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1. Introduction

The thermodynamics of Yukawa systems (particles interacting 
via the pairwise Yukawa repulsive potential) is of considerable 
interest, in particular in the context of conventional plasmas, 
dusty (complex) plasmas, and colloidal suspensions [1]. For 
small charged point-like particles, the Yukawa potential (also 
known as screened Coulomb or Debye–Hückel potential) 
reads

( ) ( ) ( )λ= −V r Q r r/ exp / ,2 (1)

where Q is the charge, λ is the screening length associated 
with the neutralizing medium (normally given by the cor-
responding Debye radius), and r is the distance between a 
pair of particles. The effect of the neutralizing medium on 
the effective interactions between the particles can involve 
more than only screening. This is particularly relevant in 
complex plasmas, where continuous absorption of plasma 
electrons and ions on the particle surface (for simplicity we 
neglect the electron emission processes, which can play a 
role in certain situations, and then can make the problem 
even more complicated) results in inverse-power-law asymp-
totes of interaction at large interparticle separations [2–8]. 
At intermediate distances deviations from the simple form 
(1) can be expected when ion-particle interaction is highly 
non-linear [9–11] or a significant fraction of trapped ions is 

present [12]. Plasma production and loss processes can pro-
duce a double-Yukawa interaction potential characterized by 
two different screening lengths [13, 14]. Nevertheless, many 
experimentally observed trends can be already reproduced 
by the simplest model, considering point-like particles 
interact via the repulsive Yukawa potential (1), at least quali-
tatively. For this reason this model, which we will refer to as 
the single component Yukawa system (SCYS), has received 
a great deal of interest.

Single component Yukawa systems are fully character-
ized by two dimensionless parameters. The first is the cou-
pling parameter, Γ = Q aT/2 , where a is the characteristic 
interparticle separation (in this paper we take ( )π=a n3/4 1/3, 
where n is the particle density) and T is the temperature (in 
energy units). The second is the screening parameter, defined 
as κ λ= a/ . As Γ increases at some fixed κ, the Yukawa 
system shows a transition from a weakly coupled gas-like 
regime Γ� 1) to a strongly coupled fluid regime (Γ� 1) and 
finally crystallizes into either bcc or fcc crystalline lattice at 
some Γm, which depends on κ (the subscript ‘m’ indicates 
melting).

Phase diagram and thermodynamic properties of Yukawa 
systems have been relatively well investigated using various 
computational and analytical techniques. Some relevant 
examples include the Monte Carlo (MC) and molecular 
dynamics (MD) numerical simulations [15–18], as well as 
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integral equation theoretical studies [19–21]. Semi-empirical 
fitting formulas [22, 23] and simplistic approaches [24, 25] 
to estimate thermodynamic properties of Yukawa systems 
(including the limiting case of one-component-plasma [26, 
27]) have been discussed recently in the literature. Their accu-
racy is, however, insufficient in many cases.

The purpose of the present paper is to summarize recently 
proposed, convenient and practical approaches to evaluate 
thermodynamic properties of three-dimensional Yukawa 
fluids and solids in a wide region of the respective phase dia-
gram. The approaches are based on simple phenomenological 
arguments, which are likely applicable to a wide class of soft 
repulsive interactions. They demonstrate impressive accuracy 
when compared with the ‘exact’ results from numerical simu-
lations. As an example, relevant to Yukawa fluids, the sound 
velocity in a strongly coupled dusty plasma is evaluated using 
the conventional fluid description of multi-component plasma, 
supplemented by an appropriate equation of state.

2. Model

We consider the system of N point-like particles in three 
dimensions, which occupy the volume V ( →∞N V,  in the 
thermodynamic limit), have the temperature T (temperature 
will be expressed in energy units), and interact with each 
other via the repulsive Yukawa potential (1). The main ther-
modynamic quantities of interest are the internal energy U, 
Helmholtz free energy F, and pressure P of the system. These 
thermodynamic functions are related via [28]

= −
∂
∂

⎜ ⎟
⎛
⎝

⎞
⎠U T

T

F

T
,

V

2 (2)

= −
∂
∂

⎜ ⎟
⎛
⎝

⎞
⎠P

F

V
.

