
Research Article

Planning with ants: Efficient path
planning with rapidly exploring random
trees and ant colony optimization

Alberto Viseras1, Rafael Ortiz Losada1, and Luis Merino2

Abstract
Rapidly exploring random trees (RRTs) have been proven to be efficient for planning in environments populated with obstacles.
These methods perform a uniform sampling of the state space, which is needed to guarantee the algorithm’s completeness but
does not necessarily lead to the most efficient solution. In previous works it has been shown that the use of heuristics to modify
the sampling strategy could incur an improvement in the algorithm performance. However, these heuristics only apply to solve
the shortest path-planning problem. Here we propose a framework that allows us to incorporate arbitrary heuristics to modify
the sampling strategy according to the user requirements. This framework is based on ‘learning from experience’. Specifically, we
introduce a utility function that takes the contribution of the samples to the tree construction into account; sampling at locations
of increased utility then becomes more frequent. The idea is realized by introducing an ant colony optimization concept in the
RRT/RRT* algorithm and defining a novel utility function that permits trading off exploitation versus exploration of the state
space. We also extend the algorithm to allow an anytime implementation. The scheme is validated with three scenarios: one
populated with multiple rectangular obstacles, one consisting of a single narrow passage and a maze-like environment. We
evaluate its performance in terms of the cost and time to find the first path, and in terms of the evolution of the path quality with
the numberof iterations. It is shown that the proposed algorithm greatlyoutperforms state-of-the-artRRT and RRT* algorithms.

Keywords
Mobile robots, autonomous agents, motion and path planning, rapidly exploring random trees, ant colony optimization,
bio-inspired robotics

Date received: 13 May 2016; accepted: 22 July 2016

Topic: Special Issue - Manipulators and Mobile Robots
Topic Editor: Michal Kelemen

Introduction

The optimal path-planning problem, which can be formu-

lated as the task of driving a robot from an initial state xA

to a goal state xB with the minimum cost, is one of the

most fundamental problems in robotics. Despite a vast

literature, it is still a challenging problem in many situa-

tions. Furthermore, in safety-of-life applications, such as

search-and-rescue missions, or disaster relief, we aim to

find the best possible path in a given time. Sampling-

based methods, such as rapidly exploring random trees

(RRTs),1 are widely used to solve this problem, since the

method offers low computational complexity and is

efficient in finding a solution. However, the performance

of the method can be increased by modifying the way in

which the state space is sampled. Rapidly exploring ran-

dom trees typically perform a uniform sampling of the

1 Institute of Communications and Navigation of the German Aerospace

Center (DLR), Oberpfaffenhofen, Germany
2Universidad Pablo de Olavide, Seville, Spain

Corresponding author:

Alberto Viseras, German Aerospace Center (DLR), Münchener Straße 20,

82334 Oberpfaffenhofen, Germany.

Email: alberto.viserasruiz@dlr.de

International Journal of Advanced
Robotic Systems

September-October 2016: 1–16
ª The Author(s) 2016

DOI: 10.1177/1729881416664078
arx.sagepub.com

Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 3.0 License

(http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

mailto:alberto.viserasruiz@dlr.de
http://arx.sagepub.com
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage

state space. The uniform sampling treats all samples

equally; instead, new samples can be picked at locations

where some utility function is optimized. Thus, we aim to

sample at locations with a high utility; this utility function

is constructed so as to either optimize a time to find a

feasible solution, or to improve an already found solution.

Thus, our goal in this work is to answer the question of

how to sample to optimize the selected utility function.

Furthermore, the definition of the utility function allows

us to formulate a framework that is able to incorporate

heuristics that will guide the sampling strategy according

to the user requirements. This would enable us to extend the

original RRT* algorithm2 to informative path-planning and

exploration applications in unknown environments, where

our goal is to sample more often where there is more infor-

mation, or to employ the user’s prior knowledge to perform

a more intelligent sampling that optimizes some predefined

criteria, for instance, avoiding harsh terrains in search and

rescue missions. This could easily be introduced into our

utility function. However, in this work, we focus on the

shortest path-planning problem and formulate a utility

function that optimizes the path cost with respect to dis-

tance. We suggest further extensions of the algorithm in the

concluding discussion of possibilities for future work.

Inspired by machine-learning techniques, we augment

our sampling strategy by taking the already accumulated

samples into account. This can be interpreted as continuous

learning of the probability density function, which represents

the optimal sampling distribution at each moment and sam-

pling according to it. To determine the optimal sampling

distribution, we rely on ant colony optimization (ACO) for

continuous domains (ACOR). We chose ACOR because it

offers superior performance compared with both Monte-

Carlo methods and other swarm optimization techniques.3

The ACOR algorithm distributes virtual ants according to a

utility function that evaluates the ants’ relevance and so

determines the sampling distribution (as illustrated in Figure

1). The utility function is constructed to trade exploitation of

the state space, that is, optimization of the constructed tree,

and exploration of the state space, which favours a growth of

the tree in as yet explored regions of the state space. Given

the tree we have constructed so far, we analyze: (i) how

much the sample exploits the current solution; (ii) how much

a sample contributes to exploration of the state space. Based

on that, we update our ants, which will modify the sampling

distribution and, in consequence, the way we construct our

tree to solve the path-planning problem.

Related work

Sampling-based path-planning algorithms are widely used

because of their efficiency in providing path-planning solu-

tions in high-dimensional spaces. These methods are well

exemplified by probabilistic roadmaps (PRMs)4 and rapidly

exploring random trees (RRTs);1 a modification of the RRT

algorithm, called RRT*, is also known to achieve asymptotic

optimality with respect to a given cost function.2

In recent years, a great amount of sampling-based path-

planning algorithms have been proposed.5–11 These works

have in common that they outperform the RRT* algorithm

by modifying and optimizing some of the subroutines that

compose the original RRT* algorithm. However, the cited

algorithms are specifically designed to solve the optimal short-

est path-planning problem under certain restrictions. Here, we

aim to go one step further and propose a framework that allows

us to introduce some heuristics into the original RRT and RRT*

algorithms. These heuristics are incorporated into the algo-

rithm by modifying the sampling distribution, which is learnt

online according to those heuristics as we sample the state

space. The advantage of defining such heuristics is twofold:

(i) it enables the introduction of some additional knowledge to

solve the path-planning problem more efficiently; (ii) it could

be used in conjunction with any of the aforementioned works to

improve their performance. Specifically, in this work we will

show that our approach, combined with shortest path heuristics,

outperforms the state-of-the-art RRT and RRT* algorithms.

