows close to the rice fields and provides the
majority of the fresh water requirement of the irrigation districts.
Fig. 3 visualizes the location of the test site and the fields with
example photos from a test field.

The ground surveys were conducted synchronous to the SAR
data acquisitions to measure the rice crop morphology through
the full growth cycle. A total of five test fields were selected
from the area of interest, which were georeferenced by a GPS
before the campaign. At each test site a total of seven biophysical
parameters were monitored: stalk height above water surface,
stalk diameter, leaf length and width, number of plants per m2 ,
number of tiller per plant, and number of leaves per tiller. Addi-
tionally, the growth stages are reported in terms of the BBCH,
which increases from 0 to 99 during the phenological cycle.
Fig. 4 visualizes the temporal trend of the BBCH stage of the
test sites.

Fig. 4. Acquisition dates for SAR data in 2014, given with the temporal
variation of the BBCH stages for test fields.

Fig. 5. Temporal variations of the rice crop biophysical parameters from 2014
Ipsala ground campaign with respect to the growth stage as a Box-and-Whisker
plot. Box presents the information for the quartiles while the whiskers present
minimum and maximum values.

Fig. 5 shows the temporal changes in biophysical parameters
as a function of the BBCH. For each parameter, a quasi-linear in-
crease is observed until midlate reproductive stage. Later, while
most of the morphological parameters tend to stabilize, the stalk
diameter starts to decrease due to reduced water content. The
differences within descriptors at a specific growth stage can also
be related to the differences in the surrounding environment.

B. SAR Data

The Ipsala test site was observed with the TerraSAR-X (TSX)
and RADARSAT-2 (RS2) in 2014. The acquisition dates of the
TSX and RS2 data are shown in Fig. 4. The TSX data were
acquired by the German Aerospace Center (DLR) and the RS2
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TABLE I
INPUT PARAMETERS THAT ARE KEPT CONSTANT FOR THE SIMULATIONS GIVEN

FOR BOTH TESTED FREQUENCIES

Parameter X-band value C-band value

Central frequency [GHz] 9.65 5.35
Dielectric constant, plant 25.7 + 8j [25]
Dielectric constant, ground 74 + 21j [25]
Average incidence angle [deg] 31 29
Distance to target [km] 514 798
Illuminated area x-size [km] 2.6 7.6
Illuminated area y-size [km] 1.8 5.2
Number of realizations 250

by the Canadian Space Agency. The data is delivered in single
look complex (SLC) format and coregistered by using bilinear
interpolation.

TSX and RS2 systems have two major differences. First, TSX
operates in the central frequency of 9.65 GHz, while RS2 op-
erates in the 5.35 GHz. Due to this difference, TSX is more
sensitive to small-scaled biophysical changes. Also, the pene-
tration depth inside the canopy increases with decreasing fre-
quency. Therefore, RS2 interacts more with the lower parts of
the canopy. Second, TSX and RS2 have temporal resolution
of 11 and 24 days, respectively. Such that, TSX allows more
frequent monitoring than the RS2 system.

IV. RESULTS AND DISCUSSIONS

This paper presents two important comparisons for the esti-
mation of biophysical parameters using a proposed probabilistic
inversion approach. The first comparison considers the effect of
frequency (see Section IV-A) between X- and C-band SAR data.
The second comparison takes the possible polarimetric channel
combinations into account (see Section IV-B). For the second
comparison, quad-pol RS2 data are used. The accuracy of com-
parisons are not only evaluated over the correctness of the esti-
mation, but also the convergence rate of the optimization-based
algorithm.

This rate of convergence can be quantified using three ba-
sic statistical parameters, which tests the similarities between
resulting set of solution and its relationship to the delta func-
tion. The first parameter, range, is the difference between the
maximum and the minimum value of the distribution. Higher
range means that distribution is widely spread. In terms of con-
vergence, it means that the algorithm has a comparable lower
rate of convergence. The second parameter is absolute value of
the one minus the ratio between the mean and the median of the
resulting distribution. As this value gets closer to zero, skewness
of the distribution reduces and convergence increases. The third
and the last parameter is the standard deviation of the resulting
distribution, which is sign of a higher convergence rate with its
lower value.