T
 (3)

In the following, we will use conventional reduced units: 
u  =  U/NT, f  =  F/NT, and ≡ =Z p PV NT/ , where Z is the 
compressibility factor (reduced pressure).

It is useful to express the reduced thermodynamic functions 
in terms of Yukawa system phase state variables, κ and Γ. For 
a fixed number of particles we have ( )Γ∝ ∝− − −aT V T1 1/3 1 
and κ∝ ∝a V1/3. This implies

κ κ κ∂Γ
∂
= −
Γ ∂Γ

∂
= −

Γ ∂
∂
=

∂
∂
=

T T V V T V V
,

1

3
, 0,

1

3
.

The following equations for the reduced thermodynamic func-
tions are then easily obtained:

Γ
=
∂
∂Γ

u f
, (4)

and

κ
κ

= +
Γ ∂
∂Γ
−

∂
∂

Z
f f

1
3 3

. (5)

we consider (except when specially mentioned), the single 
component Yukawa system, where thermodynamics is 

completely determined by particle–particle interactions and 
correlations. In real systems (e.g. complex plasmas or colloidal 
suspensions), the neutralizing medium is normally present to 
neutralize and stabilize like-charged particles. In this case, 
particle-medium interactions also affect thermodynamics. 
However, the effect of particle-medium interactions is addi-
tive to that of particle–particles interactions and can be easily 
evaluated [29]. For example, the excess (free) energy associ-
ated with the presence of neutralizing medium (e.g. plasma) is

κ
κ

= = −
Γ
−
Γ

f u
3

2 2
.pl pl 2 (6)

Note that the contribution of the neutralizing medium is nega-
tive and dominant at strong coupling, implying that the excess 
energy and pressure of the corresponding system are also neg-
ative in this regime. For the single component Yukawa system 
these quantities are obviously positive.

3. Weakly coupled regime

In the weakly coupled regime, the Debye–Hückel (DH) 
approach can be expected to provide reasonable accuracy in 
estimating thermodynamic properties of Yukawa systems. This 
is however true only near the one-component-plasma (OCP) 
limit (small κ regime). As κ increases, the DH approach (see 
e.g. [24] for explicit formulas) becomes progressively less and 
less accurate, and at certain κ it even fails to predict correctly 
the sign of thermodynamic quantities. An example is shown in 
figure 1, where we plot the reduced excess (over that of non-
interacting particles) free energy as a function of κ at the fixed 
coupling parameter Γ = 1. As κ increases, the actual coupling 
weakens (since Γ is fixed), but the DH approximation becomes 
completely irrelevant. The reason for that is the lineariza-
tion of the Boltzmann factor, involved in the DH approach, 
which produces unphysical negative values of the particle 

Figure 1. The excess free energy fex of the SCYS as a function of 
the screening parameter κ for the fixed coupling parameter, Γ = 1. 
Symbols are the results from MD simulations [17], the dashed line 
corresponds to the DH approximation, and the solid line has been 
calculated from the second virial coefficient, equation (7).
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density (or, equivalently, radial distribution function g(r)) in 
the vicinity of the test particle. Although, the spatial extent of 
this vicinity diminishes as κ increases, its contribution to the 
thermodynamic quantities, such as the excess energy becomes 
progressively more and more significant. This is illustrated in 
figure  2, where the product r2 V(r)g(r) appearing under the 
integral of the energy equation is plotted for several values of 
κ at Γ = 1. Thus, to some extent counter-intuitively, the DH 
approximation cannot be applied even in the regime of weak 
coupling for κ� 1.

