
A Platform for Bimanual Virtual Assembly Training with Haptic Feedback in
Large Multi-Object Environments

Mikel Sagardia∗, Thomas Hulin, Katharina Hertkorn, Philipp Kremer, and Simon Schätzle
German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Wessling, Germany

Abstract

We present a virtual reality platform which addresses and integrates
some of the currently challenging research topics in the field of vir-
tual assembly: realistic and practical scenarios with several com-
plex geometries, bimanual six-DoF haptic interaction for hands and
arms, and intuitive navigation in large workspaces. We put an es-
pecial focus on our collision computation framework, which is able
to display stiff and stable forces in 1 kHz using a combination of
penalty- and constraint-based haptic rendering methods. Interaction
with multiple arbitrary geometries is supported in realtime simula-
tions, as well as several interfaces, allowing for collaborative train-
ing experiences. Performance results for an exemplary car assem-
bly sequence which show the readiness of the system are provided.

Keywords: haptic rendering, virtual assembly, haptic devices, in-
teraction techniques

Concepts: •Software and its engineering → Virtual worlds
training simulations; •Human-centered computing → Haptic
devices; •Computing methodologies→ Virtual reality;

1 Introduction

In Virtual Assembly (VA) simulations with haptic feedback, users
typically select, move and manipulate objects in a synthetic envi-
ronment by means of a haptic device with the goal of placing and
fixing them in their target positions. They not only see the interac-
tions of the manipulated parts, but also feel the collisions through
the haptic device. Realtime VA simulations have been for long
very appealing to product development and manufacturing indus-
tries, since they enable revision and optimization of parts in a faster,
more efficient and more economic way [Zorriassatine et al. 2003].
While traditionally difficult to build and expensive real prototypes
have been tested before production, in Virtual Environments (VE),
engineers can instantaneously check and update their provisional
virtual mockups, or even the experience and expertise of assem-
bly line technicians can be incorporated to earlier stages of product
design.

The field of VA comprises many research and development areas,
starting from basic technical issues like data format conversion,
standardization and handling, and continuing with assembly verifi-
cation [Gomes de Sá and Zachmann 1999], optimal and automatic
assembly sequence planning [Sung et al. 2001], natural realtime

∗e-mail: mikel.sagardia@dlr.de
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. c© 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
VRST ’16, November 02 - 04, 2016, Garching bei München, Germany
ISBN: ACM 978-1-4503-4491-3/16/11
DOI: http://dx.doi.org/10.1145/2993369.2993386

simulation and interaction [Zachmann and Rettig 2001], evaluation
of ergonomic and performance factors [Lim et al. 2007], or training
and skill transfer [Gutiérrez et al. 2010].

We focus on the particular topic of interactive multimodal virtual
simulations which cover visual and haptic feedback. Haptic feed-
back has been shown to improve manipulation performances [Gar-
baya and Zaldivar-Colado 2007], and, in particular, force feedback
was reported to be more efficient than other modalities when it
comes to build an accurate mental picture of tasks during virtual
manipulations [Sagardia et al. 2012].

In this line, we present a system that addresses some of the chal-
lenges that current VA systems with haptic interactions need to tar-
get, as highlighted in recent surveys [Seth et al. 2011], [Liu et al.
2015]:

(i) realtime (1 kHz) collision handling with several realistic and
non-simplified geometries directly exported from CAD envi-
ronments,

(ii) bimanual six-DoF force and tactile interaction for hands and
arms via interfaces that try to be as transparent as possible to
the user,

(iii) and intuitive upper body navigation in large workspaces that
overcomes the spatial limitation present in many desktop en-
vironments.

Our system supports collaboration through several interfaces that
can interact simultaneously, allowing the instructor to train the
trainee during the same session. Additionally, assembly sequences
can be comfortably defined having the CAD parts and their target
poses. Exemplary performance results are reported and the attached
additional video illustrates them.

2 Related Work

For a realistic and immersive interaction in virtual assembly envi-
ronments with haptic feedback, (i) collisions between objects and
assembly features must be similar to the ones in the physical re-
ality, (ii) the employed user interfaces must operate synchronized
and according to the capabilities of the human senses, and (iii) nat-
ural or at least intuitive interaction techniques must be provided.
In the following, we describe these requirements, focusing on col-
lision computation and display.

Collision computation is considered to be the most expensive task
in this process and it consists in, first, detecting or avoiding inter-
ferences between geometries, and, second, rendering contact forces
upon overlap. Next, those forces can be displayed to the user via
haptic interfaces or the motion equations that depend on them can
be integrated to obtain the position values of the next time step.
Both processes of detecting collisions and computing forces can be
resolved simultaneously or sequentially; in any case, collision de-
tection is usually the bottleneck, and it becomes more expensive
as the complexity of objects increases (i.e., number of polygons
or non-convex shapes). Therefore, still nowadays, many solutions
simplify the geometries in the scene in order to achieve realtime
rates. Typically, force computation algorithms are classified to be

http://dx.doi.org/10.1145/2993369.2993386


one of three types according to the principle they are based on.
First, the probably computationally less expensive penalty-based
approaches compute forces using overlap metrics (i.e., penetration)
between objects. The Voxelmap-Pointshell (VPS) algorithm [Mc-
Neely et al. 1999] is a well known example. Second, the impulse-
based methods apply velocity changes (or impulses) necessary to
avoid the contacts that occur in collision cases, such as in [Mir-
tich and Canny 1994]. And, finally, usually the most complex
constraint-based algorithms compute optimum object configura-
tions so that overlapping objects do not intersect. A notable ex-
ample is the god object method in [Ortega et al. 2007].

Virtual coupling [Colgate et al. 1995] is a widely used method to
achieve stiff but stable display of forces. With this method, the
virtual representation of the device position (haptic handle) is con-
nected to the grasped object (the one visualized) with a spring-
damper system. The stiffness of the displayed forces and torques
is the one of the coupling.

Another approach to provide collision feedback to the user consists
in displaying forces related to selected geometry features that define
assembly constraints (i.e., hole axes, support planes, etc.) [Tching
et al. 2010]. In general, these methods are computationally less
expensive and more accurate when objects are close to the mating
configuration, but they require usually more manual definition and
lead to less realistic interaction.

Multimodal VEs comprise interfaces that target visual, haptic and
auditory senses. The simulation and also the interfaces must mate-
rialize feedback with the smallest latencies possible and in synchro-
nization with all other modalities in order to cause a sensation of re-
ality and immersion, and avoid cybersickness [LaViola Jr 2000]. In
this sense, haptics and its interfaces face up challenging update rates
of 1 kH, not only due to the human haptic perception system, but
also due to stability issues that arise with slower frequencies [Srini-
vasan and Basdogan 1997]. Moreover, haptic devices operate in de-
manding high dynamic ranges: they must be able to move transpar-
ently and instantaneously constrain the movement of their motors
with the highest torque possible. Additional requirements and con-
crete values related to the needed human-machine haptic range, res-
olution and bandwidth are reported in [Tan et al. 1994]. A plethora
of haptic interfaces with different targeted properties (desktop de-
vices, bimanual, wearable, tactile, etc.) have appeared in recent
years, both experimental and commercial. Reviewing them is out
of the scope of this work, but we refer the reader to [Talvas et al.
2014], which surveys bimanual haptic systems.