A PCE metamodel representing a theoretical electromagnetic
backscattering model is used for the forward approach which
simulates from the biophysical parameters to obtain backscatter-
ing coefficients. The parameters given in Table I were assumed
constant during the evaluations, either due to low degree of sen-

TABLE II
MEASURED SAR VERSUS THE ESTIMATED THEORETICAL BACKSCATTERING

INTENSITIES GIVEN BY R2 AND RMSE VALUES FOR DIFFERENT CHANNELS

R2 RMSE [dB]

TSX HH 0.871 2.02
X-band VV 0.846 1.91

RS2
HH 0.813 2.48

C-band
HV 0.782 2.85
VV 0.831 2.23

sitivity of the backscattering model to the parameter or because
they are system parameters [29].

Based on the constant parameters shown in Table I, simula-
tions for the available ground data are completed. The accuracy
analysis of the simulations are provided in Table II. Interpret-
ing the results, simulations for the individual band showed that
copolar X-band channels has a slightly higher accuracy than C-
band. Additionally, X-band HH channel and C-band VV chan-
nel provided higher R2 (coefficient of determination) and lower
root mean square error (RMSE) values. The lowest accuracy
was observed in C-band cross-polarization channel, HV.

The chosen backscattering metamodel is strongly affected
by the changes that take place in biophysical parameters. GSA
based on the PCE variance decomposition showed that the ma-
jority of the uncertainty in the metamodel output is due to the
canopy height and the vertical density of the scatterers. Ad-
ditionally, starting from the late reproductive stage, the den-
sity of the panicles significantly contributes to the metamodel
output [24].

The scattering metamodel and the proposed probabilistic in-
version algorithm considers complete morphological structure.
Therefore, each height value is supported with a full physical
structure including stalk density, leaf length and width, pani-
cle length and diameter and density descriptors as number of
plants per m2 and number of tiller, leaves, and panicles per
plant. Consequently, the results need to be analyzed by taking
this information into account.

The following sections present the estimation accuracy of the
height parameter, which has the highest uncertainty among the
model input parameters, in the scattering metamodel. The re-
sults were obtained using the proposed probabilistic inversion
algorithm over the metamodel using the PSO given for differ-
ent frequencies (see Section IV-A) and different polarization
combinations (see Section IV-B).

A. Estimation Accuracy: X-Band and C-Band

As shown in Fig. 6, the probabilistic inversion of the scat-
tering algorithm for height estimation are calculated for three
distinct times that have different coarse growth phases. The first
group of results belong to the early vegetative and the following
two groups correspond to late vegetative and early reproduc-
tive stages, respectively. In order to have a viable study, similar
resolutions in TSX and RS2 data and HH–VV channel combina-
tion fitness function are used for the optimization analysis. For
this, 13 × 13 and 11 × 11 window sizes are used for TSX and
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Fig. 6. Height estimation accuracy distribution plots for three different dates and for five spatially independent Test Areas (TA). T and R correspond to
TerraSAR-X and RADARSAT-2, respectively. Number of iterations = 200.

TABLE III
FIELD AVERAGE CONVERGENCE RATE VALUES X- AND C-BAND DATA IN THE

EARLY VEGETATIVE PHASE

X-band C-band

Range 0.19 ± 0.02 0.15 ± 0.03
abs (1-(Mean/Median)) 0.15 ± 0.01 0.05 ± 0.03
Standard deviation 0.071 ± 0.015 0.042 ± 0.007

RS2, respectively. The results are presented over five indepen-
dent test fields. The color scale in Fig. 6 represents the detection
probability of the canopy height with the black line representing
the value of the field-averaged ground measurement.

During the early vegetative stage, the probabilistic inversion
algorithm for each frequency has consistent results. In this stage,
stalk height varies between 5 and 30 cm. There is no obvious
over- or under-estimation trend for the full test fields. The ma-
jority of the deviation of the estimation from the ground mea-
surement varies in the range of ±10 cm. Besides, as shown in
Table III, the proposed algorithm has better rate of convergence
in C-band compared to X-band. This may originate from the
sensitivity of X-band to smaller scaled morphological changes,
in which the growth of plant structures affect X-band backscat-
tering behavior stronger than C-band.