Sampling-based path planners consist of several subrou-

tines that can be optimized individually to improve the

algorithm’s performance, which also make the methods

very attractive. Denny et al. proposed a ‘lazy planning’ to

improve the collision checking by the assumption that only

10% of the collisions checks are positive.12 Conversely,

algorithms like RRT connect13 and the one proposed by

Urmson and Simmons14 increases the algorithm perfor-

mance by heuristically biasing the tree growth. This tree

growth has also been adapted by Denny et al.,15 who adapted

Figure 1. Example of one path generated with the proposed
ACO-RRT* algorithm. We build a rapidly exploring random tree
based on a modified sampling strategy that learns from previous
experience.

2 International Journal of Advanced Robotic Systems

the branch size according to the space in heterogeneous

environments. In contrast to previous works, here we focus

on a modification of the sampling strategy. Essentially, if we

can identify regions of higher importance, that is, regions in

the state space that could help us to improve our current path,

then we should sample these regions more often.

It is possible to dichotomize sampling strategies for path

planning into importance sampling and adaptive sampling.

Importance sampling methods exploit some predefined

a-priori sampling strategy. Examples include goal-biased

sampling,16medial-axis sampling,17 where samples are taken

from the medial axis of free space, and the bridge test,18 which

is designed to solve narrow passage problems. These methods

are specifically designed to solve concrete problems. Alter-

natively, in adaptive sampling methods, the samples are

drawn from a distribution that is adapted based on the infor-

mation obtained from previous samples, which makes them

more flexible. Siméon et al. propose the visibility PRM algo-

rithm,19 which just takes samples from the unexplored area

within the planner visibility region. Although the constructed

roadmaps are significantly smaller, the computation of the

visibility region is expensive. Adaptive dynamic domain

RRT adapts the previous concept to the RRT algorithm.20

In this work, we additionally consider the importance of the

previous samples, which are not necessarily within the visi-

bility region. This is exploited for PRMs through an utility-

guided sampling by Burns and Brock.21 There, the authors do

not aim to learn the sampling distribution, but to perform a

Monte-Carlo sampling and select the samples with a higher

utility. However, our focus lies in rapidly exploring random

trees, owing to their efficiency, since they do not require any

pre-computation time, as in PRMs. Adaptive sampling within

the RRTs framework has also been exploited in recent

works.22–25 In contrast to our algorithm, these are able neither

to incorporate nor to learn arbitrary heuristics.

The work of Rickert et al.26 inspires the definition of our

utility function. In their work, Rickert et al. propose the

exploring-exploiting tree algorithm, which balances

exploitation and exploration to construct the tree more

effectively. Yet this method requires some environment-

dependent pre-computing time to grow the tree, which does

not make it suitable for online planning. The exploration-

exploitation trade-off has also been employed in several

works.27–29 Alterovitz et al.28 propose the rapidly exploring

roadmaps algorithm. This algorithm first finds a solution,

as in RRTs, and then refines this solution. Balancing explo-

ration and exploitation is also employed by Persson and

Sharf,29 who generalize the A* algorithm to allow

sampling-based motion planning. Also Akgun and Stil-

man27 have developed an algorithm that trades off explo-

ration and exploitation to improve the RRT* in high

dimensions. This is done by introducing sampling heuris-

tics. Our algorithm is also based on sampling heuristics,

which are learnt using machine learning. In contrast to the

aforementioned studies,27–29 our framework allows us to

introduce sampling heuristics that are not just specifically

designed for the optimal shortest path planning but also for

different applications.

Our goal in this paper is not just to define a framework

that can incorporate arbitrary heuristics. In addition, we

aim to learn the sampling distribution of the planning algo-

rithm that better fits the user-defined heuristics. This is done

by introducing machine-learning techniques. Morales et al.30

divide the planning problem into several subproblems, and

then employ machine learning to select a roadmap from a set

that is more adequate to solve each of the subproblems. In

the last step, the selected roadmaps are fused to obtain a

global one. Machine learning is also introduced by Diankov

and Kuffner31 into A* to select the best heuristic from a set

in order to improve the algorithm performance. Both of these

algorithms30,31 require a discrete predefined set from which

they select the best roadmap or heuristic, respectively. In

contrast, we aim to apply machine learning to learn not a

discrete set but a continuous distribution.

This paper is strongly influenced by the idea of cross-

entropy motion planning outlined by Kobilarov.32 Here,

Kobilarov32 learns the sampling distribution from previous

samples by evaluating its entropy. Its limitation comes from

the high computational requirement to calculate the sampling

distribution for the environment, which does not make it fea-

sible for real-time applications. We improve this concept by

using an ant colony optimization algorithm to learn the sam-

pling distribution.3 Ant colony optimization has also been

used, by Mohamad et al.,33 in the context of PRMs. The goal

of Mohamad et al.33 was to reduce the number of intermediate

configurations from an initial to a goal position. Although it

has a different objective, that work serves as an inspiration to

incorporate the ACO into a sampling-based path planner.

Learning the sampling distribution, together with the defini-

tion of a novel utility function, lets us derive a scalable algo-

rithm suitable for real-time path-planning applications.

In the remainder of this paper, we briefly describe the

rapidly exploring random trees and ant colony optimization

algorithms that serve as the basis of our work. We then

introduce the proposed algorithm and extend it to allow

an anytime implementation. We evaluate and discuss the

algorithm performance and finally draw conclusions and

discuss avenues for future work.

Background

Rapidly exploring random trees

The rapidly exploring random trees (RRTs) algorithm is a

solution to the path planning problem in complex high-

dimensional spaces.1 The RRT algorithm iteratively con-

structs a graph GðV; EÞ (tree) with a set of vertices V and

edges E, with the goal of establishing a path between xA and

xB in the state space – a feasible trajectory T A;BðGÞ. The key

steps of the RRT algorithm are summarized in Algorithm 1.

The algorithm is realized as follows. We draw a sample

x rand randomly from a uniform distribution defined over

Viseras et al. 3

free space using the function SampleFree. Then the

Nearest function finds the nearest neighbour (in terms

of the cost-to-reach) of x rand from the set of vertices V.

We use the function Steer to simulate driving the robot

from x nearest to x rand according to our controller. We drive

the robot a maximum distance �. This is a user-selected

parameter, which sets the maximum branch size. As the

output we obtain the state x new. If the trajectory

T ðx nearest; x newÞ does not collide with any obstacles, we

add the vertex x new and the edge T ðx nearest; x newÞ to the

tree G. Given the current tree, we search the best path

T A;BðGÞ from xA to xB using the function FindBestPath.