In strong relation with the user interfaces there are the interaction
techniques that enable the human-machine communication. Ac-
cording to [Bowman and Hodges 1999], there are four main classes
of 3D interaction: (i) navigation, (ii) selection, (iii) manipulation,
and (iv) system control. The early work in [Gomes de Sá and Zach-
mann 1999] presented, for instance, a rich variety of exemplary
multimodal interaction techniques. In that work, selection and ma-
nipulation was achieved with natural grasping, which was simu-
lated with a virtual hand controlled via a data glove with tactile
feedback. As for system control, hand gestures were recognized,
natural speech recognition was implemented and the users could
interact with overlaid menus.

Several non-commercial VA systems with haptic feedback have
been presented in the past years. [Seth et al. 2011] and more
recently [Liu et al. 2015] have surveyed the field, the latter fo-
cussing on physically-based interactions. In the following, we de-
scribe some VA platforms and applications that appeared in the last
decade. Most of them are desktop-based and many use different
versions of the Phantom1 device for force feedback. Additionally,

1http://www.geomagic.com/en/

in many of them, conventional physics engines are used for colli-
sion computation, which often force to simplify geometries or keep
a moderate complexity in the scene. In our system, on the other
hand, upper body movements are supported and the collision detec-
tion engine allows for large-scale scenarios with several complex
objects (non-convex) composed of millions of triangles.

The MIVAS platform [Wan et al. 2004] is a multimodal VA system
with which the users can manipulate complex objects in a CAVE
(cave automatic virtual environment) with a virtual hand avatar
moved through a CyberGrasp2 hand exo-skeleton. Collision forces
are displayed at the fingers. Manipulations with a virtual hand can
lead to very natural interactions, but can also become uncomfort-
able due to the complexity of the interfaces. Additionally, the sys-
tem receives voice inputs. SHARP [Seth et al. 2006], on the other
hand, is a bimanual virtual assembly simulator that uses two Phan-
toms and physically-based modeling with the Boeing VPS colli-
sion computation algorithm. Their system supports head-mounted
displays (HMD) and also a CAVE, and they computed swept vol-
umes for later assembly analysis. Similarly, the work in [Howard
and Vance 2007] presents a system where complex parts (which are
simplified for collision detection) can be bimanually manipulated
with Phantom Omni devices. The authors test the performance of
the system while handling some motor parts and in a drop-peg-in-
hole scenario when using low- and high-end desktop computers.
Also bimanual, IMA-VR [Gutiérrez et al. 2010] is a multimodal
platform that focusses on training assembly skills. The dominant
hand controls the haptic device (their own developed LIFhAM or a
Phantom) and the motion of the non-dominant is captured for ges-
ture commands. Diverse direct and indirect aids are implemented
in the simulation to accelerate the learning of the trainee, including
tele-mentoring, in which trainers can guide the movement of the
apprentice. In [Xia et al. 2011], HVAS is described, a virtual as-
sembly system that implements a hierarchical scene graph divided
into several layers, from the assembled product itself to polygons.
A Phantom device is used and the authors prove in a user study
that their geometry constraints and guidance forces improve per-
formance. HAMS [Gonzalez-Badillo et al. 2014] is another exam-
ple of bimanual haptic assembly and manufacturing system able
to handle manipulation with two Phantoms. The authors perform
collision feedback with a mixed approach in which part collision
detection and assembly constraints are displayed. Trajectories are
visualized with colored spheres which encode movement properties
for later analysis. The system is additionally validated with ques-
tionnaires after a user study where assemblies of realistic objects
such as a bearing puller or a gear oil pump are performed. Biman-
ual and covering upper body movements, VR-OOS [Sagardia et al.
2015] is a virtual reality system for satellite on-orbit servicing sim-
ulations based on the previous version of the setup presented in this
work. Interactions are possible with two DLR/KUKA Light Weight
Robots transformed as haptic devices. The system focusses on col-
lision detection and physical motion simulation of parts in a space
environment. The goal of the authors is to research on systems
able to test maintenance scenarios in space and eventually generate
(virtual) experience data for astronauts or robotic systems. More
recently, VMASS [Al-Ahmari et al. 2016] was presented, a vir-
tual manufacturing assembly simulation system which focuses on
the integration of several interfaces and software modules with the
goal of providing the most adequate feedback to trainees. The sys-
tem consists of a powerwall (but supports also HMDs) and objects
are manipulated with a Phantom Desktop and a 5DT3 data glove
with vibrotactile feedback.

As mentioned, and now illustrated, most of the VA systems are

2http://www.cyberglovesystems.com/cybergrasp/
3http://www.5dt.com

http://www.geomagic.com/en/
http://www.cyberglovesystems.com/cybergrasp/
http://www.5dt.com


(a) (b) (c) (d) (e) (f)

HD(k)
p

HS(k)
fVC

fP

HS(k - 1)

Figure 1: Point sampled and voxelized representations of a virtual electronic box and a screw driver. (a) Partially voxelized screw driver.
(b) Close up of the voxelized screw driver. (c) Sagital section of the voxelized screw driver: distance (turquoise-blue) and penetration
(yellow-red) values embedded in the voxelized structure. (d) Point-sphere tree of the electronic control box: one sphere level in green and
two successive point levels. (e) Close up of the two last point levels: the blue set contains 4× more points than the yellow, which is also
contained in the blue. (f) Constraint-based computation: although the device frame (HD) is overlapping, only the non-penetrating god object
is displayed on the contact surface (HS); the virtual coupling forces (fVC) are computed out of the difference of the device and surface
frames.

desktop-based and use physics engines that simplify geometries for
collision rendering. Yet, real assembly scenarios can be large and
consist of multiple complex objects. In that sense, our platform
brings up a novel system to the playground that is able to tackle
those aforementioned shortcomings. Analyzing the effect of using
either a desktop-sized or a larger interface for the presented scenario
is certainly a necessary step, as commented in Section 6, but out of
the focus of this paper. Nonetheless, we believe that increasing the
workspace results in increasing realism.

3 Simulation Framework

This section deals with the different software engines used in order
to create the realtime multi-body assembly simulation. We espe-
cially focus on the collision computation modules in Section 3.1
and Section 3.2.

3.1 Penalty- and Constraint-Based Collision Computa-
tion of an Object Pair

Our core collision computation engine is founded on the penalty-
based Voxelmap Pointshell (VPS) Algorithm [McNeely et al.
1999], and the force computation is performed with a constraint-
based approach similar to the god object method introduced in [Sal-
isbury and Tarr 1997].