After the early vegetative stage, the plant goes into the late
vegetative phase. During this stage, the plant height evolves
from 15 to 110 cm, while the backscattering intensities increase
10 dB in average for each individual channel (e.g. HH, HV, and
VV). Moreover, as shown in Fig. 5, this phase has the largest
available morphological parameter space. Therefore, as shown
in Table IV, the convergence rate for different morphological

TABLE IV
FIELD AVERAGE CONVERGENCE RATE VALUES X- AND C-BAND DATA IN THE

LATE VEGETATIVE PHASE

X-band C-band

Range 0.80 ± 0.06 0.83 ± 0.07
abs (1-(Mean/Median)) 0.06 ± 0.03 0.05 ± 0.03
Standard deviation 0.151 ± 0.012 0.134 ± 0.017

TABLE V
FIELD AVERAGE CONVERGENCE RATE VALUES X- AND C-BAND DATA IN THE

EARLY REPRODUCTIVE PHASE

X-band C-band

Range 0.31 ± 0.07 0.29 ± 0.06
abs (1-(Mean/Median)) 0.03 ± 0.02 0.03 ± 0.02
Standard deviation 0.032 ± 0.007 0.033 ± 0.008

parameters are reduced in both frequencies, which causes a
higher deviation in the inversion results. Additionally, in this
stage the scattering algorithm tends to underestimate for X-
band and over estimate for C-band. This condition has both
model-based and physical reasons. From the model point of
view, variation in the model parameters changes the value of the
optimum solution. Besides, the difference in the data calibration
methods for the TSX and RS2 data may effect this situation. The
other important issue is the frequency. Since the frequency is
important for the interaction with the target, it may cause under-
or over-estimated results. Thus, based on these two reasons,
small degree of deviation (≤ 10 cm) is accepted.

Finally, the last case of the frequency comparison analysis
belongs to the early reproductive stage. During this stage, the
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Fig. 7. Height estimation accuracy distribution plots for seven different polarization channel combinations, five different dates for five spatially independent
TAs. Number of runs for the PSO = 200. The x-axis is sorted with respect to the increasing height. (a) Single Pol: HH, (b) Single Pol: HV, (c) Single Pol: VV,
(d) Dual Pol: HH&HV, (e) Dual Pol: HV&VV, (f) Dual Pol: HH&VV, and (g) Quad Pol: HH&HV&VV.
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canopy height increases from 75 to 120 cm. Moreover, by initia-
tion of the ears and the panicles slows down the decreasing trend
of the backscattering intensities and turns them to an increasing
trend. In terms of the convergence rate of the metamodel, given
in Table V, an antipodean situation is observed due to given
morphological reasons with respect to the late vegetative stage.

In overall, under the same conditions for the incidence angle
and the local resolution, the convergence rate of C-band is ob-
served to be higher than X-band in the vegetative stage of the
rice fields. However, in the early reproductive stage, the degree
of convergence increases significantly for X-band, while it de-
creases for C-band due to small-scaled changes in the plant mor-
phology. In addition, since the model is not capable of perfectly
explaining the backscattering behavior, the amount of deviation
in the mode of the distribution resulting from the ground mea-
surement values can be considered acceptable for any industrial
monitoring applications.

B. Estimation Accuracy: Single-, Dual-, and Quad-Pol

The estimation accuracy analyses for the different channels
have been carried out using seven cases corresponding to differ-
ent single polarimetric (HH, HV, and VV) or multiple polarimet-
ric channels (HH&HV, HV&VV, HH&VV and HH&HV&VV).
In this section, the probabilistic inversion algorithm for the bio-
physical parameter retrieval is applied over the fully polarimetric
RS2 data, which was acquired through the full growth cycle of
rice crops in total of five acquisitions.

The results of the probabilistic inversion are presented in
Fig. 7 for each fitness function and test field. The color scale
used in Fig. 7 is based on the observance probability of the
results, with the black line emphasizing the ground measured
value. The outcomes are thoroughly analyzed in Fig. 8. The
analysis covers the standard deviation and the bias between the
mean of the distribution and the ground measured value. A sum-
mary presenting the distance with the mean of the results and the
optimum solution, point (0,0), is given in Table VI. The chan-
nel comparison over the optimization procedure is discussed for
each growth phase (e.g., early vegetative, late vegetative, early
reproductive, late reproductive, and maturative) separately to
provide a clear view about the effect of the distinct morpholog-
ical differences.

