3D Micro-Structure Resolved Simulations of Thick Li-Ion Batteries Timo Danner^{1,2}, Tianyi Wen¹, Arnulf Latz^{1,2,3}, Madhav Singh⁴,

HIU Helmholtz Institute Ulm Electrochemical Energy Storage

¹ Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany, ² Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU) and ³ Institute of Electrochemistry, University of Ulm, Ulm, Germany, ⁴ Institute of Nanotechnology and ⁵ Project Competence-E, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Motivation

Advantages:

Reduction of inactive materials & production time

Jörg Kaiser⁵, Horst Hahn^{2,4}

Lower cost & improved energy density

Challenges:

Long transport pathways

Black **Binder**

Carbon Black Distribution

- Variation of size and position of inhomogeneity in the distribution of conductive additive
 - Influence only for large unconnected areas
 - High current density
- Discharge rate: C/10 Time: 2.10⁴ s

Low rate capability and degradation

Experimental

- NMC and Graphite electrodes Thickness of 70 and 320 µm
- Half-cell measurements (Area ~ 1cm²) \rightarrow De-/lithiation at C/10, C/5, C/2 \rightarrow OCV data (current pulses)
- Battery cells (Area ~ 25 cm²) Charge/discharge curves
- Details can be found in: [1]

BEST

Battery and Electrochemistry

Simulation Tool

Model Parameterization & Validation

- Micro-structure resolved simulation [2]
- Finite-Volume Code based on CoRheoS framework of Fraunhofer ITWM

Parameter estimation via 1+1D model [4]

 \rightarrow Fit of exchange current density to half-cell data (70 µm electrodes)

Excellent agreement of 3D simulations with experimental data

Simulation of Li-Ion Batteries

70 µm electrodes:

- Agreement between 1D and 3D
- Capacity: Experiment < 3D < 1D
 - 3D: disconnected particles
 - Experiment: Fluctuations in

Capacity / mAh

Capacity / mAh

-C/10

Lithium Plating

- Condition for Li plating
 - $\eta = \phi_{elode} \phi_{elyte} = \Delta \phi < 0$
- Plating possible if charge rate > C/2
 - Lower currents: cut off voltage
- Plating close to separator

 \geq

electrode loading?

320 µm electrodes:

- Deviation Exp. \leftrightarrow Sim. at C/2
 - \rightarrow Carbon black distribution?
 - \rightarrow Li plating?
 - → Anode structure?

Summary

Micro-structure resolved simulations of thick Li-Ion batteries

-0.00

- Parameters from literature and dedicated experiments
- → 1+1D model for efficient parameter estimation
- Deviation between simulations and experimental data at high C-rate Investigation of carbon black distribution and Li plating

M. Singh et al., J. Electrochem. Soc., 162(7): A1196–A1201, 2015. [1] M. Ebner et al., Adv. Energy Mater., 3(7):845–850, 2013. [3]

A. Latz et al., Beilstein J. Nanotechnol., 6:987–1007, 2015. [2] [4] M. Doyle et al., J. Electrochem. Soc., 140(6):1526–1533, 1993.