The VPS algorithm is able to render six-DoF (net forces and
torques) contact forces between arbitrarily complex geometries
in 1 kHz using voxelized representations and point-clouds, as
shown in Figure 1. Our VPS implementation was built from the
scratch and enhanced with signed distance fields and point-sphere
trees, as proposed by several authors [Barbič and James 2008],
[Sagardia et al. 2014]. Since each level of the tree samples the
whole object, time critical level-of-detail traverses are possible.
These data structures are created offline in few seconds from CAD
polygonal models, without manual pre-processing. Independently
of the tessellation quality, only the vertices of the original model are
used for the computation ignoring the normal vectors, which over-
comes many issues still present in CAD-VR geometry handling and
conversion tools [Liu et al. 2015]. These input vertices are used
to re-sample all object surfaces with the desired resolution and to
compute automatically correct normals that point inwards.

Unfortunately, the VPS method requires the geometries slightly to
overlap, and, therefore, they can pop through thin surfaces. For
that reason, a constraint-based force rendering method is used on
top of the penalty-based VPS algorithm, as described in [Sagardia

and Hulin 2016]. As shown in Figure 1(f), this method computes
a god object proxy that remains on the surface (HS); this proxy
is the one visualized to the user, not the overlapping device frame
(HD). In order to compute the god object pose, the distance field
object is artificially dilated (usually two voxel layers are enough).
Then, the penetration (p) and penalty forces (fP, tP) of the last god
object configuration (HS(k − 1)) are computed with our VPS im-
plementation. The unconstrained movement of the proxy is the one
which tries to go from the last god object pose (HS(k − 1)) to the
current device pose (HD(k)). If we constrain that transformation
(from S(k − 1) to D(k)) with the penalty values (p, fP, tP), we
obtain the current god object pose: HS = HS(k). That is essen-
tially performed by blocking any translation or rotation component
that opposes to the penalty forces and torques. Finally, as it is done
in virtual coupling approaches, the difference between the invisible
device (HD) and the surface proxy (HS) frames is used to compute
the displayed forces (fVC, tVC). This god object heuristic allows
for stiff contacts even between thin, non-watertight objects and dis-
plays all manipulated objects on the collision surface.

3.2 Multibody Collision Computation Module

While the previous section discussed the collision detection and
force computation between two objects, this section describes the
module to compute multibody collisions. Given the critical render-
ing frequency of 1 kHz required in haptics, building a multibody en-
vironment that dynamically handles several complex objects is not
straightforward. In the following, we introduce the general struc-
ture and the workflow of our library, for later explaining the meth-
ods used to alleviate the computational effort and deliver contact
information for each object in 1 msec.

An overview of our multibody library architecture is visualized
in Figure 2. The scenario is described to the system in a configura-
tion file in which, basically, a list of all objects and their properties
is specified, such as name, stiffness, haptic data structure filenames,
etc. The parser processes the configuration file and loads all nec-
essary entities: a database with all haptic structures, object nodes
within the framework and the relation links between the objects.
Each object node has its own I/O ports for forces, poses and visu-
alization data. The module receives the poses of the objects and
writes their corresponding forces in them. Additionally, there are a
collision matrix and configuration state matrix port. The first sum-
marizes in an object vs object table if an object pair is colliding.
The second is a user interface for enabling/disabling collision de-
tection between a specific object pair, also implemented in an object
vs object table. Objects can be attached to user interfaces, e.g., to



O1 O2 ON

ON

O2

O1 1/0 1/0 1/0
1/0

. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .

Pointshells Voxelmaps

Haptic Structures' Database

Collision Detection and 
Force Computation Engines

Relations Objects

Force / Manifold

Pose

Visu

Force / Manifold

Pose

Visu

Force / Manifold

Pose

Visu

(f,
 t,

 m
) 1N

(f,
 t,

 m
) 12

(f,
 t,

 m
) 2N

∑

∑

∑

Collision Matrix

O1 O2 ON

ON

O2

O1 1/0 1/0 1/0
1/0

. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .

State Matrix

The Bimanual Haptic Device HUG

2 x (6 + 1) DoF

x, r
f, t

x, r
f, t

State Machine

Object 1

Object 2

Object N

…

∑ Force / Manifold

Pose

Visu

Visualization (IGD InstantPlayer)

Movement Simulation (Physics Engine)

x, r
f, t

Object 3 Sigma.7 Omega.3

x, r

f, t

x, r

CO
NT

RO
L

s

God Object Heuristic

VPS Hierarchical

Penalty-Based Method

Constraint-Based Method

{v}

Falcon

Additional Haptic Devices for Collaboration

Figure 2: Overview of the multi-body simulation framework focussing on collision computation. The collision detection module contains
a data base of all object in the scene. Several haptic devices or other modules can be connected to the objects or other appropriate input
ports of it; for instance, a physics engine or a game state machine can define the movement of an object. Our framework uses InstantPlayer
as visualization tool, but other scene graphs could be connected as well. The system is easily scalable. The images of the Omega.3 and the
Sigma.7 are courtesy of Force Dimension, Switzerland.

j

Object[j]

readStateMatrix()

{CollPair}
{Object}

{Voxmap}
{Pointshell}
...

start()

writeCollMatrix()

stop()

...

M
et
ho

ds

&Object[i]
&Object[j]
...

cprData

computeCollForce()
getPoses()
compPenaltyForces()
updtForceBuffers()

pause()

resume()

At
rib
ut
es

objectData

readPose()

updateForceBuffer()
sumForces()
computeVC()
writeForces()

Pose
ForceBuffer
{&CollPair}
{&Object}
...

objData

M
et
ho

ds
At
tri
bs

.

CollPair[i,j]At
tri
bu

te
s

Environment

fi

xi

M
et
ho

ds
At
tri
bu

te
s

Object[i]

i
j

i

fj

xj

Figure 3: Multibody library architecture. The class
Environment contains and supervises the states of all
Objects and CollPairs. Each Object contains both haptic
structures that represent it. CollPairs call the collision compu-
tation method that checks the contacts between the Objects they
relate.

the bimanual haptic device HUG described in Section 4.1, or to a
physics engine that integrates the collision forces to obtain object
poses.The communication between the collision computation mod-
ule and the devices is realized using thread-safe shared memories
and the UDP communication protocol.

In the following, we describe the architecture of the C++ imple-
mentation, which has three main classes, as shown in Figure 3:

1. Instantiations Object[i] of class Object represent a
body i in the scenario. The class contains the ports for pose
(xi) and force (fi) data available to the user and methods (e.g.,
readPose()) associated to them. Objects[i] contain
both voxelized and point-sampled representations and use the
appropriate one for each situation.

2. The instance CollPair[i,j] of the class CollPair
uses the pose information (xi and xj) from its associated

Objects in order to compute forces according to the algo-
rithms introduced in Section 3.1. Each of the instantiations of
CollPair is related to a cell in the collision matrix.

3. The class Environment contains arrays of Objects and
CollPairs, all interconnected. In Environment, the col-
lision matrix is written and the configuration state matrix read.
All data structures can be accessed by the user via this class,
and therefore, the class also has methods to start() and
stop() the functions of Objects and CollPairs.