1) Early Vegetative (St.1): The highest height retrieval ac-
curacy is observed with the single channel fitness function of
the HH polarization, while the lowest is observed with the VV
channel. From the optimization with dual-polarization config-
urations, all options have provided similar distributions. How-
ever, the quad-polarization fitness function has resulted in a
lower accuracy compared to dual-polarization fitness functions.
Therefore, the probabilistic retrieval of the height parameter in
the first phase of the growth can be achieved solely using the
HH intensity. This condition is supported by the plant morphol-
ogy. The reason is that the stalks are mostly underwater with all
the leaves above the water surface. This results in weaker inter-
action of electromagnetic waves with the vertical structures of
the canopy. Consequently, the canopy height is underestimated
more for the VV polarimetric channel.

Fig. 8. Stage average of standard deviations versus scene average of mean
bias values are given with error bars representing the corresponding standard
deviations.
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2) Late Vegetative (St.2): In order to decide upon the es-
timation quality of the stalk height retrieval algorithm in the
second stage, the growth boundaries should be remembered.
Due to the wide range of possible solutions, the results tend to
have a higher variance around the optimum solution as observed
in ground measurements. Vertical structures of the canopy are
formed during the late vegetative phase of the growth. Thus, the
results with the VV including fitness functions have higher ac-
curacy. The highest accuracies are observed in the VV, HV&VV
based fitness functions. However, in contrast to the early veg-
etative phase of the growth, the lowest accuracy was observed
in the single-polarization HH function due to strong attenuation
from the leaves.

3) Early Reproductive (St.3): The early reproductive stage
can be described as a growth-wise saturation stage for the plant
height. The rate of increase for the canopy height slows down
significantly in this phase. However, the plant wet biomass con-
tinues to increase. Since the physical structure of the canopy
is continuing to be mainly vertical, VV channel fitness func-
tion continues to have the highest accuracy. Besides, the height
retrieval from the fitness function of the HV channel in combi-
nation with VV has the lowest accuracy.

4) Late Reproductive (St.4): In the late reproductive stage
of the growth cycle, the plant reaches its maximum wet biomass
and structural density. Therefore, in this dense structural envi-
ronment none of the single polarization-based fitness functions
have high accuracy. Besides, the HV channel is significantly
different from the ground value compared to the rest of the
cases. In this growth phase, the fitness functions of the HV&VV,
HH&VV, and HH&HV&VV combinations showed the highest
accuracies.

5) Maturative (St.5): As the rice field reaches the end of
its growth cycle, the water content decreases and the vertical
structure becomes easily observable again. This condition is
also observed in the probabilistic retrieval of the stalk height
parameter. The fitness function that takes the VV channel into
account has the highest accuracy compared to the others. On the
other hand, the function for the HH&VV channel combination
has the lowest accuracy.

The extensive analysis of the proposed probabilistic inver-
sion of a morphology-based electromagnetic scattering model
approach shows that there is no single fitness function present
for the retrieval of the stalk height in rice fields. From the set of
single channel fitness functions, the function of the VV channel
shows superiority in most of the growth phases. However, a so-
lution obtained through a single channel fitness function (e.g.,
HH, HV, and VV) may result in a stronger deviation from the
optimum solution with respect to the function of the polarimetric
channel combinations. Therefore, to provide the morphological
consistency in the 3-D space, the channel combinations with
at least two channels should be preferred. So, until the matu-
ration stage, the fitness function for the HH&VV combination
has lower average standard deviation and lower bias between
the solution and the ground measurement, based on Table VI.

