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The simulation-based study of Cyber-Physical Systems or complex production systems leads often to a vast 

number of system variants. Each system variant is characterized by a particular model structure and parame-

ter settings, although system variants may also share common parts. There are two main approaches for 

modeling such a set of system variants. On the one hand, all variants are mapped in a big model with varia-

tion points and on the other hand variants are specified on a higher level of abstraction using a metamodel 

that is processed with appropriate transformation methods. This paper proposes an approach for modeling 

system variants using the System Entity Structure (SES) Ontology. It introduces new concepts and advances 

the SES by a procedural knowledge specification. Moreover, it proposes a software infrastructure for the au-

tomated and reactive generation and execution of simulation models based on a SES in combination with a 

model base. Finally, it refers to a prototype implementation within MATLAB/Simulink and forward-looking 

within Python. 

1 Introduction 

The study of multifaceted end user requirements of 

Cyber-Physical Systems or of multi-variant produc-

tion systems leads to a vast number of system vari-

ants. Both problem types can be considered as a vari-

ability problem. Variability has been defined as the 

ability of a system or an artefact to be configured, 

customized or extended for employment in a particu-

lar context [1]. In software engineering Software 

Product Lines (SPL) are widely employed for devel-

oping systems that are characterized by a high degree 

of variability. SPL define variation points where dif-

ferent variants of products can be derived for varying 

requirements [2]. Variability management has also 

been introduced as a challenge to be tackled for mod-

el-based testing architectures [3], for model-based 

concept development tools [4] and for studying multi-

variant production systems [5] or reactive robot con-

trols [6]. In this context the problem of reactiveness is 

also discussed [5, 6, 7]. We will consider reactiveness 

as the generation and execution of a new system 

variant depending on current and previous results. 

Variability mechanisms shall be defined at particular 

levels of abstraction, ranging from metamodeling to 

implementation of the source code. Using a meta-

model for variability modeling requires appropriate 

model transformation methods for mapping to the 

execution level. This is a particular challenge, be-

cause such methods are not supported by the estab-

lished modeling and simulation environments used in 

the engineering or production system domain. Anoth-

er approach is the combination with software tools for 

requirement or variant management [8] or with do-

main oriented tools [4]. However, in this case often 

different kinds of models have to be maintained and 

kept consistent. 

For these are reasons, in engineering and production 

system applications variability is still often encoded 

within the executable system models. However, these 

models are often hard to manage. Therefore, specific 

modularization and configuration methods have been 

developed to tackle the complexity. From the simula-

tion theory the approach of dynamic structure or 

variable structure systems [9, 10] is known. On the 

other side, rather pragmatic solutions have been de-

veloped, such as for the MATLAB/Simulink envi-

ronment in [11, 12].  

For the modeling and simulation of modular, hierar-

chical systems, Zeigler introduced the System Entity 

Structure (SES) for specifying a set of system config-

urations, called a family of systems. The SES ap-

proach has evolved steadily to an ontology for model 

and data engineering [13, 14]. In combination with a 

model base (MB), organizing a set of configurable 



A Framework for the Metamodeling of Multi-variant Systems and 
Reactive Simulation Model Generation and Execution 

basic models, the SES approach has been advanced to 

a modeling and simulation framework (SES/MB) 

[15]. In this paper, a reworked version of [16], we 

extend the SES ontology by adding new features. In 

addition, we advance the SES/MB framework to an 

infrastructure for reactive model generation and simu-

lation execution and we refer to a prototype imple-

mentation. Using an exemplified multi-variant engi-

neering problem, a concrete SES model, which is a 

metamodel, is developed. Based on the example, 

fundamental elements and axioms of the baseline 

SES ontology are briefly summarized. Next, some 

extensions to the SES ontology are discussed. The 

main new features are SESVariables and SESFunc-

tions, which expand the SES ontology by procedural 

knowledge elements. After that, the selection of a 

concrete system variant from an SES metamodel is 

considered and the whole procedure for generating an 

executable simulation model is depicted under the 

aspect of reactiveness. 