There is a known modification—the ‘Debye–Hückel plus 
hole’ (DHH) approach—to improve the performance of the 
DH approximation for the OCP [30]. The main idea is to trun-
cate the exponential density in order to avoid negative values 
at small distances from the test particle after linearization. 
Recently, the original DHH scheme for the OCP has been gen-
eralized for Yukawa systems [24]. It can be particularly useful 
for weak and moderate coupling regimes. However, a much 
more simple and physically transparent approach to the ther-
modynamics of weakly coupled Yukawa systems is through 
the second virial coefficient. In this approximation, the excess 
free energy is expressed as [28]

[ ]( )∫π − −�f n r r2 1 e d .V r T
ex

/ 2 (7)

The values of ( )κf , 1ex  calculated from equation (7) are com-
pared with the results from MD simulations [17] in figure 1. 
The agreement is rather good: at small κ the deviations are 
within a few percents, at κ� 5 they reduce to only two parts 
in one thousand.

4. Strongly coupled fluids

For strongly coupled systems, the reduced excess energy can 
be conveniently divided into the static and thermal components

= +u u u .ex st th (8)

The static contribution corresponds to the value of internal 
energy when the particles are frozen in some regular configu-
ration and the thermal corrections arise due to the deviations of 
the particles from these fixed position (due to thermal motion). 
Of course, such a division is only meaningful when the regular 
structure is specified. For crystals, the corresponding lattice 
sum is a relevant choice for ust. For fluids, it is convenient 
to link ust with the energy obtained using the Percus–Yevick 
(PY) radial distribution function of hard spheres in the unphys-
ical limit η = 1, where η is the hard sphere packing fraction  
[31, 32]. For the Yukawa system this is equivalent to the result 
of the ion sphere model (ISM), where each particle is placed 
in the center of the charge neutral Wigner–Seitz spherical cell 
and the energy is then calculated from simple electrostatic 
consideration [25]. With this choice, the static component of 
the internal energy of the single component Yukawa fluids 
becomes [25, 31, 32]

( ) ( )
( ) ( )

κ
κ κ

κ κ
= Γ =

+ Γ
+ + − κu M

1

1 1 e
,st f 2 (9)

where Mf has been termed the fluid Madelung constant [32].
As Rosenfeld and Tarazona first pointed out, the thermal 

component of the internal energy exhibits quasi-universal 
behavior for a wide class of soft repulsive potentials (in par-
ticular, they considered the inverse-power-law and Yukawa 
potentials) in three dimensions [31, 32]. The accuracy of this 
scaling for various model systems has recently been inves-
tigated in extensive numerical simulations [33]. It has been 
observed that the RT scaling is particulary useful for liquids 
with strong correlations between equilibrium fluctuations 
of virial and potential energy [33], which are referred to as 
Rosklide-simple or just Rosklide systems [34]. The quality of 
the RT scaling for strongly coupled Yukawa systems is illus-
trated in figure 3, where the dependence of uth on Γ Γ/ m is plotted 
for a number of screening parameters, κ< 5. To produce this 

Figure 2. The factor r2 V(r)g(r) appearing under the integral of the 
energy equation as a function of the reduced distance from the test 
particle, r/a. As κ increases, the relative effect of the unphysical 
negative density region becomes progressively more and more 
important, causing the failure of the DH approximation.

Figure 3. Thermal component of the reduced excess energy 
of Yukawa fluids versus the reduced coupling parameter Γ Γ/ m. 
Symbols correspond to the numerical simulations for different 
values of the screening parameter κ [17, 35]. The (red) solid curve 
is the fit of equation (10) with δ = 3.2 and = −ε 0.1. The (black) 
dashed line corresponds to the same functional form, but with 
δ = 3.0 and =ε 0, as suggested in [32]. The inset shows the same 
data in the near-freezing regime along with the convenient fits.
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plot, the numerical data on ( )κ Γu ,ex  and ( )κΓm  tabulated in 
[17, 35] have been used (the contribution of the neutralizing 
medium has been subtracted). It is seen that numerical data 
have a tendency to group around a single quasi-universal 
curve. Reasonably accurate fits (shown by the curves) can be 
obtained by using the following functional form

( )δ= Γ Γ + εu / .th m
2/5 (10)