If there is no feasible path, the output would be a void set.

We repeat this process during n iterations.

The RRT* algorithm is an evolution of the RRT algorithm,

which has been shown to be asymptotically optimal.2 We

describe the RRT* in Algorithm 2. It differs from RRT in two

aspects: choosing a parent and rewiring. In contrast to RRT,

we choose the parent of x new as the node from the set X near

that allows us to reach x new with the minimum cost. X near is

calculated using the function Near, which is defined as

Nearðx;VÞ :¼ fk x� x0 k� rð cardðVÞÞg (1)

with

rð cardðVÞÞ ¼ minfgðlogð cardðVÞÞ= cardðVÞÞ1=d ; �g (2)

where cardðVÞ is the number of elements in set V, g is a

constant and d is the number of dimensions of the state

space. The RRT* algorithm also incorporates a rewiring

process to find an optimal trajectory. This is done by find-

ing minimum cost sub-paths. Here, we define two different

costs: Costðx;GÞ is the cost-to-reach sample x from xA

following the tree G. CostðT ðx; x0ÞÞ would be the cost of

going directly from x to x0, regardless of the obstacles. In

this work, we define the cost between two samples

CostðT ðx; x0ÞÞ as the Euclidean distance between them.

The cost Costðx;GÞ is the sum of these Euclidean dis-

tances along the edges towards x.

Ant colony optimization for continuous domains

Ant colony optimization is a nature-inspired algorithm to

solve hard combinatorial optimization problems.34 Its driv-

ing principle comes from the behaviour of ants when

searching for food. First, they leave the nest walking in

random directions. Once they find a food source, they come

back to the nest, leaving a pheromone trail on the ground.

The pheromone deposited depends on the quality and quan-

tity of the food and guides the other ants to the food source.

Based on the same principle, ant colony optimization for

continuous domains (ACOR) is proposed to solve contin-

uous optimization problems.3 This work inspires our sam-

pling strategy, in which the ants, according to their utility,

will decide where to sample next.

The ants are stored in a table T, as depicted in Figure 2.

Each row contains one of the k ants, where sl ¼ ½s½1�l ; s
½2�
l ;

. . . ; s
½d�
l � is the vector of coordinates describing the lth

ant’s location and d is the number of dimensions of the

state space. The ant’s utility is given by ul, which deter-

mines the importance of the lth ant. The utility is defined

according to the algorithm’s optimization objective.

The algorithm works as follows. First, we take a sample

x rand ¼ ½x½1�rand; :::; x
½j�
rand; :::; x

½d�
rand�, where each of the compo-

nents x
½j�
rand is drawn from a Gaussian kernel probability

density function

G½j�ðxÞ ¼
Xk

l¼1

wlg
½j�
l ðxÞ ¼

Xk

l¼1

wl

1

�
½j�
l

ffiffiffiffiffiffi
2�
p e

�
ðx�s

½j�
l
Þ2

2�
½j�
l

2

(3)

with j ¼ 1; 2; :::; d, and �
½j�
l the lth ant’s standard deviation

in dimension j. The standard deviation is calculated as the

average distance from the lth ant to the rest of the ants

stored in T

�
½j�
l ¼ �

Xk

e¼1

js½j�e � s
½j�
l j

k � 1
(4)

4 International Journal of Advanced Robotic Systems

where � > 0 is the pheromone evaporation rate, which

avoids the algorithm converging too quickly before app-

roaching the optimal solution. The parameter wl from w is

set as

wl ¼
1

qk
ffiffiffiffiffiffi
2�
p e

�ðl�1Þ2

2q2k2 (5)

where q is a user-defined parameter. When q is small, the

best ranked solutions are strongly preferred. The vector of

weights w is normalized so that the integral of the prob-

ability density function G½j�ðxÞ over the entire space is equal

to one. The value of wl is initialized and is not modified

during the execution of the algorithm.

Next, we sort the table T in descending order according

to the utility given by vector u and insert the new sample

x rand. The sample x rand will now become an ant. In this

way, samples with a higher utility will move up the table

and will be selected with a higher probability. If the sam-

ple’s utility is higher than the last ranked solution sk , this

last one will be removed from the table T to keep k ants in

the algorithm. This loop goes on during n iterations.

ACO-RRT* algorithm

In this work, we propose the ACO-RRT* algorithm, which

aims to improve on the RRT and RRT* performance by

Figure 2. T-table of the ACOR algorithm. It stores the k ants,
sorted according to their utility given by the elements of u.
Together with the ants’ coordinates, the elements of w determine
the probability density function described by the ants.

Viseras et al. 5

modifying the sampling distribution using ant colony opti-

mization for continuous domains. Our motivation lies in

learning from the experience. This means that, after sam-

pling, we evaluate how much that sample contributed to

improve our current path. This evaluation will influence

how we obtain the next sample.

The algorithm consists of five steps (see Figure 3). First,

we initialize the ants that will generate future samples.

Second, we sample from the distribution described by the

current ants. Then we update our tree according to the orig-

inal RRT/RRT* algorithm. After that, we calculate the util-

ity of that sample based on how much it could improve the

current path. This is divided into two factors: (i) exploitation

of the current solution and (ii) exploration of the state space

to find a new, better solution. Based on that utility, we

update the ants and resample according to the new distribu-

tion. The algorithm is formulated in Algorithms 3, 4 and 5,

and is described in detail in the following subsections.

Initialize ants

The first part of the algorithm consists of filling the table T

with k ants (see Algorithm 3). We take a sample from a

uniform distribution defined over the obstacle-free space

(line 2). Then we insert its position coordinates in row l,

where x
½j�
rand represents the coordinate of x rand at the jth

dimension (lines 3 and 4). We initialize the utility ul to

zero. To calculate the utility, we require the exploitation

and exploration utility as well as the a that trades off the

two factors. These three elements (F l :U exploit;F l :U explore;

F l :a) are stored in set F l and initialized to zero. (The

notation A:b makes reference to the element b that is part

of set A.) The parameter wl is computed according to

equation (5) (lines 5 and 6). This initialization is only per-

formed once, at the beginning of the algorithm.

