Efficient Aero-Acoustic Simulation of the HART II Rotor with the Compact Pade Scheme

Gunther Wilke DLR AS-HEL Sept 6th 2016 42nd ERF Lille, France

Knowledge for Tomorrow

Overview

- Motivation
- Theory of Compact Pade Scheme (and JST Scheme)
- Simulation Setup
- Results
 - Prescribed vs computed motion
 - Grid sensitivity study
 - Alternative approaches
- Conclusions

Motivation

- Simulation of blade tip vortices and vortex structure
 - BVI noise in descent flight
 - Interaction aerodynamics, for example tail shake
- Difficulties with State of the Art Tools
 - 2nd order too dissipative
 - Plenty of grid points and still not there
- Problems with higher order schemes
 - Stability
 - Efficiency

Pade-Scheme

- Higher order finite difference scheme implemented by Stefan Enk in FLOWer → referred to as FLOWer4
 - 4th order spatial discretization with 3rd order boundaries
 - 4th to 8th order filtering with down to 2nd order boundaries
- Line implicit
- Grid transformation from arbitrary to Cartesian grid
- Not (yet) suitable for transonic flows

Solution through LU-decomposition (Thomas algorithm)

Jameson vs Pade-Scheme

Jameson Finite Volume

$$\frac{d}{dt} \int_{V} \vec{W} \, dV + \oint_{S} F \, \vec{dS} + \vec{G} \equiv 0$$

$$RES \equiv$$

$$-\frac{\Delta t}{V} [\sum_{t} F_{t}(\vec{W}) \cdot \vec{S}_{t} + \vec{G}]$$

Pade Finite Differences

Difference of Fluxes

Simulation Setup

Numerical Setup

- Dual-Time Stepping with 1, 1/4, 1/8 degrees timesteps
- Residual Smoothing
- 2V Multigrid on JST blocks
- 6th order Pade Filter with 4th order at the boundaries

Grids – RANS Blade Mesh

- C-H topology
- Blunt root, tip and tab
- Outer cell layer matching trickier
- Point distribution (chordwise x spanwise x normal) = ((145 + 2 * 41) x (24 + 73 + 48) x 73) = 2.6 mio
 - Y+ = 1 fulfilled on blade, not on blunt surfaces,
 (Y + = 2/4 on level 2/3)

Level 3 shown

Grid – Fuselage Mesh

- Required for displacement effects
- Simplified geometry, no hub included
- Point distribution
 (axial x radial x normal) =
 (257 x 241 x 65) = 3.9 mio
- Y+ = 1 on finest level

Level 3 shown

Grid – Background Mesh

- Continuous, cartesion mesh of inner and outer region
- Laplacian smoothed for Pade scheme
- Inner region points:
 (inflight x lateral x vertical)=
 (554 x 422 x 210) = 49 mio
- Total point distribution (inflight x lateral x vertical)= (641 x 481 x 289) = 88 mio

Grid – Summary

	coarse	medium	fine
blade	40k	323k	2.6 Mio
fuselage	61k	490k	3.9 Mio
background	1.4 Mio	11 Mio	88 Mio
total	1.6 Mio	13 Mio	103 Mio

Comparison of Prescribed vs Computed Motion

	θο	θϲ	θs
experiment	3.80	1.92	-1.34
computed	3.72	1.87	-0.98

Comparison of Prescribed vs Computed Motion

- Motion agrees on a fair level for the computed case
- Loads agree better
 - \rightarrow continuing with coupled simulation

	thrust	req. power
experiment	3300 N	18.7 kW
prescribed	3825 N	25.5 kW
simulated	3304 N	22.0 kW

42nd ERF 2016 > Wilke • Pade Scheme

Grid Sensitivity Study (JST vs Pade)

Hybrid-Pade

42nd ERF 2016 > Wilke • Pade Scheme

Grid Sensitivity Study (JST vs Pade)

Hybrid-Pade

JST

42nd ERF 2016 > Wilke • Pade Scheme

Grid Sensitivity Study (JST vs Pade)

JST

Hybrid-Pade

Cost increase about 50%

Alternative Simulation Techniques isolated rotor

inviscid

viscous

+fuselage

Conclusions

- Established a hybrid simulation environment within FLOWer with the a 4th order compact Pade scheme
- Computed motion results better than prescribed motion still discrepancies in the HOST+FLOWer coupling
- Hybrid simulation with Pade scheme significantly improved vortex conservation → better loads correlation → better acoustic correlation
- Medium mesh setup almost as good as fine mesh setup when using Hybrid over classical JST
- For design purposes the viscosity as well as the fuselage can be neglected ~ 37% runtime improvement