The original suggestion of Rosenfeld to use δ = 3.0 and =ε 0 
[32] is shown by the dashed curve. Some improvement can 
be observed when choosing δ = 3.2 and = −ε 0.1, as docu-
mented in figure 3. These values, suggested in [36], are there-
fore adopted here. In the near-freezing regime (Γ Γ �/ 0.2m ) 
the parameters δ = 3.1 and =ε 0 provide very good agree-
ment with the numerical results, as shown in the inset [37]. 
Note that although the functional form (10) with the exponent 
2

5
 provides reasonable accuracy for Yukawa fluids in a wide 

range of κ, it can be not the best choice for each single value 
of κ. For instance, in the case of OCP (limiting case κ = 0 of 

Yukawa systems), the exponent 1

3
 is known to deliver better 

accuracy [35, 38–40]. Moreover, for Yukawa systems near the 
OCP limit (κ� 1) the OCP scaling of the thermal energy is 
also superior to that of the RT scaling. This observation can 
be used to further improve the accuracy of estimating thermo-
dynamic properties of weakly screened SCYS, as has been 
discussed in [41].

Equations (8)–(10) with the proper expression for ( )κΓm  
(see below) provide a simple and accurate tool to estimate the 
excess energy of Yukawa fluids. The excess free energy can 
then be obtained by the standard integration

( ) ( )
∫κ

κ
Γ =

Γ
Γ

Γ
′

′
′

Γ
f

u
,

,
d .ex

0

ex (11)

Note that in case of the non-zero parameter ε, this integral is 
diverging logarithmically. A simple conventional procedure to 
avoid this divergence is to start integration from Γ = 1 in (11) 
and add the corresponding value ( )κf , 1ex  [17]. The values 
of ( )κf , 1ex  have been tabulated in [17, 35], they can be also 
easily estimated from equation (7) above. However, the con-
tribution from the weakly coupled region is in fact of very 
minor importance for Γ� 1 and can be omitted completely 
when the compressibility and related quantities at strong cou-
pling are concerned [36].

The remaining step towards accurate estimation of ther-
modynamic properties of strongly coupled Yukawa fluids is 
to specify the functional dependence ( )κΓm . Several approxi-
mate methods to locate the fluid-solid phase transition, based 
on the properties of the interaction potential alone, have been 
discussed in the literature [42–46]. Being focused on Yukawa 
interaction here, a simple expression proposed by Vaulina  
et al [47, 48] can be chosen. It reads

( ) ( )
κ

ακ

ακ α κ
Γ

+ +
�

172 exp

1
,m 1

2
2 2 (12)

where the constant ( )α π= �4 /3 1.6121/3  is the ratio of the 

mean interparticle distance ∆ = −n 1/3 to the Wigner–Seitz 

radius a. Equation (12) is in rather good agreement with the 
numerical data in the regime κ� 5 addressed in this study. 
In the next section the explicit expressions for the compress-
ibility factor and isothermal compressibility modulus are pro-
vided, which are convenient for practical calculations.

5. Practical expressions for pressure and isother-
mal compressibility modulus of Yukawa fluids

Using the results of the previous section, the explicit expres-
sion for the compressibility factor (reduced pressure) can be 
derived [36]

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟κ

κ
κ κ κ

δ
ακΓ = + +

Γ
−

+
Γ
Γ

Z f, 1
3 6 cosh sinh 3

,
4

2
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2/5

Z
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[ ( ) ( )]
( )

 

(13)
where

( ) = + + +
+ +

f x
x x x

x x

2 2

2 2
.Z

3 2

2 (14)

The isothermal compressibility modulus is 
related to the compressibility factor via [36] 

( )( ) ( )( )µ κ κ= + Γ ∂ ∂Γ − ∂ ∂Z Z Z/3 / /3 / . This yields

ε( ) ( )
[ ( ) ( )]

( )⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟µ κ

κ κ
κ κ κ

δ
ακΓ = + +

Γ
−

+
Γ
Γ µf, 1

3

sinh

9 cosh sinh 45
,

6

3
m

2/5
 

(15)
where

=
+ + + + + +

+ +µf x
x x x x x x

x x

2 14 35 76 136 136 68

2 2
.