Sample ACO

Given the table T, we sample from the probability density

function described by the ants (line 4 in Algorithm 4). The

following method is equivalent to sampling directly from

the distribution described by equation (3). First we select an

ant l with a probability

pl ¼
wlXk

e¼1

we

(6)

with we given by equation (5) and l ¼ 1; 2; :::; k. The new

sample will be x rand ¼ ½x½1�rand; :::; x
½j�
rand; :::; x

½d�
rand�. The posi-

tion coordinate x
½j�
rand is taken from a Gaussian distribution

with x
½j�
randeNðs½j�l ; �½j�l 2Þ. This function outputs the new sam-

ple x rand, as well as the ant index l that generated it. We use

rejection sampling to select a sample that belongs to the

free space.

This modification of the sampling strategy implies that

the algorithm cannot guarantee the theoretical asymptotic

optimality from RRT*. However, simulation results sug-

gest that the proposed algorithm is able to approach the

optimal solution. The explanation for such behaviour lies

in the fact that the ants are associated with Gaussian prob-

ability density functions. Samples extracted from such a

function can take values from an infinite domain that

results in sampling over the complete state space. Even in

the worst case, when all ants could converge to a single

point, the variance of the distributions associated with the

Figure 3. ACO-RRT* algorithm block diagram. Each of the five blocks points to its respective lines from Algorithm 4.

6 International Journal of Advanced Robotic Systems

ants will be always slightly greater than zero. This fact

guarantees that the state space will always be fully sampled

and, therefore, the algorithm will approach the optimal

solution.

Construct tree

The next step is to construct the tree according to the basic

rapidly exploring random tree path planner. This step cor-

responds to lines 4–8 in Algorithm 1 (RRT) and lines 4–23

in Algorithm 2 (RRT*). This function needs the x rand sam-

ple and the current tree. The output of this function is the

new vertex x new added to the tree as well as the new con-

structed tree G. Based on the new sample and the current

tree, we calculate the utility function that will modify how

the ants sample the states’ space.

Calculate utility

The key part of the algorithm is the calculation of the utility

of the x new sample. It corresponds to lines 6–18 in Algo-

rithm 4. We define the utility function as a trade-off

between exploitation and exploration. Exploitation (i) tries

to go directly to the goal position using the shortest possible

path, if no path has been found, and, (ii) once a path has

been found, tries to improve it. Exploration aims to sample

at those locations have not yet been sampled. It helps us to:

(i) find a first path by exploring the state space and (ii)

search for new better paths once we have found a solution.

The utility function Uðx;GÞ of sample x given the tree G is

defined as

Uðx;GÞ ¼ a � U exploitðx;GÞ þ ð1� aÞ � U exploreðx;GÞ (7)

where a models the trade-off between exploitation and

exploration, U exploitðx;GÞ is the exploitation utility, and

U exploreðx;GÞ is the exploration utility.

Exploration utility. The exploration utility U exploreðx;GÞ rep-

resents the density of samples in the tree G in the vicinity of

sample x and is defined as

U exploreðx;GÞ ¼
1

cardðX nearÞ
R

�

� �d

(8)

Viseras et al. 7

withX near Nearðx;VÞ the set of neighbours of x given

by equation (1), cardðX nearÞ the number of elements in the

set X near, � a parameter of the RRT/RRT* path planner and

R the connection radius. We define R ¼ rð cardðVÞÞ for

RRT* with rð�Þ given by equation (2), and R ¼ � for RRT.

The first term of the product models a decay of the

exploration utility as proportional with respect to the num-

ber of elements inX near. That implies that a sample that has

a low number of neighbours in the current tree Gwill have a

high exploration utility. Therefore, the exploration utility

function will bias the exploration towards the not-yet-

sampled state space. However, the number of neighbours

of a sample depends on the connection radius R given by

the RRT/RRT* algorithm. The bigger the connection

radius, the higher the probability of having a larger number

of neighbours. As the tree growths, the connection radius

decreases. To make the exploration utility independent of

the tree’s current state, we introduce a second term ðR=�Þd
to act as a normalization factor.

Exploitation utility. The exploitation utility takes advantage

of the acquired knowledge about the state space. Here, we

distinguish two modes: no path found and path found, so

that we can incorporate the information about the current

solution. To add more flexibility to the algorithm, we

assign to it the parameter a, which trades off exploitation

and exploration in equation (7), one of the two possible

values: (a) a ¼ â if no path was found; (b) a ¼ �a otherwise.

No path found. Before finding a first path, we bias the

sampling to connect the state x with the goal as quickly as

possible regardless the obstacles.16 Conversely, the explo-

ration utility will bias the growth to obtain a path free of

collisions. In this mode, we define the exploitation utility as

Û exploitðx;GÞ ¼ 1� CostðT ðx; xBÞÞ
cmax

(9)

where the cost to go directly to the goal from x, CostðT
ðx; xBÞÞ, is normalized by the maximum cost cmax to reach

the goal from any of the possible states. We can observe

that sampling in the goal state will have the maximum

utility since it will direct the tree growth towards the goal

position.

Path found. Once we have found a path, we can exploit

this information to derive a richer exploitation utility func-

tion. We consider two possible situations: path improve-

ment (see Figure 4(a)), and no path improvement (see

Figure 4(b)).

Consider that sample x leads to an improvement on the

current path. Then we expect that this region of the state

space could help us to improve the solution again in a

future iteration. Therefore, we formulate the exploitation

utility to quantify this improvement

_�U exploitðx;GÞ ¼
c path � CostðxB;GÞ

c path � CostðT ðxA; xBÞÞ
(10)

with CostðxB;GÞ the cost of the best path after sampling

x, and c path the cost of the previous path. The denominator

normalizes the function so that it ranges between 0 (no path

improvement) and 1 (the path is the best possible one).

In contrast, if sample x has not contributed to improve

the solution, we define the exploitation utility to shape the

path as a straight line connecting the initial and goal posi-

tions. This represents the best possible path regardless of

the obstacles. Again, the exploration utility will compen-

sate this bias to find the best feasible path considering the

obstacles. This utility is given by

�
�U exploitðx;GÞ ¼ CostðT ðxA; xBÞÞ

Costðx;GÞ þ CostðT ðx; xBÞÞ
(11)

It is important to note that, once we have found a first

path, we only introduce the ant in table T if it could

improve the current solution (line 8). This is equivalent

to setting the exploration and exploitation utilities to zero

Figure 4. Graphical representation of the exploitation utility in the path found mode: (a) path improvement; (b) no path improvement.
The black square represents an obstacle. The red dot corresponds to the sample x. The black lines and green dots represent the
current tree G. The superposed thick blue line is the best found path before sampling the state x. The dashed yellow line is the new best
path after sampling x. Arrows represent the direct path between one state and the goal xB.