2 Multi-variant Engineering Example 

The example is an extension of an application that 

has been introduced by The MathWorks in [12] to 

demonstrate features for variant modeling within 

MATLAB/Simulink. We use that example to make 

our approach comparable with The MathWorks solu-

tion for experienced users. The substantial problem 

statement is illustrated in Figure 1a. Different control-

ler (ctrl) designs, based on a linear (lc) or a nonlinear 

(nc) control structure, should be investigated using 

different signal sources from a signal generator (sg). 

In addition to the control structure, the signal types 

{sine | ramp | step} and the number of signal sources 

{1…3} may vary. Figure 1a shows the two control 

approaches (lc_ctrl | nc_ctrl) as alternative submodels 

of model ctrl. Due to the varying number of possible 

input signals, both approaches lead to three different 

internal model structures. The minimal internal struc-

ture of a ctrl model with one input signal is illustrated 

with full lines. The extension for two or three input 

signals is pictured with dashed lines. In the same 

manner, the internal structure of the system generator 

(sg) depends on the number and type of included 

signal sources. Overall, the exemplary problem com-

prises (31+32+33)*2 various system structures. All 

possible system structures can be aggregated using 7 

basic systems. In this case, the basic systems are 

blocks from the Simulink blockset, which represent a 

model base (MB), as shown in Figure 1b. 

Figure 1c illustrates as an example the model struc-

ture of a specific system variant, which we call a 

model under study (MUS). In this case, the MUS 

consists of an nc_ctrl model, which is influenced by a 

sg model with three signal sources. Two sources are 

of type sine and one of type step. For simplification 

purposes, a separation between MUS and experi-

mental frame (EF) according to [15] is not consid-

ered. 

 

Figure 1. (a) Overall engineering problem with a set 

of system variants; (b) Blocks from the Simulink 

blockset representing the MB; (c) Model structure of 

a concrete system variant. 

3 Metamodel-based Variant Modeling 

This section describes the specification of the exem-

plary problem to demonstrate multi-variant modeling 

using an SES. The specification is based on the base-

line SES definitions in [13], but it uses some modifi-

cations based on former works in [17] and introduces 

some new concepts, such as the SESFunctions. 
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3.1 SES fundamentals and SESVariables 

The SES ontology supports the description of a fami-

ly of systems regarding their elements and the rela-

tions between them. It is axiomatically defined and 

can be represented as a directed labeled tree. Nodes 

are divided into two types, entity and descriptive 

nodes, which can define specific attributes. Entity 

nodes describe system elements and the system itself 

(root node). The leaf nodes are always entity nodes, 

whose attributes define a link to a basic model in the 

MB (attribute mb) and possible parameter settings for 

the referenced basic model. Descriptive nodes ex-

press relationships between entities and are subdivid-

ed into: aspect, specialization and multi-aspect nodes. 

The SES axioms will be considered subsequently, as 

necessary for the example. Figure 2 illustrates an SES 

tree that maps the problem described in Section 2. In 

the tree descriptive nodes are marked with name 

suffixes: (i) DEC for aspect, (ii) SPEC for specializa-

tion and (iii) MULT for multi-aspect. At this point the 

SES axiom alternating mode for entity and descrip-

tive nodes should be noted. 

 

Figure 2. SES tree for the example in Figure 1a 

Before describing the SES tree in detail, the new 

concept of SESVariables as the input interface of an 

SES is explained. This new feature was introduced to 

support the integration of an SES metamodel, refer-

ring to the metamodel definition in [18], in the later 

suggested infrastructure. In the infrastructure the 

selection of a particular system variant depends on 

the current settings of SESVariables. The selection 

procedure itself is described in the next section. 

SESVariables have a global scope and are written in 

uppercase letters in the tree. Two SESVariables in the 

tree in Figure 2 are defined as input arguments and a 

third one as an auxiliary variable. They have the fol-

lowing definitions: 

SESVariables={SPEC_CTRL,NSL} with 

SPEC_CTRL ϵ {‘lc’,‘nc’} 

NSL ϵ {(i),(i,j),(i,j,k)| 

 i ϵ {‘sine[x]’,‘ramp’,‘step’}˄ 

 j ϵ {‘sine[x]’,‘ramp’,‘step’}˄ 

 k ϵ {‘sine[x]’,‘ramp’,‘step’}˄ 

 x ϵ {1,2,3}} 

auxiliarySESVariable={NUM} with 

NUM=numel(NSL) 

 

According to the exemplary problem (see Fig. 1), the 

variable SPEC_CTRL encodes the desired control 

structure and the variable NSL specifies a list with the 

signal sources to be selected. The index value x al-

lows the encoding of different parameter selections 

for a sine signal. The auxiliary variable NUM calcu-

lates the current number of elements (numel) in 

NSL. An example for an admissible value assignment 

to SESVariables is given as follows.  