6 5 4 3 2

2 2
( )

( )
 

(16)
The dependence ( )κΓm  is given by equation (12); the recom-
mended values of the coefficients δ and ε are: δ = 3.2 and 
= −ε 0.1.

The detailed comparison [36] between the compressibility 
factors obtained using equation  (13) and those from direct 
MC simulations has demonstrated excellent performance of 
the proposed analytic formula.

6. Example: sound velocity in complex (dusty) 
plasmas

The effect of strong coupling on wave phenomena in complex 
(dusty) plasmas remains a very important current research 
topic [49–53]. Here we adopt the simplest fluid description of 
multi-component plasmas, similar to that used in the original 
derivation of DAW dispersion relation in [54]. In this formu-
lation electrons and ions provide equilibrium neutralizing 
medium and are described by

φ− ∇ = ∇en T n ,i i i (17)

φ∇ = ∇en T n ,e e e (18)

where φ is the electric potential, ne,i and Te,i are the density and 
temperature of electrons and ions, respectively. Equations (17) 
and (18) result in equilibrium Boltzmann relations for the ion 
and electron densities in the wave potential. The continuity 
and momentum equations for the particles are

Plasma Phys. Control. Fusion 58 (2015) 014022
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( )∂
∂
+∇ =

n

t
nv 0, (19)

( ) φ∂
∂
+ ⋅ ∇ = −

∇
−
∇

t

Q

m

P

m n

v
v v ,

p p
 (20)

where v is the particle velocity, mp is the particle mass, and P 
is the pressure associated with the particle component. In the 
limit of long-wavelength perturbations (acoustic regime) the 
system is quasineutral,

− + =en en Qn 0.i e (21)

The standard linearization procedure applied to the set of 
equations  (17)–(21) results in the dispersion relation of the 
acoustic type

ω
ω λ γµ≡ = +c

k
v ,s

2
2

2 p
2

D
2

Tp
2 (22)

where cs is the sound velocity, ω π= Q n m4 /p
2

p  is the 

plasma-particle frequency, λD is the linearized Debye radius, 

=v T m/Tp p  is the particle thermal velocity, γ = C C/P V is 
the adiabatic index, ( )( )µ = ∂ ∂T P n1/ / T is the isothermal 
compressibility modulus, ω is the wave frequency, and k is the 
wave number. Rewritten in terms of the reduced Yukawa state 
variables, κ and Γ, the dispersion relation (22) becomes

ω
κ

γµ
= +

Γ
⎜ ⎟
⎛
⎝

⎞
⎠c a

1

3
.s p 2

1/2

 (23)

The remaining step to identify the influence of strong cou-
pling on the sound velocity is to take the appropriate values 
for γ and μ. Note at this point, that by way of derivation the 
quantities γ and μ, appearing in equation  (23) account for 
both, particle-particle correlations and neutralizing plasma 
effects. However, as shown in [55], the only plasma-related 
contribution to the product γµ that matters cancels out exactly 
the plasma contribution to the dispersion relation (term κ1/ 2 in 
equation (23)). Thus, the sound velocity of a system of charged 
particles in the neutralizing medium is equal to that of the 

SCYS. The standard expression for single-component fluids 
[56], γµ=c vs Tp , is applicable. In terms of the quantities 
derived above, the sound velocity is

[ ( )]
[ ( )]

ω
µ

=
Γ
+

− Γ ∂ ∂Γ
Γ − Γ ∂ ∂Γ

⎛
⎝
⎜

⎞
⎠
⎟c a

Z Z

u u3

/

3 /
,s p

2 1/2

 (24)

where now μ, Z, and u all correspond to SCYS, that is ana-
lytic expressions from the previous sections can be used for 
calculation.

First, the relevance of this simple fluid approach can be 
checked using the existing results from the quasi-localized 
charge approximation (QLCA) model [57–59]. An example 
of such a comparison is shown in figure 4, where the reduced 
sound velocity is plotted as a function of the screening param-
eter κ. The curve corresponding to the present approach is 
practically indistinguishable from the QLCA result of [58]. 
Good agreement of the present approach with the long-wave-
length part of the longitudinal dispersion relation of Yukawa 
fluids obtained in a numerical (MD) experiment [60] has also 
been documented in [55].