8 International Journal of Advanced Robotic Systems

(line 15). By doing this, we allow the algorithm to sample

in the future again in that region, which could incur in a

path improvement.

Update ants

The last step is to update the ants in table T, according to

Algorithm 5. One of the inputs is the minimum cost path

T A;BðGÞ from the initial to the goal position given by the

tree G. The function FindBestPath finds it, returning a

void set if no path has been found yet (line 23 in Algorithm

4). The first time a path is found we reset the utility values

T:u and the parameters in T:F , since the ants that we will

store from this point on will have more information based

on the current found path (lines 2 and 3).

The sample x new was generated from the lth ant. The

utility of this ant should be updated to incorporate the cur-

rent information provided by the tree (lines 5–12). One

example could be an ant that had a great exploration utility

when it was stored, but several iterations later the area

associated with the ant is fully explored. In line 8, we

introduce a soft pruning condition that allows the algorithm

to shape the sampling distribution according to the most

promising areas, given the current knowledge about the

state space. We insert the lth ant in table T according to

the updated utility ul, calculated using equation (8) from

the elements of vector F l. Then, the ant associated with

x new is inserted into the table in the position given by its

utility ui that is calculated from F i (lines 13–15). Here, we

have made a simplification that consists of two heuristics:

(i) the utility of the new ant is the same as the utility of the l

th ant; (ii) the introduction of a new sample in the table does

not incur a modification of the exploration utility of the rest

of the ants contained in the table. These two heuristics

allow us to reduce the algorithm’s computational complex-

ity, since they avoid recalculating the utilities each time we

introduce a new ant into the table. Despite this simplifica-

tion, these heuristics have been shown to work well, since

the next time an ant is selected its utility will be recalcu-

lated according to the updated information. The last step of

this algorithm is to remove the last row of table T after a

new ant has been added (line 14). This is done to keep k

ants in the table.

This complete loop is repeated during n iterations. The

output of the algorithm is the trajectory T A;BðGÞ.

Anytime ACO-RRT*

The main drawback of the ACO-RRT* algorithm is that it

needs more time to find a first path than does the basic

RRT/RRT*. This is because of the time needed by the ants

to converge the first time. However, the solution obtained

has a better quality; that is a smaller cost. There are situa-

tions, for example in search and rescue missions, where

finding a first solution rapidly is crucial. Then, if we had

more time, we could improve it to reach our goal faster.

Inspired by Ferguson and Stentz,35 we exploit this concept

in our anytime ACO-RRT* algorithm. First, we run the

fastest algorithm (RRT) to find a first solution T A;BðGÞ.
Second, we initialize our tree G as the found path

GðV; EÞ ¼ T A;BðGÞ. Then we improve the current solution

using ACO-RRT*, taking that tree as input. This

Viseras et al. 9

mechanism allows us to combine the best of both algo-

rithms to increase the algorithm’s performance.

Simulations and discussion of results

We tested the ACO-RRT* algorithm performance with a

holonomic robot in three simulated scenarios (see Figure 5).

We chose a holonomic robot, since it enables us to abstract

the algorithm capabilities from the robot’s kinodynamic

constraints. We assume that the robot corresponds to a

single point. However, more complex robot shapes could

easily be introduced within this framework. The three sce-

narios correspond to realistic scenarios that could be

encountered while navigating an indoor facility. Moreover,

similar scenarios have been considered to evaluate some of

the most recent state-of-the art methods.7,24 Analysis in

more complex scenarios and the consideration of kinody-

namic constraints is left for future research. All scenarios

measure 100 m � 100 m and the goal is to find the optimal

path that goes from xA to xB. Since Scenario 3 is more

structured, the placement of the initial position plays a

crucial role. Therefore, in Scenario 3 we consider different

possible starting positions xA, which are randomly selected

in each simulation run. For the evaluation we consider a

goal region centred around the goal position, not just a

single state. Scenario 1 is composed of 10 rectangles of

different sizes and the optimal path measures 88 m. Sce-

nario 2 contains a narrow passage, which is often consid-

ered one of the most challenging path-planning problems.

The optimal path in this scenario is 63 m. Scenario 3 cor-

responds to a maze-like environment. This last scenario

allows us to test the algorithm performance in a more struc-

tured scenario.

We carried out the simulations using a Intel Xenon

E31225 processor at 3:10 GHz with 8 GB of RAM. We

ran each simulation 100 times, according to the parameters

shown in Table 1.

We evaluated the following parameters: (i) time to find

the first path and its associated cost; (ii) evolution of the

cost of the best found path over time; (iii) performance of

the anytime implementation; (iv) influence of the different

parameters in the algorithm performance.

Time to find first path and associated cost

One of the key figures to evaluate the performance of the

path-planning algorithm is the number of iterations needed

to find a first path. This is strongly correlated with the cost

associated to that path. In Figure 6, we evaluate both indi-

cators for Scenarios 1, 2 and 3. For Scenarios 2 and 3, we

represent the time instead of the number of iterations, to

demonstrate the algorithm’s performance in an actual sys-

tem. We compared the ACO-RRT* algorithm with the

ACO-RRT, RRT* and RRT algorithms. We did not per-

form a comparison against the cited state-of-the-art works

because they follow a different goal, that of approaching

the optimal solution to the path planning problem as

quickly as possible. By contrast, the objective of our paper

is to show that our algorithm is able to learn some user

predefined heuristics and then use them to improve the

solution of the original RRT/RRT* algorithms.

Figure 6 shows a box plot representation of the obtained

results, where the dashed red line is the median of the data,

the bottom and top of each box represent the 25th and 75th

percentiles, and the two strokes encompass the minimum

and maximum values. We observe that the ACO-RRT*

algorithm finds a better, but slower, solution when com-

pared with the other algorithms. The ACO-RRT* algorithm

is slower because the ACO requires some time to place the

ants in the best positions to guide the tree’s growth. During

the first iterations of the algorithm, the ants are not cor-

rectly placed and therefore the planner cannot find a path

between the initial and goal position. Conversely, we can

conclude that RRT is the fastest algorithm to find a first

solution to the path-planning problem, although it has the

highest cost. We exploit this capability in our anytime

implementation to find rapidly a first solution.

Figure 5. Tested scenarios: (a) Scenario 1; (b) Scenario 2; (c)
Scenario 3. We aim to find the optimal path that goes from xA to
xB. All scenarios measure 100 m � 100 m.