NSL ={‘sine[1]’,‘sine[2]’,‘step’} 

SPEC_CTRL={‘nc’} 

 NUM =3 

3.2 Decomposition of systems with variable 

coupling relations  

The system itself (mus) is represented in the SES tree 

with the root node. The subsequent aspect musDEC 

and vertical lines define a decomposition of mus 

(parent) in the entities sg, ctrl and scope (children). 

The aspect attribute {cplg=…} defines the coupling 

relations of mus. Model couplings can be divided into 

internal couplings (IC) between children, and external 

input as well as external output couplings (EIC, EOC) 

between the parent and its children. However, a cou-

pling relationship always has the following structure: 

{‘SrcEntity’,’FromPrt’,’SinkEntity’,’ToPrt’} 

 

In the example some ICs of entity mus depend on the 

number of signal sources defined by sg (see Fig. 1). 

To express such dynamics with minimal effort and to 

keep a lean SES tree, the concept of SESFunctions 

has been introduced. The SESFunctions are like ordi-

nary functions. They extend the declarative specifica-

tion defined by the baseline SES by procedural 

knowledge descriptions. SESFunctions are calculated 

during the processing of an SES, called pruning, and 

are described in the next section. This means that the 

terms: 

cplg=c_mus (Children,NUM) 

cplg=c_ctrl(Children,Parent,NUM) 
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represent ordinary function calls that return the cou-

pling relations, which depend on the current settings 

of the input arguments. The variables Children and 

Parent are implicit attributes of each tree node, which 

save the names of the successor (left-to-right) and 

predecessor nodes. Hence, the set of variable cou-

plings of entity mus, derived from the overall prob-

lem illustrated in Figure 1, can be defined using the 

following SESFunction (in MATLAB syntax): 

function cplg=c_mus(children,num) 

%create empty data structure for couplings 

cplg=cell(num+1,4); 

%set variable ICs btwn sg & ctrl 

for i=1:num %for 1 to num 

 cplg(i,1:4)={children{1},num2str(i),… 

 children{2},num2str(i)}; 

end 

%set fixed IC btwn ctrl & scope 

cplg(num+1,1:4)={children{2},’1’, 

 children{3},’1’ }; 

end 

 

The children sg and ctrl of mus are composed entities, 

while scope is an atomic entity. Leaf node scope 

maps a basic system in the SES and defines with its 

attribute mb=’scope’ a corresponding link to the MB. 

The decomposition of entity ctrl in the entities var 

and add is specified by its successor node ctrlDEC. In 

both control approaches, the linear and nonlinear (see 

Fig. 1), the coupling relations of ctrl depend on the 

number of external inputs, which again depend on the 

current number of signal sources. Thus, the coupling 

relations at ctrlDEC are specified by an SESFunction 

analogous to node musDEC. 

3.3 Variable system attributes and the speciali-

zation of systems 

Leaf node add represents a basic model, such as node 

scope. In contrast to scope, it defines a variable at-

tribute for parameter settings, using the SESFunction 

call inputs=add_fcn(NUM). As illustrated in 

Figure 1, the configuration of add depends on the 

number of inputs. This problem is specified with the 

following SESFunction (MATLAB syntax): 

function inputs=add_fcn(num) 

inputs(1)=‘|’; inputs(2:num+1)=’+’; 

end 

 

The characteristic of entity node var is specified by 

the succeeding specialization node varSPEC, marked 

with double-line edges. A specialization describes an 

is-a-relation concerning the succeeding nodes; in this 

case, entity var can be dtfcn or ltable. While pro-

cessing an SES, the selection is controlled by evaluat-

ing selection rules that are specified as node attribute. 