Having demonstrated good agreement between the pre-
sent fluid analysis and previous results from the QLCA model 
and MD simulations, let us investigate the dependence of the 
sound velocity on coupling and screening in detail. It is par-
ticularly useful to analyze the behavior of the quantity c c/s 0, 
which is the ratio of the actual sound velocity of a Yukawa 
fluid to the respective limiting ‘ideal gas’ (weak coupling 
limit) value given by

ω λ=c .0 p D

The 3D plot of this quantity in the ( )κ Γ Γ, / m  plane is shown in 
figure 5. First, we observe only very weak dependence of the 
quantity c c/s 0 on Γ deep in the fluid regime (on approaching 
the fluid-solid phase transition). This implies that the absolute 
value of cs increases with Γ, because ∝ Γc0 . Second, we 
observe that the ratio c c/s 0 is sensitive to the screening param-
eter, and decreases as κ increases. It drops by almost one order 

Figure 4. Reduced sound velocity of Yukawa fluids, ωc a/s p , as a 
function of the screening parameter κ. The solid curve corresponds 
to the results of the simple fluid approach of this section for 
Γ = 100. The dashed curve is plotted using QLCA result of [58].

Figure 5. Three-dimensional plot of the reduced sound velocity 
≡c c c/s 0 as function of Yukawa system state variables κ and Γ Γ/ m. 

Calculations are made using the fluid model described in this 
paper.

Plasma Phys. Control. Fusion 58 (2015) 014022
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of magnitude on the way from the weakly screened regime 
κ� 1 to the strongly screened regime with κ� 5.

7. Yukawa solids

The reduced excess energy of a solid in the harmonic approxi-
mation is

= Γ+u M
3

2
,s s (25)

where Ms is the corresponding lattice sum (Madelung con-
stant). The reduced Helmholtz free energy of a solid is related 
to the excess energy by the standard integration (equation (4)), 
which yields

( ) ( )= Γ− Γ + Γ Γ +f M f
3

2
ln / .s s m m m (26)

Here the integration starts from Γm and ( )= Γf fm m . According 
to the Ross melting criterion [61], which he obtained by refor-
mulating the celebrated Lindemann melting law in terms of 
the statistical-mechanical partition function

Γ +� Cf M ,m s m (27)

where C is some constant. In other words, the thermal com-
ponent (entropy) of the reduced excess free energy remains 
approximately constant at melting. In fact, C somewhat varies 
with the variation of the potential softness, but these variations 
remain relatively week, with �C 6 for a rather broad range of 
interaction potentials investigated [62, 63].

The values of C at melting of the bcc and fcc Yukawa solids 
have been calculated, in the harmonic lattice approximation, 
using the data tabulated in [17, 64]. In addition to neglecting 
anharmonic corrections, one can use the fact that the fluid-bcc 
and fluid-fcc transition lines are very close to each other in 
the parameter regime of present interest (for the confirmation 
see figure 7 of [19]), so that a unique value of Γm can be used 
(this is further justified by the fact that Γm appears under the 
logarithm when calculating C). The obtained values of C can 
be approximated as [37]

( )κ κ
κ

=
−
−

C
⎧
⎨
⎩

6.55 0.13 , (bcc lattice)
6.57 0.10 (fcc lattice).

 (28)

The resulting expression for the reduced free energy of the 
solid phase is

( ) ( ) [ ( )] ( )κ κ κ κΓ = Γ + Γ Γ + Cf M,
3

2
ln / .s s m (29)

To use equation (29) for practical evaluations the dependence 
( )κΓm  given by equation (12) can be employed.
Equation (5) complemented by equations  (28)–(29) has 

been used to evaluate the compressibility of Yukawa solids in a 
wide regime of parameters in [37]. The results have been com-
pared with direct MC [16] and MD [37] simulations as well 
as with the recently proposed shortest-graph method [65, 66]. 
Very good overall agreement has been documented. For most 
of the state points, the relative deviations from the accurate 
(MC or MD) results are well below one part in one thousand. 