Table 1. Simulation parameters. For each simulation, we ran the
algorithm for 220 s.

n (s) � (m) k (ants) q � �a â

220 5 100 50 0:4 0:3 0:1

10 International Journal of Advanced Robotic Systems

Algorithm performance with time

Once we have found a first path, we aim to improve it to

reach the optimal solution. Figure 7 shows the evolution of

the best path found over the number of iterations and time.

We accompany these figures with a simulation of the algo-

rithm’s complexity for the three scenarios. The results of

the proposed ACO-RRT* algorithm are compared with

ACO-RRT, RRT* and RRT algorithms.

The curves in Figure 7 correspond to the mean value

calculated over 100 runs. For each of the curves in Figures

7(a), (c) and (e), we have considered the worst case; that is

each of the curves starts when a path was found in all the

100 runs. We observe that the ACO-RRT* algorithm offers

a superior performance over time. However, for scenario 3,

the performance is similar to the one offered by RRT*. This

is because Scenario 3 is more structured and therefore, once

the algorithm finds a first solution, it has little room for

improvement. These results naturally led us to formulate

the anytime ACO-RRT* algorithm. Although the solution

offered by the RRT algorithm in the first place is of worse

RRT*-ACO RRT* RRT-ACO RRT
0

200

400

600

800

1000

It
er

at
io

ns

(a) Iterations to find first path.

RRT*-ACO RRT* RRT-ACO RRT
100

120

140

160

180

200

220

C
os

t [
m

]

(b) Cost of first path.

RRT*-ACO RRT* RRT-ACO RRT
0

2

4

6

8

10

T
im

e
[s

]

(c) Time to find first path.

RRT*-ACO RRT* RRT-ACO RRT
80

100

120

140

160

180

200

220

C
os

t [
m

]

(d) Cost of first path.

0

2

4

6

8

10

T
im

e
[s

]

RRT*-ACO RRT* RRT-ACO RRT

(e) Time to find first path.

0

50

100

150

200

250

C
os

t [
m

]

RRT*-ACO RRT* RRT-ACO RRT

(f) Cost of first path.

Figure 6. (a, b) Scenario 1. Multiple rectangles. (c, d) Scenario 2. Narrow passage. (e, f) Scenario 3. Maze. Box plot representation of the
number of iterations and time to find a first path and its associated cost.

Viseras et al. 11

0 1000 2000 3000 4000 5000
80

90

100

110

120

130

140

150

Iterations

C
os

t [
m

]

RRT RRT-ACO RRT* RRT*-ACO

(a)

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

140

160

180

Iterations

T
im

e
[s

]

RRT RRT-ACO RRT* RRT*-ACO

(b)

0 20 40 60 80 100
70

80

90

100

110

120

130

140

150

160

170

Time [s]

C
os

t [
m

]

90

100

110

120

130

140

150

C
os

t [
m

]

RRT RRT-ACO RRT* RRT*-ACO

(c)

0 20 40 60 80 100

Time [s]

(e)

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

Iterations

T
im

e
[s

]

0

20

40

60

80

100

T
im

e
[s

]

RRT RRT-ACO RRT* RRT*-ACO

(d)

0 1000 3000 5000 7000 9000

Iterations

(f)

RRT

RRT

RRT-ACO

RRT-ACO

RRT*

RRT*

RRT*-ACO

RRT*-ACO

Figure 7. (a, b) Scenario 1: multiple rectangles. (c, d) Scenario 2: narrow passage. (e, f) Scenario 3: maze. Evolution of the best path cost
over time and iterations after finding a first solution. The right hand side shows an evaluation of the algorithm time complexity. (a) Path
cost versus iterations. (b, d, f) Time versus iterations. (c, e) Path cost versus time.

12 International Journal of Advanced Robotic Systems

quality, we expect to improve it using ACO-RRT*. We

expect this combination to incur an increase in performance

over time.

Note that the introduction of the ACO increases the

algorithm’s computational complexity. This is mainly

because of the time needed to compute the ant’s utility and

update the table that contains the ants. However, this addi-

tional complexity is beneficial, since the ACO-RRT/RRT*

offers a better performance.

Anytime ACO-RRT* performance

Figure 8 shows the performance of the anytime implemen-

tation of the algorithm. We would assume that the RRT and

anytime curves should start at the same position, since both

of them start running the RRT algorithm. However, here we

represent the first moment in which we have found a path

for all the 100 algorithm runs. They would then start at the

same point if the number of runs approaches infinity. This

algorithm is the fastest to find a first path (equal to RRT)

and has the same evolution of the performance over time

(equal to ACO-RRT*).

Performance with respect to algorithm parameters

For Scenario 1, we evaluated the evolution of the path cost

over time with respect to the number of ants, the exploita-

tion–exploration trade-off parameter, and the evaporation

rate; while keeping the not-analyzed parameters constant,

according to Table 1. We did not simulate the influence of

varying q, since this is strongly correlated with k. This

allows us to keep q fixed and just modify the number of

ants k.

Figure 9 shows the performance with respect to the

number of ants. We also performed simulations with a

smaller number of ants but the algorithm was not able to

converge to any solution in the given planning time. We

observe as well that 50 ants corresponds to the best solution.

Increasing the number of ants, however, incurs a decrease in

performance. The explanation of such behaviour comes

from the trade-off that exists between including more ants

to better learn the sampling distribution, and the complexity

added at the sampling procedure when increasing the num-

ber of ants.

To analyze the impact of the a factor in the algorithm

performance over time, we keep constant â and vary �a
between 0 and 1 (see Figure 9). As we could expect, for

extreme values of �a, the algorithm does not find a solution.

For the remaining values, the performance varies only

slightly.

In Figure 9, we observe as well that the algorithm does

not converge only for the extreme values of the conver-

gence rate �. As in the previous case, it is important that

performance does not drastically change as we vary this

parameter.

Examples of paths planned with the ACO-RRT*
algorithm

We have analyzed the different parameters that influence

the algorithm’s performance. In addition, we include in

Figure 10 three snapshots of the paths planned after running

our proposed ACO-RRT* algorithm. The figures show the

resulting trajectory, the samples that conform the tree, and

the ants at the end of the algorithm’s execution. We can

observe that most of the ants are placed in the region of the

state space that contains the optimal trajectory. This results

in the presence of more samples in this region, which is the

goal of our algorithm. For Scenario 3, it can be seen that the

first path found is already very close to the optimal path.