Our architecture resembles a graph, where Objects are nodes that
store poses and forces and the CollPairs are links that generate
force data in dedicated threads after reading poses. The system
is asynchronous and the usual workflow is the following (see Fig-
ure 3):

(i) The callback thread function computeCollForce() from
CollPair[i,j] is continuously executed. First, it calls all
corresponding readPose() in order to update pose data: xi

from Object[i] and xj from Object[j].

(ii) Next, penalty force computation is carried out as explained
in Section 3.1, which yields fij and its corresponding contact
manifold.

(iii) After that, the thread function passes the penalty force to
all related objects via updateForceBuffer(). This last
method performs several operations on the ForceBuffer
before sending the total force to the user. The ForceBuffer
is an array that contains a force cell for each algorithm that is
using the Object. The total penalty force upon the object is
the sum of all forces in the ForceBuffer.

(iv) If the module decides to send the force to the user, first, all
penalty forces are summed. Different sending policies are
supported: for example, we could prefer to send total force
values every time a new force arrives, or every time the cell
with the oldest update time stamp is refreshed. We have not
experienced any issues due to lack of synchronization yet. If



State i+ 1

State i
{Condition}
hdIndex
{fixedPose}
cdMatrix

State Attributes

{Force}
{Pose}
Keywoard
Signal

Condition Attributes

C2C1 CnOR AND…

…

…
State Array

Condition Array

Oi

Oj

Figure 4: Game control workflow. Each state dictates which object
is moved by the user (hdIndex) and specifies the position of the
other ones (either free or fixed, {fixedPose}). In order to jump
to the next state, a series of conditions or tasks related to force or
pose values must be fulfilled.

that were the case, the ForceBuffer would have to be ex-
tended, for instance, to extrapolate force values with history
data every time a force summation needs to be delivered. We
leave this analysis for future work.

(v) Next, if the current object is held by the user, the constraint-
based force rendering explained in Section 3.1 [Sagardia and
Hulin 2016] is executed with the penalty force summation and
the biggest penetration value.

(vi) Finally, force and visualization data are sent to their corre-
sponding object ports.

In those large-scale environments with multiple objects, one of the
main challenges consists in dealing with the quadratic nature of
collision detection. Several strategies have been proposed to re-
duce the computational complexity, such as sweep and prune of
pairs using bound boxes [Cohen et al. 1995]. To cope with multi-
body environments while keeping the 1 kHz frequency required by
haptics, we exploit these techniques: (i) object grouping and par-
allelization, (ii) spatio-temporal coherence [McNeely et al. 2006],
and (iii) graceful degradation [Barbič and James 2008].

The first one, object grouping and parallelization, consists in taking
advantage of the multiple cores of modern CPUs. As previously
introduced, computeCollForce() (see Figure 3) is an inter-
face that can run in a separate thread for each object pair. Higher
parallelization degrees are desirable for scenarios with few objects
(less than five) and multi-core CPUs, whereas the user should seri-
alize collision computation calls in case the number of geometries
increases, due to the thread overload that might be incurred (that
degree is currently a parameter in the configuration file). Addition-
ally, objects can be packed in groups in the configuration file so
that all objects from the same group are not checked for collision
between them. A practical use of that is the kinematic chain formed
by the hand and the arm: collisions between the different limbs can
be neglected by packing them into the same group.

Secondly, we use the spatio-temporal coherence property of
multi-body assembly environments before calling compute-
PenaltyForces(); the notion behind it is that the distance be-
tween two objects is very similar in two consecutive time steps.
Since our penalty-based approach yields the signed distance p be-
tween objects, assuming these are allowed to move no faster than
vmax = 1 m/s , we know two objects will not collide during the pe-
riod p/vmax. This saves in practice hundreds of collision detection
calls in a second even in scenarios where objects are relatively close
to each other. It is worth to mention that the value of vmax may have
to be adjusted for elongated objects. In that case, even small rota-

tions might produce high velocities in the extremities. Nevertheless,
the selected value has sufficed in our scenarios.

And finally, the third method coping with expensive computations
consists in graceful degradation, which is possible due to the multi-
resolution nature of the point-sphere trees. The volume and surface
of all objects is evaluated at the beginning and resource percent-
ages for worst-case scenarios (e.g., when all objects are in contact)
are assigned. Additionally, load and efficiency factors are computed
online in computePenaltyForces(), i.e., the number of point
and sphere collision checks and which of them yield positive. Un-
der worst-case conditions or high loads, pointshells can automati-
cally limit the number of levels allowed in the hierarchy traverse.
Since each level samples the whole object, an approximate but valid
result is computed by the algorithm. Force values are scaled with
the number of colliding points and point densities, hence, we can
guarantee that the relative order of magnitude is maintained. A
practical example of that is given in Section 5.1.

3.3 Game Control

In order to enable assembly sequences, we developed a finite ma-
chine that externally attaches to the multibody collision computa-
tion module explained in Section 3.2. The user can easily extend
the configuration file of the multibody collision detection module
specifying which objects have to be mounted in which position and
in which order. As shown in Figure 4, this is implemented in an
array of states and, for each state, an array of conditions.

A state establishes which objects are moved by the user(s)
(hdIndex). Additionally, objects can have a fixedPose (e.g.,
mounted) or can have no assigned pose, and therefore be waiting
for a external pose data. Each state can also update the collision
detection state matrix explained in Section 3.2. This allows for dy-
namically managing resources; e.g., when an object is mounted, it
should not be checked for collision against other mounted pieces,
thus, the collision calls between them should be paused.

The condition array is a set of tasks that must be carried out.
Usually, each condition is related to target Pose[j] and force
Force[j] values expected on the object j that has to be assem-
bled (including tolerances). However, the machine can also re-
ceive Keyboard commands, such as "fulfilled", or external
Signals (e.g., from other interfaces, gestures, etc.). Conditions
are concatenated with AND|OR operators and the user can decide
if they need to occur simultaneously or not. When all conditions
are fulfilled, an exit event occurs and the machine jumps to the next
state.

Simple yet powerful, our game control machine handles the simula-
tion and takes all logic decisions necessary to accomplish assembly
sequences.

3.4 Completing the Jigsaw Puzzle

As shown in Figure 2, we use as visualization tool the Instant-
Player4.We preferably display the scene to the user with a nVisor
SX605 head-mounted display (HMD), which is optically tracked
by a Vicon Bonita6 system. Additionally, the Bullet7 physics en-
gine has been successfully tested. Our framework operates in a dis-
tributed manner, having for each module a dedicated desktop com-
puter. The whole system is controlled with an experimental process

4http://www.instantreality.org
5http://www.nvisinc.com
6http://www.vicon.com/products/camera-systems/bonita
7http://bulletphysics.org/wordpress/

http://www.instantreality.org
http://www.nvisinc.com
http://www.vicon.com/products/camera-systems/bonita
http://bulletphysics.org/wordpress/


Figure 5: The VibroTac provides tactile feedback on the forearm
using six vibration motors equally distributed. The markers on the
device are optically tracked (left). The movement of the elbow is
mapped to its virtual representation (middle, in green). If the vir-
tual forearm collides against the scenario (middle), the correspond-
ing segments of the VibroTac provide vibration feedback to the user
(right, in red).

manager middleware which is additionally able to communicate in
realtime with robotic interfaces.