Given the simplicity of the proposed theoretical approach, 
such an agreement should be considered as excellent.

8. Concluding remarks

We have discussed simple, but rather accurate approaches 
to evaluate thermodynamic properties of Yukawa fluids and 
solids across coupling regimes. These approaches can be par-
ticularly useful in the context of complex plasmas and col-
loidal suspensions. One example, related to the evaluation 
of the sound velocity in complex plasmas (assuming purely 
Yukawa interaction between the particles) has been presented. 
Several important remarks should be added in conclusion.

This paper considered only three-dimensional systems, 
although two-dimensional systems are also of considerable 
interest. There exists extensive literature on the thermody-
namics of two-dimensional Yukawa systems, which has not 
been included in the present reference list. Recently, it was 
evidenced that the thermal component of the internal energy 
exhibits quasi-universal behavior also in two-dimensional 
systems of soft repulsive particles [41]. In particular, the func-
tional dependence of the thermal energy of the two-dimen-
sional OCP can be adopted for weakly screened Yukawa 
systems [41]. Thus, the approaches discussed above can be 
also applied, with some modifications, to the two-dimensional 
Yukawa systems.

Thermodynamic properties of Yukawa fluids (weakly and 
strongly coupled), and solids have been addressed. Recently, 
there was also considerable interest in understanding glass-tran-
sition properties for Yukawa (and modified-Yukawa) potentials. 
The location of glass-transition lines on the phase diagrams of 
related systems has been identified for both, two- and three-
dimensional systems. The details can be found in [67–69].

The approaches discussed in this paper are based on simple 
phenomenological arguments, which are likely applicable to a 
wide class of soft repulsive interactions. One relevant example 
deals with inverse-power-law interactions, ( )∝ α−V r r , for 
which the RT scaling holds (for α� 5 [37]). It can be expected, 
therefore, that the discussed approaches can also be helpful in 
connection with the thermodynamics of soft matter systems 
exhibiting water-like anomalies (Gaussian core, exp-6, Hertz 
and related model potentials) in the regime of sufficiently soft 
interaction (high density), but this requires proper verification.

The last remark deals with the applicability of the simple 
Yukawa model discussed here to real systems, like for instance 
complex plasmas. In particular, significant limitations can 
be related to the openness of the complex plasma systems. 
Plasma electrons and ions are continuously lost on the particle 
surface and the particle charge is set by the condition of no 
net electrical current to the surface (or, equivalently, floating 
potential at the particle surface). This is known to result in 
some deviations from the Yukawa-type potential around the 
particles, as has been discussed in the Introduction. These, 
in turn, can lead to some deviations from the thermodynamic 
functions of conventional Yukawa systems. Perhaps even 
more important is that the particle charge in complex plasmas 
is not fixed, but depends on the parameters of the surrounding 
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plasma. In particular, the charge becomes a function of the 
particle density via the so called ‘charge cannibalism’ effect 
[70–72]. This effect operates as follows: when the particle 
density increases, the negative charge carried by the particle 
component also increases, which results in some reduction of 
the electron-to-ion density ratio (electron depletion) in view 
of the quasineutrality condition. In turn, this suppresses the 
efficiency of electron collection by the particle surface com-
pared to that of the ions. The particle charge becomes less 
negative, i.e. decreases in the absolute magnitude compared 
to the case of an individual particle. In general, the relation 
between the particle charge and number density and the den-
sities of electrons and ions in complex plasmas is governed 
by the quasineutrality condition and the competition between 
specific plasma production and loss mechanisms operating in 
a given situation. All this indicates that the consideration of 
an idealized Yukawa system with fixed particle charges and 
background plasma density can be in many cases insufficient 
to mimic the actual thermodynamics of real complex plasmas. 
How large modifications can be and whether they can be eval-
uated using conventional thermodynamic approaches require 
careful investigation.
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