Conclusions and future work

In this work, we have proposed and analyzed a novel

path-planning algorithm (ACO-RRT*) based on rapidly

exploring random trees (RRTs). We have modified the

RRT algorithm sampling strategy so that the current tree

RRT*−ACO RRT* RRT−ACO RRT Anytime
0

1

2

3

4
T

im
e

[s
]

(a)

0 20 40 60 80 100
80

90

100

110

120

130

140

150

Time [s]

C
os

t [
m

]

Anytime RRT RRT−ACO RRT* RRT*−ACO

(b)

Figure 8. Scenario 1: multiple rectangles, anytime ACO-RRT* performance. (a) Box plot representation of the time to find a first path.
(b) Evolution of the best path cost over time once we have found a first solution.

Viseras et al. 13

0 10 20 30 40 50
88

90

92

94

96

98

100

102

104

106

108

110

Time [s]

C
os

t [
m

]

k = 500
k = 200
k = 100
k = 80
k = 50

(a)

0 20 40 60 80 100
85

90

95

100

105

110

 Time [s]

C
os

t [
m

]

α = 0.8
α = 0.7
α = 0.6
α = 0.5
α = 0.4
α = 0.3
α = 0.2
α = 0.1

(b)

0 20 40 60 80 100
85

90

95

100

105

110

115

Time [s]

C
os

t [
m

]

ξ = 0.9
ξ = 0.7
ξ = 0.5
ξ = 0.3
ξ = 0.05

(c)

Figure 9. Scenario 1: multiple rectangles; Analysis of the algorithm performance with respect to: (a) number of ants, k; (b) the
exploitation–exploration trade-off parameter once we have found a first path, �a; (c) evaporation rate, �. Each simulation corresponds to
the variation of the specific parameter, while leaving the rest constant according to the values of Table 1.

Figure 10. Example of one path planned with the ACO-RRT* algorithm for each of the analyzed scenarios: (a) Scenario 1; (b) Scenario 2;
(c) Scenario 3. The large pink dot is the starting position. The red square is the goal region. The final path is coloured red. The black dots
are the samples generated by the algorithm. The yellow and pink dots represent the ants’ positions at the end of the algorithm’s execution.
The ants represented with the pink dots are the ones that were placed on top of an obstacle during the algorithm’s execution.

14 International Journal of Advanced Robotic Systems

influences the sampling. This is done by defining a novel

utility function in combination with the ant colony optimi-

zation algorithm. The utility function is defined to trade off

between (i) exploiting the current solution and (ii) explor-

ing the states’ space. We have compared the ACO-RRT*

algorithm performance with the RRT and RRT* algorithms

in three challenging scenarios. The proposed algorithm is

able to find a higher quality first path than the other alter-

natives (improvement factor between a 1:08 and 1:5). In

addition, the results suggest that our algorithm approaches

the optimal solution 3:6 faster than the RRT* algorithm.

However, it takes more time to find the first path. To reduce

this time, we extended the algorithm to an anytime version.

Here, the algorithm searches a first path as quickly as pos-

sible regardless of the path’s cost, and then improves it

using the ACO-RRT* algorithm. Simulations results

demonstrate that this anytime ACO-RRT* outperforms the

state-of-the-art RRT/RRT* algorithms. We also compared

the algorithms’ performance, by varying the different para-

meters that conform the algorithms.

Future steps are to encompass the experimental valida-

tion of the algorithm with a robot-in-the-loop. We also aim

to learn the optimal algorithm’s parameters. This could be

done by reinforcement learning, where the robot could

automatically tune these parameters by analyzing the cur-

rent solutions as it moves. We are working to extend this

framework to handle more complex objective functions; for

example autonomous exploration and handling model

uncertainty. In addition, a future goal is to perform path

planning in an environment populated with obstacles and

moving agents that can cooperate. In this situation, we

believe we could obtain a great improvement by exchanging

ants between agents. Here, we have proposed a framework to

treat the rapidly exploring random trees algorithm. We

believe that incorporating some of the state-of-the-art meth-

ods in this framework, by the definition of proper utility

functions, will lead to a greatly superior performance.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship and/or publication of this article: The

work of author L. Merino is partially funded by the European

Commission FP7 (grant number 611153 TERESA)

References

1. LaValle SM and Kuffner JJ. Randomized kinodynamic plan-

ning. Int J Rob Res 2001; 20(5): 378–400.

2. Karaman S and Frazzoli E. Sampling-based algorithms for

optimal motion planning. Int J Rob Res 2011; 30(7):

846–894.

3. Socha K and Dorigo M. Ant colony optimization for contin-

uous domains. Eur J Oper Res 2008; 185(3): 1155–1173.

4. Kavraki LE, Svestka P, Latombe JC, et al. Probabilistic road-

maps for path planning in high-dimensional configuration

spaces. IEEE Trans Rob Autom 1996; 12(4): 566–580.

5. Arslan O and Tsiotras P. Use of relaxation methods in

sampling-based algorithms for optimal motion planning. In:

2013 IEEE international conference on robotics and automa-

tion (ICRA), Karlsruhe, Germany, 6–10 May 2013, pp.

2421–2428. Piscataway, NJ: IEEE.

6. Arslan O and Tsiotras P. Dynamic programming guided explo-

ration for sampling-based motion planning algorithms. In:

2015 IEEE international conference on robotics and automa-

tion (ICRA), Seattle, WA, 26–30 May 2015, pp.4819–4826.

Piscataway, NJ: IEEE.

7. Gammell JD, Srinivasa SS and Barfoot TD. Informed RRT*:

optimal sampling-based path planning focused via direct

sampling of an admissible ellipsoidal heuristic. arXiv pre-

print 2014; arXiv:14042334.

8. Gammell JD, Srinivasa SS and Barfoot TD. BIT*: batch

informed trees for optimal sampling-based planning via

dynamic programming on implicit random geometric graphs.

Technical report no. TR-2014-JDG006, 2014. Toronto, ON:

ASRL University of Toronto.

9. Karaman S, Walter MR, Perez A, et al. Anytime motion

planning using the RRT*. In: 2011 IEEE international con-

ference on robotics and automation (ICRA), Shanghai, China,

9–13 May 2011, pp.1478–1483. Piscataway, NJ: IEEE.

10. Salzman O and Halperin D. Asymptotically near-optimal

RRT for fast, high-quality, motion planning. In: 2014 IEEE

international conference on robotics and automation (ICRA),

Hong Kong, 31 May 2014–7 June 2014, pp.4680–4685. Pis-

cataway, NJ: IEEE.