4 Interaction Devices and Techniques

This section describes the interaction devices and techniques as key
elements of the training platform. Our goal is to provide realis-
tic haptic feedback to the hand and the arm while maintaining the
safety and increasing the usability (i.e., intuitive experience, mini-
mal restriction of movements wrt. dynamics and workspace).

4.1 The Bimanual Haptic Device HUG

In order to promote the training effect in assembly simulations and
to create an immersive experience for the human operator, a haptic
device is required that provides both a large workspace to enable
unrestricted movements of the human hand and appropriate force
capabilities to generate realistic haptic feedback. For this reason,
the bimanual haptic device HUG was chosen in the present appli-
cation [Hulin et al. 2011]. HUG is equipped with two DLR/KUKA
light-weight robot arms8 and an additional force-torque sensor at
each robot wrist (see Figure 2 top right). Each robot has seven rev-
olute joints with position and torque sensors, and the electronics
integrated in them, running at 3 kHz. Although six joints would be
enough for displaying six-DoF force feedback, the seventh is use-
ful for optimizing the robot configuration. The torque-controlled
robots (impedance control is used) are mounted behind the oper-
ator’s upper body in order to maximize the usable workspace of
the human arm [Zacharias et al. 2010]. Each arm can reach up to
150 N peak forces. Although the haptic rendering algorithms ex-
posed in Section 3.1 could generate these force values, 50 N are
rarely exceeded in a normal session. Additionally, the user is at-
tached to the device with a magnetic clutch that is decoupled stop-
ping the robots if forces greater than 80 N are applied in any direc-
tion. HUG supports a variety of hand interfaces that range from
passive data gloves to active gripping-force devices, that can be
changed depending on the application. In our version presented
here, the users operate with the bare hand, but new hand interfaces
are contemplated as future work.

4.2 The Vibrotactile Arm Band VibroTac

With the haptic feedback applied by HUG on the human hand, the
user is able to perceive the collision of a manipulated object in a
virtual scene. However, in certain situations, it is decisive to know
about collisions of the human operator with the virtual environment,

8http://www.kuka-lbr-iiwa.com

rw
rh

Cw
Ch

Figure 6: Scenarios which are bigger than the device workspace
require indexing. This is achieved by moving the virtual workspace
(red sphere with center Cw and radius rw) to the grasping point
Ch which is outside the boundary.

e.g., to validate if there is enough space for the human arm inside
a motor compartment. This problem can be treated by the usage of
additional haptic devices. Arm-exoskeletons may pose the most re-
alistic kind of feedback to the human arm by mechanically coupling
the arm with the device.

Due to the lack of available mechanical solutions, however, we use
an alternative solution to generate this additional feedback to the
operator’s forearm. Instead of force feedback, we employ tactile
feedback provided by a vibrotactile arm band. The used tactile
feedback device VibroTac [Schätzle et al. 2010] is a battery driven
and wireless controllable wrist band with six vibration motors (so-
called tactors). Due to the different tactor locations, the location
and direction of an impact can be indicated to the user’s forearm.
The strength of collision can be displayed by varying the intensity
of the stimuli or by generating different vibration patterns, which
can be controlled separately for each tactor.

As shown in Figure 5, we added reflective markers to the VibroTac
in order to track it optically. The user sees a green transparent arm
in the virtual scene; the wrist is coupled to the end effector of the
HUG, whereas the elbow corresponds to the movement of the Vi-
broTac. The HUG can provide six-DoF collision feedback at the
palm and the VibroTac extends the touch sensation to the forearm:
when the virtual arm collides with a certain force against the ob-
jects in the scenario, the corresponding segments are activated with
the intensity suited to this virtual force. As a result, it is possible to
evaluate and train assemblies where the whole forearm configura-
tion with respect to the mounted part has to be considered.

4.3 Workspace Navigation

Interacting with virtual environments larger than the workspace of
the interface requires movement mapping and control strategies.
Conti and Khatib give an overview of those methods [Conti and
Khatib 2005] and propose a workspace drifting control scheme with
which the virtual workspace is shifted with a velocity controlled by
the distance from the device workspace origin to the position of the
endeffector. As these authors report, the most common navigation
approach consists in performing position control with a selected
scaling factor, or indexing the position of the end effector with re-
spect to the moved avatar after the interface has been decoupled
from the simulation (also known as de-/clutching). It is also possi-
ble to carry out ballistic control [Salisbury et al. 2004], with which
the scaling factor depends on the velocity of the end effector, or rate
control, where the velocity of the avatar or moved object increases
lineally with the distance from avatar to workspace origin.

http://www.kuka-lbr-iiwa.com


[Dominjon et al. 2006] tested some of these methods in a user study
and concluded that their bubble technique yielded best performance
results in a three-DoF painting task that required precise activities in
large environments. The bubble technique is a hybrid position/rate
control approach where the optimal workspace around the endef-
fector (a bubble or sphere) is displayed both visually and haptically
to the user. Whenever the boundaries of the bubble are reached,
it is moved with a velocity cubically proportional to the trespassed
distance and the user feels restoring forces in the direction opposite
to the movement.

As reported in [Pavlik and Vance 2011], workspace visualization
can become distracting in complex six-DoF assemblies, and restor-
ing forces can lead to the perception of artifacts or they can make
the discrimination of collision forces difficult. Therefore, in our im-
plementation we proceed similarly as in the bubble technique, but
without displaying the workspace visually or haptically. The user
experiences two modi with the haptic interface: (i) fast controllable
navigation in order to relocate the workspace (rate control) and (ii)
manipulation with 1:1 mapping (unscaled position control).

As shown in Figure 6, we abstract the workspace with a sphere
with center Cw and a constant radius rw = 0.2 m. Additionally, we
call here rh the distance between the grasping point Ch related to
the object moved by the haptic interface and the current workspace
center. This workspace center Cw is considered the anchor frame
with respect to the device movements, i.e., the center of the real
workspace of the user is mapped to this point and the moved object
is transformed with respect to it.

Our workspace shifting works as follows: if the grasping point of
the moved object is inside the workspace (rh ≤ rw), the workspace
will not move (Cw(t + ∆t) = Cw(t)). Otherwise (rh > rw), and
in absence of collision forces, the workspace is translated towards
the grasping point, as summarized in (1):

Cw(t+ ∆t) = Cw(t) +

λw∆t
(
1− rw

rh

)(
Ch(t)− Cw(t)︸ ︷︷ ︸

vector length rh(t)

)
, (1)

where λw = 1.5 s−1 is the gain and ∆t the time step between two
consecutive cycles. Our method moves the workspace in the sce-
nario if the grasped object is outside this workspace and the moved
objects are not colliding; the velocity of the translation is linear to
the distance from the grasping point to the surface of the workspace.