In this case the following rule is defined. 

srule_ctrl={SPEC_CTRL==’lc’  dtfcn | 

 SPEC_CTRL==’nc’  ltable} 

 

For specializations the specific SES axiom inher-

itance is defined. Its effects will be explained in the 

next subsection. The leaf nodes dtfcn and ltable rep-

resent once again basic models. The node ltable 

shows a further example for a variable attribute defi-

nition. 

3.4 Variable decomposition of systems 

According to the problem description in Section 2, 

the node sg, following the aspect musDEC, represents 

a system entity composed of a variable number of 

signal sources of various types. Referring to the base-

line SES definition, such selection and composition 

has to be specified using a combination of aspect or 

multi-aspect and specialization nodes, possibly sup-

plemented by selection constraints. However, this 

approach quickly leads to a confusing SES tree. In the 

following, an approach for keeping a lean SES tree 

will be described. 

In former work [17] regarding concepts of SES, a 

first idea for solving this specific problem was dis-

cussed under the constraint of relaxing the SES strict 

hierarchy axiom. Based on this idea, we will suggest 

a complete solution without the violation of the strict 

hierarchy axiom. In Figure 2 the entity sg is charac-

terized by the succeeding multi-aspect sgMULT with 

triple-line edges. According to the baseline SES defi-

nition, a multi-aspect is a special case of an aspect in 

which the succeeding entities are homogeneous in 

nature. Thus, it has only one succeeding entity node 

and defines the number of replications of this node as 

an attribute. Accordingly, the node sgMULT has one 

succeeding entity node named s. However, the node 

attribute definitions of the multi-aspect sgMULT and 

the succeeding entity s are more complex referring to 

the baseline SES definition. Node sgMULT specifies 

in the SESVariable NSL a list of types for replication. 

The number of replications is implicitly specified by 

the number of list elements. Remember the example 

NSL={‘sine[1]’,‘sine[2]’,‘step’} 

 

stated at the end of Subsection 3.1. Furthermore, 

sgMULT defines variable coupling relations using the 

SESFunction call cplg=c_sg(…), analogous to the 

aspect nodes musDEC and ctrlDEC. 
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The entity s specifies an attribute type. The concrete 

value of this attribute is determined by calling the 

SESFunction s_fcn(NSL) when processing the 

SES. The SESFunction s_fcn defines a simple itera-

tor. 

function [type]=s_fcn(NSL) 

persistent idx %static variable 

if isempty(idx), idx=1; end %init iterator 

type=NSL(idx); idx=idx+1; 

if numel(NSL)==idx, idx=1; end %reinit iter 

end 

 

Thus, for each replication of entity s an individual 

value assignment is made, such as in our supposed 

case type=’sine[1]’, type=’sine[2]’ and type=’step’, 

when processing the SES. Based on the setting of 

attribute type, replications of entity s can be special-

ized using a succeeding specialization node. This is 

specified in the SES tree with the node sSPEC, which 

defines the various signal sources as succeeding enti-

ties and the following selection rule as its attribute. 

srule_s={Parent.type==‘sine[x]’  sine[x]| 

 Parent.type==‘ramp’  ramp | 

 Parent.type==‘step’  step} 

 

This means that the selection at sSPEC depends on 

the value assignment to attribute type at the parent 

node of sSPEC. Details of this subject will be dis-

cussed in the next section (see Fig. 4).  

The leaf node entities sine, ramp and step once again 

represent basic systems, which specify a link to the 

MB and parameter configurations. The attribute 

amp=#{1,2.5,3} of entity sine defines an ordered 

multiset for different parameter configurations. 

Therefore, specifications referring to a sine signal 

source are extended by the index x to choose an ele-

ment from the multiset amp. 

4 Selecting a Distinct System Variant 

An SES, such as in Figure 2, codes a set of system 

variants and is a metamodel referring to the definition 

in [18]. For simulation studies a single or several 

distinct system variants must be derived from the SES 

metamodel. The selection of a particular model struc-

ture, including parameter settings for basic models, 

depends on the current settings of SESVariables and 

the selection itself is performed by graph pruning. 