11. Salzman O and Halperin D. Asymptotically-optimal motion

planning using lower bounds on cost. In: 2015 IEEE inter-

national conference on robotics and automation (ICRA),

Seattle, WA, 26–30 May 2015, pp.4167–4172. Piscataway,

NJ: IEEE.

12. Denny J, Shi K and Amato NM. Lazy toggle PRM: a single-

query approach to motion planning. In: 2013 IEEE interna-

tional conference on robotics and automation (ICRA), Karls-

ruhe, Germany, 6–10 May 2013, pp.2407–2414. Piscataway,

NJ: IEEE.

13. Kuffner JJ and LaValle SM. RRT-connect: an efficient

approach to single-query path planning. In: IEEE interna-

tional conference on robotics and automation, 2000, pro-

ceedings ICRA’00, San Francisco, CA, 24–28 April 2000,

volume 2, pp.995–1001. Piscataway, NJ: IEEE.

14. Urmson C and Simmons RG. Approaches for heuristically

biasing RRT growth. In: Proceedings 2003 IEEE/RSJ inter-

national conference on intelligent robots and systems, 2003

(IROS 2003), Las Vegas, NV, 27–31 October, 2003, volume

2, pp.1178–1183. Piscataway, NJ: IEEE.

15. Denny J, Morales M, Rodriguez S, et al. Adapting RRT

growth for heterogeneous environments. In: 2013 IEEE/RSJ

international conference on intelligent robots and systems

Viseras et al. 15

(IROS), Tokyo, Japan, 3–7 November 2013, pp.1772–1778.

Piscataway, NJ: IEEE.

16. Amato NM and Song G. Using motion planning to study

protein folding pathways. J Comput Biol 2002; 9(2):

149–168.

17. Guibas LJ, Holleman C and Kavraki LE. A probabilistic

roadmap planner for flexible objects with a workspace

medial-axis-based sampling approach. In: Proceedings 1999

IEEE/RSJ international conference on intelligent robots and

systems, 1999. IROS’99, Kyongju, Republic of Korea, 17–21

October 1999, volume 1, pp.254–259. Piscataway, NJ: IEEE.

18. Hsu D, Jiang T, Reif J, et al. The bridge test for sampling

narrow passages with probabilistic roadmap planners. In:

Proceedings ICRA’03 IEEE international conference on

robotics and automation, 2003, Taipei, Taiwan, 14–19

September 2003, vol. 3, pp.4420–4426. Piscataway, NJ:

IEEE.

19. Siméon T, Laumond JP and Nissoux C. Visibility-based prob-

abilistic roadmaps for motion planning. Adv Rob 2000; 14(6):

477–493.

20. Jaillet L, Yershova A, La Valle SM, et al. Adaptive tuning of

the sampling domain for dynamic-domain RRTs. In: 2005

IEEE/RSJ international conference on intelligent robots and

systems, Edmonton, AB, Canada, 2–6 August 2005, pp.

2851–2856. Piscataway, NJ: IEEE.

21. Burns B and Brock O. Toward optimal configuration space

sampling. In: Proceedings of robotics: science and systems,

Cambridge, MA, 8–11 June 2005, pp.105–112.

22. Jaillet L, Cortés J and Siméon T. Sampling-based path plan-

ning on configuration-space costmaps. IEEE Trans Rob 2010;

26(4): 635–646.

23. Janson L, Schmerling E, Clark A, et al. Fast marching tree: a

fast marching sampling-based method for optimal motion

planning in many dimensions. Int J Rob Res 2015; 34(7):

883–921.

24. Kim D, Lee J and and Yoon Se. Cloud RRT*: sampling cloud

based RRT*. In: 2014 IEEE international conference on

robotics and automation (ICRA), Hong Kong, 31 May–7 June

2014, pp.2519–2526. Piscataway, NJ: IEEE.

25. Nasir J, Islam F, Malik U, et al. RRT*-smart: a rapid conver-

gence implementation of RRT*. Int J Adv Rob Syst 2013; 10.

26. Rickert M, Sieverling A and Brock O. Balancing exploration

and exploitation in sampling-based motion planning. IEEE

Trans Rob 2014; 30(6): 1305–1317.

27. Akgun B and Stilman M. Sampling heuristics for optimal

motion planning in high dimensions. In: 2011 IEEE/RSJ

international conference on intelligent robots and systems

(IROS), San Francisco, CA, 25–30 September 2011, pp.

2640–2645. Piscataway, NJ: IEEE.

28. Alterovitz R, Patil S and Derbakova A. Rapidly-exploring

roadmaps: weighing exploration vs. refinement in optimal

motion planning. In: 2011 IEEE international conference

on robotics and automation (ICRA), Shanghai, China, 9–13

May 2011, pp.3706–3712. Piscataway, NJ: IEEE.

29. Persson SM and Sharf I. Sampling-based A* algorithm for

robot path-planning. Int J Rob Res 2014; 33(13): 1683–1708.

30. Morales M, Tapia L, Pearce R, et al.A machine learning

approach for feature-sensitive motion planning. In: Erdmann

M, Hsu D and Overmars M et al. (eds) Algorithmic founda-

tions of robotics VI. Berlin: Springer, 2005. pp. 361–376.

31. Diankov R and Kuffner J. Randomized statistical path plan-

ning. In: 2007 IEEE/RSJ international conference on intelli-

gent robots and systems, San Diego, CA, 29 October– 2

November 2007, pp.1–6. Piscataway, NJ: IEEE.

32. Kobilarov M. Cross-entropy motion planning. Int J Rob Res

2012; 31(7): 855–871.

33. Mohamad MM, Taylor NK and Dunnigan MW. Articulated

robot motion planning using ant colony optimisation. In:

2006 3rd international IEEE conference on intelligent

systems, London, UK, 4–6 September 2006, pp.690–695.

Piscataway, NJ: IEEE.

34. Dorigo M, Maniezzo V and Colorni A. Ant system: optimiza-

tion by a colony of cooperating agents. IEEE Trans Syst Man

Cybern Part B Cybern 1996; 26(1): 29–41.

35. Ferguson D and Stentz A. Anytime RRTs. In: 2006 IEEE/RSJ

international conference on intelligent robots and systems,

Beijing, China, 9–15 October 2006, pp.5369–5375. Piscat-

away, NJ: IEEE.

16 International Journal of Advanced Robotic Systems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