4.4 Collaboration with Additional Haptic Interfaces

Shared and collaborative virtual environments with haptic feedback
are challenging due to the user-user interaction, the required syn-
chronization, and their delay and frequency demands. As men-
tioned in Section 2, a collaborative tele-mentoring functionality is
presented in [Gutiérrez et al. 2010]. In it, a trainer can teach a
trainee how to perform specific assembly tasks: position and force
data are sent unidirectionally between them (usually from the tutor
to the apprentice) so that skills can be transferred faster and inter-
actively. On the other hand, a peer-to-peer collaborative framework
for assembly simulations was presented in [Iglesias et al. 2006].
The work focuses on the technical strategies required to maintain
synchronicity for each peer simulation. The consistency is achieved
basically by keeping track of the last valid (non-colliding) pose of
object.

Since our framework is modularly built and the objects of the col-
lision computation database transfer pose and contact information
independently, the system allows for collaboration between users

1 2 3 4 5 . . .

Control Box Board Grid Bracket Wiper

Engine
Bay

Drill
(Tool)

Haptic
Pointer

Teaching 
Assistant

Virtual
Arm

Figure 7: Schematic scenario description and assembly sequence.
The user has to mount five parts into a car engine bay in a row;
instructions are given in the upper left corner of the display. When
no object has been grabbed, the user sees a red sphere at the right
hand (haptic pointer); the left hand can carry tools, such as the drill
illustrated in the picture. A teaching assistant box can be controlled
by another interface.

by simply connecting another haptic (or other) interface to an ob-
ject node, as it is shown in Figure 2. In our current implementation
we tested a Falcon9 and a Sigma.710 successfully. The interaction
occurs through an extra pointer in the scene which is moved by the
second user, called teaching assistant (blue cube in Figure 7). The
teacher can show the trainee how to move to perform the assem-
blies and correct wrong movements with small pushes. Both users
see and feel collisions. Synchronicity or consistency is achieved
with the ForceBuffer described in Section 3.2, as if the teach-
ing assistant pointer were another object in the scene.

5 Exemplary Scenario: Car Assembly Se-
quence

This section introduces a practical use case in which all methods
explained in previous sections are used.11 As shown in Figure 7,
the virtual scene consists of ten objects:

(i) a car engine bay where several objects can be mounted,

(ii) a haptic pointer (red ball) symbolizing the right hand coupled
to the right forearm of the HUG (Section 4.1) with which the
user can grab an object to mount it,

(iii) a virtual forearm (transparent and green) moved with the
tracked VibroTac (Section 4.2),

(iv) five selected car parts that have to be assembled in a specified
sequence: a control box, a covering board, a grid, a bracket,
and a wiper mechanism,

(v) an electric drill held by the left arm,

(vi) and a teaching assistant cube moved by another user with a
different interface than the HUG. Thanks to this object, the
experienced user can haptically correct the trials of novice op-
erators online.

9http://www.novint.com/index.php/novintfalcon
10http://www.forcedimension.com/products/sigma-7/overview
11The complementary video shows the scenario, the interaction tech-

niques and the introduced tasks.

http://www.novint.com/index.php/novintfalcon
http://www.forcedimension.com/products/sigma-7/overview


A B

C D

E F

Figure 8: Left: Snapshot of the whole scenario; user head is dis-
played by an avatar. Right: Assembly steps of the control box as
seen by the user through the head mounted display moved by the
head and optically tracked: (A) Approach to the control box to be
assembled with the haptic pointer; (B) Touch and grab the control
box; (C) Move (indexing) close to the place where the object has
to be mounted (displayed with a grey transparent replica); (D) and
(E) Insert the control box to the engine cavity; (F) Reach target
pose. The haptic pointer appears and the user has to keep on with
the next object.

All objects are real CAD parts and the interaction occurs without
scaling (e.g., 1:1). It is worth to mention that the user receives only
vibrotactile feedback (not force feedback) when the green transpar-
ent virtual arm collides. Therefore, the virtual arm might overlap
with the other objects if the user does not actively re-configure his
arm as the vibrations indicate.

The scenario is easily extensible to different or more objects by
modifying the configuration scripts of the multibody framework
(see Section 3.2) and the state machine (see Section 3.3). The as-
sembly workflow of the control box is shown on the right side of
Figure 8, and it is similar to all other objects to be assembled. First,
the part to be mounted appears on the right and the user has to
navigate to it. The navigation takes place thanks to the indexing
explained in Section 4.3. If the user remains in contact 1 s with the
object to be mounted, the red haptic pointer is replaced by it. Next,
the user can navigate towards the region where a grey transparent
replica of the part is shown. The following steps consist in assem-
bling the part into its correct location. If this is achieved within the
translation and rotation deviation tolerance specified in the config-
uration file, the part is fixed in its assembly pose and the red haptic
pointer appears again. Then, after testing the space for the tool held
with the non-dominant hand, the user has to keep on with the next
part. Instructions are displayed in a text box on the left upper corner
of the simulation frame.

A previous version of our system has also been tested with a vir-
tual satellite maintenance scenario [Sagardia et al. 2015]. Com-
pared to that setting, the use case discussed in the present work fo-
cusses on multibody interactions with more complex and realistic
objects; additionally, we describe and validate the implementation
of techniques that make possible interacting in large virtual assem-
bly training environments (e.g., navigation, collaboration, and game
control).

5.1 Performance Results

The evaluation of the assembly process of the control box presented
in Figure 8 is shown in this section. Force, penetration, load and
computation time diagrams of the results as well as the details of
the used data structures are reported in Figure 9.

During the first 12 s, the user is in navigation mode (see Section 4.3)
and shifts the workspace center to the desired position. Around

frame D, the first collision occurs and the position is corrected again
(13.2 s – 17.1 s), for finally proceeding with the insertion into the
assembly cavity (17.1 s – end, frames E and F). As expected, it is in
those collision situations when the load and the computation time
increase considerably.

The load value is computed every cycle and consists of the sum of
two load ratios related to the amount of spheres and points:

η = 100(ωS
NV

S

NT
S

+ ωP
NC

P

NV
P

), (2)

where

NV
S is the number of spheres visited or checked for collision,

NT
S the total number of spheres,

NC
P the number of colliding points,

NV
P the number of points visited or checked for collision (which

are inside the colliding spheres),

and ωS = ωP = 0.5 are the weighting factors chosen for the sphere
and point loads, respectively.

As mentioned in Section 2, the number of levels swept in the
pointshell can be decreased still checking all collision regions if the
critical load is reached. This pointshell specific critical load can
also be updated during runtime depending on the number of colli-
sion threads that are active and their respective loads. In the shown
assembly experiment part, only three collision threads were active
(the ones between the engine bay, the drill and the control box),
and the maximum achieved load ηmax = 18.89 % (at time stamp
25.86 s) was smaller than the critical ηcrit = 70 %. Positively and
strongly correlated to the load is the required computation time,
which achieves a peak of 0.75 msec around simulation time stamp
27.07 s, below the 1 msec convention for stable and realistic haptic
interaction.