The result of pruning is a decision-free tree, called 

Pruned Entity Structure (PES), which contains all of 

the necessary knowledge for building a distinct simu-

lation model using basic models from the MB. Figure 

3 shows one PES derived from the SES in Figure 2 

using the described value assignments to the SESVar-

iables. 

NSL={‘sine[1]’,‘sine[2]’,‘step’} 

SPEC_CTRL={‘nc’} 

 NUM=3 

 

 

Figure 3. PES derived from SES in Figure 2 

This PES codes a system structure analogous to the 

MUS in Figure 1c. Subsequently, we will describe the 

pruning operation in detail. 

Starting at the root node of the SES, the first decision 

operation occurs at aspect musDEC. The SESFunc-

tion called cplg=c_mus(Children,3) is executed to 

determine the coupling relations. The result is: 

musDEC.cplg={‘sg’ , ’1’ , ’ctrl’ , ’1’; 

 ‘sg’ , ’2’ , ’ctrl’ , ’2’; 

 ‘sg’ , ’3’ , ’ctrl’ , ’3’; 

 ‘ctrl’, ‘1’ , ‘scope’, ‘1’ } 

 

The next decision point is at multi-aspect sgMULT. 

According to the number of elements in SESVariable 

NSL, the entity s, including its following sub-tree, has 

to be replicated three times. During this operation 

replicas of s are renamed to comply with the valid 

brothers axiom. Moreover, any replica is assigned an 

exact value to its attribute type by executing the itera-

tor SESFunction s_fcn with the input argument 

NSL={‘sine[1]’,‘sine[2]’,‘step’}. The results of this 

operation are the replicated and renamed entities s1, 

s2, s3 with their identical sub-trees but an individual 

value assignment to their attribute type, as illustrated 

in Figure 4. Now, for each entity si the replicated sub-

tree is evaluated. This means that the selection rule 

srule_s is evaluated for each node sSPEC. In our 

case, it delivers the following selection sine[1], si-
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ne[2] and step. Remember, the indices of sine denote 

the parameter selection for the multiset of attribute 

amp. 

 

Figure 4. Part of ‘intermediate PES’ (sub-tree of sg) 

during pruning of multi-aspect sgMULT 

Next, the parent and child entity of each specializa-

tion relation is combined according to the inheritance 

axiom. In this case, only the entity names and attrib-

utes have to be combined, e.g. sine_s1{mb=’sine’;…; 

type=’sine[1]’}. Finally, the current coupling rela-

tions, specified at node sgMULT, are determined by 

executing the SESFunction call cplg=c_sg(Children, 

Parent, NUM). The result is: 

sgMULT.cplg={‘sine_s1’, ‘1’, ’sg’, ‘1’; 

 ‘sine_s2’, ‘1’, ’sg’, ‘2’; 

 ‘step’ , ‘1’, ’sg’, ‘3’ } 

 

The sub-tree of entity ctrl in Figure 2 is resolved in a 

similar manner during pruning. The resulting cou-

pling relations for entity ctrlDEC are the following: 

ctrlDEC.cplg ={‘ctrl’,‘1’,‘ltable_var’,‘1’; 

 ‘ltable_var’,‘1’,‘add’ ,‘1’; 

 ‘add’,‘1’,‘ctrl’ ,‘1’; 

 ‘ctrl’,‘2’,‘add’ ,‘2’; 

 ‘ctrl’,‘3’,‘add’ ,‘3’ } 

 

As mentioned in the beginning, the PES contains all 

of the necessary knowledge for building a simulation 

model using basic models from the MB. Sometimes, 

the PES contains unnecessary attributes due to the 

pruning operation, such as type in the entities sine_s1 

and sine_s2, which can be neglected when building 

the simulation model. Moreover, referring to [15], the 

PES can be flattened by restructuring. Then, in our 

case the inner nodes sg, sgMULT, ctrl, ctrlDEC are 

resolved and all coupling relations are restructured in 

the cplg attribute of aspect musDEC. 