The observed deviation in the results mainly occurs from
three reasons. The first reason is in the accuracy of the scatter-
ing model in explaining the scattering mechanisms. Since the

TABLE VI
EUCLIDEAN DISTANCE [CM] BETWEEN THE MEAN OF THE ANALYSIS RESULT

AND THE GROUND MEASUREMENT

Polarization St.1 St.2 St.3 St.4 St.5

HH 2.97 17.81 4.95 6.80 5.57
HV 3.64 14.60 5.16 11.32 7.72
VV 5.05 12.02 3.67 8.88 3.72
HH,HV 3.21 16.04 4.86 8.41 7.06
HV,VV 3.09 11.94 7.59 4.96 6.02
HH,VV 3.31 13.82 5.49 4.48 8.27
HH,HV,VV 4.22 15.43 4.38 4.84 6.91

Lower distance indicates higher accuracy.

model cannot consider the environmental impacts and has sim-
plifying assumptions about the plant morphology, it would be
mathematically impossible to expect perfect inversion results.
The second reason is the presence of the speckle noise. Even
with spatial smoothing, the presence of the noise in the SAR
data affects the backscattering intensities. The third and the
least significant reason is the accuracy of the PCE metamodel in
fitting to the backscattering model. Considering all the reasons,
the majority of the deviation originates from the first reason,
the forward approach accuracy of the backscattering model. It
can be solved by using an alternative scattering model, which
needs to be able to provide a better explanation to the scattering
behavior of the rice canopy.

The drawbacks of the proposed approach lie in two important
points. The first point is the requirement of a preclassification
for the decision of the coarse growth phase and the second one
is the requirement of the biological growth boundaries for the
rice crop. It needs to be mentioned that first issue has already
been studied in the literature and several statistical methods
have already been proposed such as in [16], [17], and [30]. For
the second case, the morphological information about all major
crops, including rice, are available in the literature to avoid
impossible structures such as plants with 2 m stalk height and
2 cm stalk diameter.

V. CONCLUSION AND FUTURE WORK

In this paper, a probabilistic inversion method for a scatter-
ing model has been proposed, applied and tested for biophysical
parameter retrieval such as stalk height of rice crops from polari-
metric SAR data. The proposed probabilistic inversion scheme
is designed to be computationally efficient using HDMR meth-
ods, specifically a PCE metamodel. The approach requires a
preclassification step for the coarse growth phase and the bi-
ological growth boundaries of the rice crops. In this method,
unlike the previous ones, the biophysical parameters of the tar-
gets are estimated in terms of their probability distributions for
a specific polarimetric backscattering intensity. In other words,
the retrieval algorithm is developed to estimate the multivariate
distribution of the possible plant structures that correspond to
a measured backscattering intensity under different conditions
like different frequencies and polarimetric channels.

The accuracy of the proposed methodology was tested in rice
fields for two different frequencies (X- and C-band) and seven
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different cases of polarimetric channel combinations. In terms
of the frequency comparison, inversion outcome in X-band
provided higher accuracy than C-band with higher sensitivity to
morphological variations. This higher sensitivity in X-band can
be explained by the small-scaled developments in the plant mor-
phology compared to the wavelength. Additionally, the channel
combination comparison in C-band pointed out that, due to
vertical structure of the canopies, use of VV channel or the
combination of the HH&VV channels has higher overall height
estimation accuracy through the growth cycle.

Since the scattering model considers the physical changes in
3-D space including all components of the plant morphology,
the applicability of the proposed approach is expected to be valid
for different locations. However, the performance of the proba-
bilistic inversion algorithm mainly depends on the accuracy of
the forward scattering model in explaining the scattering behav-
ior. Lower accuracy of the forward electromagnetic scattering
model may lead to stronger deviations from the real value of
the biophysical parameter. It is also possible to apply the given
approach for the determination of full plant morphology such as
canopy density and corresponding dimensionality of the leaves
or panicles. However, following the outcomes of the GSA the
research is focused on the stalk height, which is the most sig-
nificant parameter for the polarimetric backscattering intensity
in rice crops.

Finally, the novel approach presented in this study empha-
sizes the use of PolSAR for biophysical parameter estimation
using a metamodel based and, therefore, computationally inex-
pensive morphology-based electromagnetic scattering model.
Using such metamodels allows use of normally computation-
ally expensive algorithms in industrial applications for much
lower costs.

In the future, it is planned to broaden the use of the pro-
posed algorithm on different crops under the concept of the
precision agriculture. Moreover, the improvement of the proba-
bilistic retrieval algorithm and HDMR methods to eliminate the
preclassification step will be a subject of future research.
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