Force magnitude oscillates below 4 N (maximum 3.88 N at time
stamp 22.97 s) depending on the penetration of the colliding points
and the reaction force applied by the user. The values shown in
Figure 9 are the raw values computed by the collision computa-
tion module before sending them to the haptic device. Depending
on the interface, filtering or similar control algorithms can be ap-
plied. Note, additionally, that the penetration values are smaller
than 5 mm or even 4 mm most of the time. This penalty value is the
necessary error between the displayed god object and the virtual
object attached to the haptic device.

Overall, we consider that the results show a system able to ren-
der realtime assembly simulations with haptic feedback even in
large scenarios with numerous complex geometries exported di-
rectly from CAD frameworks. The video attached to this paper
further shows how the system behaves.

6 Conclusions and Perspectives

We presented a virtual assembly training platform that supports bi-
manual haptic interactions with several arbitrarily complex objects
simultaneously. We put an especial focus on our collision detec-
tion engine based on a combination of penalty- and constraint-based
force rendering methods. The framework is able to handle scenarios
with multiple geometries imported from CAD environments. Addi-
tionally, in contrast to usual desktop systems, unscaled large upper
body movements can be performed and force and tactile feedback
is provided to hand and forearm, respectively. We adapted some
intuitive navigation methods from the literature based in hybrid po-
sition/rate control for a more efficient interaction in large realistic



−1

0

1

2

3

4
Fo

rc
es

 [N
]

 

 
C D E F

−5

0

5

10

15

20

Pe
ne

tra
tio

n 
[m

m
]Forces

Penetration

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5
0

20

40

Lo
ad

 [%
]

Simulation Time [s]

 

 

0 5 10 15 20 25
0

0.5

1

C
om

p.
 T

im
e 

[m
s]

Load Computation Time

Figure 9: Force, penetration, load and computation time values obtained during the assembly of the control box displayed in Figure 9.
Assembly steps C – F are marked in the upper diagram. Negative penetration values correspond to the approximate distance values used
during spatio-temporal coherence computation, which are unsteadier since they correspond to sphere distances. However, these data are
scaled to show penetration and force values, because they are considered to be the most relevant in assembly simulations. The car’s engine
bay has a voxel edge of 3 mm, resulting in a grid of 1022 × 788 × 541 elements compacted in 286 MB. It was computed from the original
model consisting of 1,83M of triangles in few minutes. The assembled control box consists of 10507 points divided in 3506 clusters and 7
levels compacted in 875 KB (see Figure 1). It was computed from the original model consisting of 101472 of triangles in few seconds. The
offline computation time required for data generation depends on the resolution and selected number of layers. The used computer was an
Intel(R) Core(TM) 2 Quad with CPUs at 2.66GHz and running Suse SLED 11 (not realtime).

car assembly scenarios. Performance results that validate the sys-
tem are also provided.

Our future work contemplates following main topics, based in part
on the current limitations of our system:

• User evaluation of the presented system in comparison with
desktop-based systems. We plan to test the car assembly sce-
nario presented in Section 5 and more abstract ones with the
HUG and a Sigma.7 in order to measure user and device per-
formance.

• More realistic and natural bimanual interaction. Currently,
the dominant hand grabs the parts to assemble and the non-
dominant one holds the tool in order to check whether there
is enough space for it. In our future system, both hands will
grab and assemble parts; after that, users will have to fix them
with the tool held with the dominant hand and, for example,
using the non-dominant one as support.

• Integration of data gloves compatible with the HUG. Current
hand and forearm are simplified to two objects. Our plan is
to include both complete mechanical chains of the arms and
hands, and to provide them with haptic feedback.

Acknowledgements

We are thankful to Volkswagen AG for providing us the geometries
used in this work. The images of the Omega.3 and the Sigma.7 in
Figure 2 are courtesy of Force Dimension, Switzerland.

References

AL-AHMARI, A. M., ABIDI, M. H., AHMAD, A., AND DAR-
MOUL, S. 2016. Development of a virtual manufacturing assem-
bly simulation system. Advances in Mechanical Engineering 8,
3.

BARBIČ, J., AND JAMES, D. L. 2008. Six-dof haptic rendering
of contact between geometrically complex reduced deformable
models. IEEE Trans. on Haptics 1, 1, 39 –52.

BOWMAN, D. A., AND HODGES, L. F. 1999. Formalizing the
design, evaluation, and application of interaction techniques for
immersive virtual environments. J. of Visual Languages & Com-
puting 10, 1, 37–53.

COHEN, J. D., LIN, M. C., MANOCHA, D., AND PONAMGI, M.
1995. I-collide: An interactive and exact collision detection sys-
tem for large-scale environments. In Proc. of ACM Interactive
3D Graphics Conference, ACM, 189–ff.

COLGATE, J. E., STANLEY, M. C., AND BROWN, J. M. 1995.
Issues in the haptic display of tool use. In Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), vol. 3, 140–145.

CONTI, F., AND KHATIB, O. 2005. Spanning large workspaces
using small haptic devices. In Proc. IEEE World Haptics Con-
ference, IEEE, 183–188.

DOMINJON, L., ANATOLE, L., BURKHARDT, J.-M., AND SI-
MON, R. 2006. A Comparison of Three Techniques to Interact in
Large Virtual Environments Using Haptic Devices with Limited
Workspace. J. of Material Forming 4035, 288–299.

GARBAYA, S., AND ZALDIVAR-COLADO, U. 2007. The affect of
contact force sensations on user performance in virtual assembly
tasks. Virtual Reality 11, 4, 287–299.

GOMES DE SÁ, A., AND ZACHMANN, G. 1999. Virtual reality
as a tool for verification of assembly and maintenance processes.
Computers and Graphics 23, 3, 389–403.

GONZALEZ-BADILLO, G., MEDELLIN-CASTILLO, H., LIM, T.,
RITCHIE, J., AND GARBAYA, S. 2014. The development of
a physics and constraint-based haptic virtual assembly system.
Assembly Automation 34, 1, 41–55.

GUTIÉRREZ, T., RODRÍGUEZ, J., VELAZ, Y., CASADO, S.,
SUESCUN, A., AND SÁNCHEZ, E. J. 2010. Ima-vr: a mul-
timodal virtual training system for skills transfer in industrial
maintenance and assembly tasks. In Proc. IEEE Int. Symp.
on Robots and Human Interactive Communications (ROMAN),
IEEE, 428–433.



HOWARD, B. M., AND VANCE, J. M. 2007. Desktop haptic virtual
assembly using physically based modelling. Virtual Reality 11,
4, 207–215.

HULIN, T., HERTKORN, K., KREMER, P., SCHÄTZLE, S., ARTI-
GAS, J., SAGARDIA, M., ZACHARIAS, F., AND PREUSCHE, C.
2011. The dlr bimanual haptic device with optimized workspace
(video). In Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA), IEEE, 3441–3442.