5 Software Infrastructure and Proto-

type Implementation 

Figure 5 shows the proposed infrastructure for multi-

variant modeling and reactive model generation and 

execution. The core element is the SES/MB frame-

work according to [15], which is extended by an input 

and output interface using the introduced SESVaria-

bles. This part of the infrastructure maps the func-

tionality as described in the previous sections: (i) 

basic models are organized in an MB; (ii) the set of 

system variants is specified in an SES; (iii) the selec-

tion of a particular system variant depends on the 

current settings of SESVariables, it is performed by 

the pruning operation and its result is a decision-free 

tree structure, called PES. 

Then, an executable simulation model (EM) can be 

generated based on the PES and basic models from 

the MB using an appropriate translation method. The 

composition of EM as tuple (MUSi, EFj) means that 

it consists of a Model Under Study (MUS) and a 

corresponding Experimental Frame (EF), according 

to the theory in [15, 19]. The indices i and j are mark-

ers for a certain system configuration. An EM is 

transmitted to the Execution Unit (EU). The EU per-

forms three major tasks: (i) linking an EM with a 

simulation engine; (ii) executing a simulation run; 

and (iii) collecting the results.  

 

Figure 5. Infrastructure for multi-variant modeling and 

reactive model generation and execution 

Once the execution phase is complete, the results are 

sent to the Experiment Control (EC). 

The EC manages the order of EM generations and 

executions. Based on an application-dependent algo-

rithm, the EC computes new settings for SESVaria-

bles as current input for the SES/MB framework to 

start the next cycle. Additionally, the EC collects all 

intermediate results from the EU. By means of the 

feedback loop, structural changes of a variable struc-
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ture system or experiments with several system con-

figurations can be executed in a reactive manner. 

Finally, the EC provides the overall results to the user 

or another software component. 

For the investigation of multiple system configura-

tions, such as in our introduced engineering example, 

it can be useful to generate an EM suite, as illustrated 

in Figure 5, and to execute it in a sequential or dis-

tributed manner by the EU.  

The proposed infrastructure has been implemented in 

the MATLAB/Simulink environment. Thus, a parallel 

or distributed execution of EMs by the EU is directly 

supported. Basic implementation aspects of the infra-

structure within MATLAB/Simulink and its usage for 

solving a specific class of multi-variant problems are 

discussed in [20]. A core element of the infrastructure 

is the SES toolbox for MATLAB/Simulink, which has 

been developed by the Research Group CEA [21, 22]. 

The toolbox provides a graphical SES editor and 

several methods, such as: (i) merging to synthesize 

various SESs’; (ii) pruning for deriving a PES; (iii) 

flattening for the hierarchy reduction of a PES; (iv) 

validity checking of an SES and PES; and (v) transla-

tion scripts or templates to build EM for Simulink or 

MATLAB/DEVS [23]. Advanced engineering appli-

cations for deploying the SES toolbox for 

MATLAB/Simulink in the field of model-based test-

ing can be found in [20]. Moreover, a new prototype 

of the SES toolbox, implemented with Python and 

supporting an XML interface, is in development to 

open the way for investigating the approach in con-

junction with other simulation environments. 

6 Conclusion 

Multi-variant modeling and reactive model genera-

tion and execution is an important requirement in 

systems and production engineering. This paper pre-

sented a metamodel-based approach using the SES 

ontology and introduced an appropriate infrastructure 

to solve this requirement. In addition to the baseline 

SES definition, the approach uses some new exten-

sions which have been explained step by step based 

on an engineering example. The introduced concept 

of SESFunctions advances the declarative knowledge 

representation through a procedural knowledge speci-

fication. Particularly for the modeling of systems with 

a high degree of variability, the SESFunctions support 

maintaining a lean SES even for complex problems. 

In a next step, this assumption has to be proven by 

applying the approach to more complex examples. 

The discussed infrastructure, implemented within 

MATLAB/Simulink, provides a basis for solving 

more complex engineering problems. Currently, it is 

used for developing the reactive and structure varia-

ble controls of interacting industrial robots and in the 

field of objective fidelity evaluation of flight and 

research simulators. Moreover, a new prototype of the 

SES toolbox, implemented with Python and support-

ing an XML interface, is in development to open the 

way for investigating the approach in conjunction 

with other simulation environments.  
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