IGLESIAS, R., CASADO, S., GUTIERREZ, T., GARCIA-ALONSO,
A., YAP, K. M., YU, W., AND MARSHALL, A. 2006. A peer-
to-peer architecture for collaborative haptic assembly. In Proc.
IEEE Int. Symp. on Distributed Simulation and Real-Time Appli-
cations, IEEE, 25–34.

LAVIOLA JR, J. J. 2000. A discussion of cybersickness in virtual
environments. ACM SIGCHI Bulletin 32, 1, 47–56.

LIM, T., RITCHIE, J. M., DEWAR, R. G., CORNEY, J. R.,
WILKINSON, P., CALIS, M., DESMULLIEZ, M., AND FANG,
J.-J. 2007. Factors affecting user performance in haptic assem-
bly. Virtual Reality 11, 4, 241–252.

LIU, K., YIN, X., FAN, X., AND HE, Q. 2015. Virtual assembly
with physical information: a review. Assembly Automation 35,
3, 206–220.

MCNEELY, W. A., PUTERBAUGH, K. D., AND TROY, J. J. 1999.
Six degree-of-freedom haptic rendering using voxel sampling. In
Proc. ACM SIGGRAPH, ACM, 401–408.

MCNEELY, W. A., PUTERBAUGH, K. D., AND TROY, J. J. 2006.
Voxel-based 6-dof haptic rendering improvements. Haptics-e:
The Electronic Journal of Haptics Research 3, 7, 1–12.

MIRTICH, B., AND CANNY, J. 1994. Impulse-based dynamic
simulation. Tech. rep., University of California at Berkeley.

ORTEGA, M., REDON, S., AND COQUILLART, S. 2007. A six
degree-of-freedom god-object method for haptic display of rigid
bodies with surface properties. IEEE Trans. on Visualization and
Computer Graphics 13, 3, 458–469.

PAVLIK, R. A., AND VANCE, J. M. 2011. Expanding hap-
tic workspace for coupled-object manipulation. In Proc. World
Conf. on Innovative Virtual Reality (ASME), American Society
of Mechanical Engineers (ASME), 293–299.

SAGARDIA, M., AND HULIN, T. 2016. A fast and robust six-
dof god object heuristic for haptic rendering of complex models
with friction. In Proc. ACM Symp. on Virtual Reality and Soft-
ware Techonology (VRST), ACM. (Accepted and pending for
publication).

SAGARDIA, M., WEBER, B., HULIN, T., PREUSCHE, C., AND
HIRZINGER, G. 2012. Evaluation of visual and force feedback
in virtual assembly verifications. In Proc. IEEE Virtual Reality
(VR), IEEE, 23–26.

SAGARDIA, M., STOURAITIS, T., AND E SILVA, J. L. 2014. A
New Fast and Robust Collision Detection and Force Computa-
tion Algorithm Applied to the Physics Engine Bullet: Method,
Integration, and Evaluation. In EuroVR: Conf. and Exhibition
of the European Association of Virtual and Augmented Reality,
Eurographics Association, 65–76.

SAGARDIA, M., HERTKORN, K., HULIN, T., SCHATZLE, S.,
WOLFF, R., HUMMEL, J., DODIYA, J., AND GERNDT, A.
2015. VR-OOS: The DLR’s virtual reality simulator for teler-
obotic on-orbit servicing with haptic feedback. In Proc. IEEE
Aerospace Conf., 1–17.

SALISBURY, K., AND TARR, C. 1997. Haptic rendering of surfaces
defined by implicit functions. In Proc. Annual ASME Symposium
on Haptic Interfaces for Virtual Environment and Teleoperator
Systems, vol. 61, 61–67.

SALISBURY, K., CONTI, F., AND BARBAGLI, F. 2004. Haptic
rendering: Introductory concepts. IEEE Computer Graphics and
Applications 24, 2, 24–32.

SCHÄTZLE, S., ENDE, T., WUESTHOFF, T., AND PREUSCHE, C.
2010. VibroTac: an ergonomic and versatile usable vibrotactile
feedback device. In Proc. IEEE Int. Symp. on Robots and Human
Interactive Communications (ROMAN), 705–710.

SETH, A., SU, H.-J., AND VANCE, J. M. 2006. Sharp: a system
for haptic assembly and realistic prototyping. In Proc. ASME Int.
Design Engineering Technical Conf. and Computers and Infor-
mation in Engineering Conf., American Society of Mechanical
Engineers (ASME), 905–912.

SETH, A., VANCE, J. M., AND OLIVER, J. H. 2011. Virtual reality
for assembly methods prototyping: a review. Virtual Reality 15,
1, 5–20.

SRINIVASAN, M. A., AND BASDOGAN, C. 1997. Haptics in vir-
tual environments: Taxonomy, research status, and challenges.
Computers & Graphics 21, 4, 393–404.

SUNG, R. C., CORNEY, J. R., AND CLARK, D. E. 2001. Au-
tomatic assembly feature recognition and disassembly sequence
generation. Journal of Computing and Information Science in
Engineering 1, 4, 291–299.

TALVAS, A., MARCHAL, M., AND LECUYER, A. 2014. A survey
on bimanual haptic interaction. IEEE Trans. on Haptics 7, 3,
285–300.

TAN, H. Z., SRINIVASAN, M. A., EBERMAN, B., AND CHENG,
B. 1994. Human factors for the design of force-reflecting haptic
interfaces. Dynamic Systems and Control 55, 1, 353–359.

TCHING, L., DUMONT, G., AND PERRET, J. 2010. Interac-
tive simulation of cad models assemblies using virtual constraint
guidance. Int. J. on Interactive Design and Manufacturing (IJI-
DeM) 4, 2, 95–102.

WAN, H., GAO, S., PENG, Q., DAI, G., AND ZHANG, F. 2004.
Mivas: a multi-modal immersive virtual assembly system. In
Proc. Int. Design Engineering Technical Conf. (ASME), Ameri-
can Society of Mechanical Engineers (ASME), 113–122.

XIA, P., LOPES, A., AND RESTIVO, M. 2011. Design and imple-
mentation of a haptic-based virtual assembly system. Assembly
Automation 31, 4, 369–384.

ZACHARIAS, F., HOWARD, I. S., HULIN, T., AND HIRZINGER,
G. 2010. Workspace comparisons of setup configurations for
human-robot interaction. In Proc. IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems (IROS), IEEE, 3117–3122.

ZACHMANN, G., AND RETTIG, A. 2001. Natural and robust inter-
action in virtual assembly simulation. In Proc. Int. Conf. on Con-
current Engineering: Research and Applications (ISPE), vol. 1,
425–434.

ZORRIASSATINE, F., WYKES, C., PARKIN, R., AND GINDY, N.
2003. A survey of virtual prototyping techniques for mechani-
cal product development. Proc. of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture 217, 4,
513–530.


