

A Framework for the Metamodeling of Multi-variant Systems and

Reactive Simulation Model Generation and Execution

Thorsten Pawletta1, Artur Schmidt1, Umut Durak2, Bernard P. Zeigler3

1Hochschule Wismar – University of Applied Sciences, RG CEA, Wismar, Germany

2DLR Institute of Fligth Systems, Braunschweig, Germany

3RTSync Corp. and ACIMS Tucson/AZ, USA

thorsten.pawletta@hs-wismar.de

The simulation-based study of Cyber-Physical Systems or complex production systems leads often to a vast

number of system variants. Each system variant is characterized by a particular model structure and parame-

ter settings, although system variants may also share common parts. There are two main approaches for

modeling such a set of system variants. On the one hand, all variants are mapped in a big model with varia-

tion points and on the other hand variants are specified on a higher level of abstraction using a metamodel

that is processed with appropriate transformation methods. This paper proposes an approach for modeling

system variants using the System Entity Structure (SES) Ontology. It introduces new concepts and advances

the SES by a procedural knowledge specification. Moreover, it proposes a software infrastructure for the au-

tomated and reactive generation and execution of simulation models based on a SES in combination with a

model base. Finally, it refers to a prototype implementation within MATLAB/Simulink and forward-looking

within Python.

1 Introduction

The study of multifaceted end user requirements of

Cyber-Physical Systems or of multi-variant produc-

tion systems leads to a vast number of system vari-

ants. Both problem types can be considered as a vari-

ability problem. Variability has been defined as the

ability of a system or an artefact to be configured,

customized or extended for employment in a particu-

lar context [1]. In software engineering Software

Product Lines (SPL) are widely employed for devel-

oping systems that are characterized by a high degree

of variability. SPL define variation points where dif-

ferent variants of products can be derived for varying

requirements [2]. Variability management has also

been introduced as a challenge to be tackled for mod-

el-based testing architectures [3], for model-based

concept development tools [4] and for studying multi-

variant production systems [5] or reactive robot con-

trols [6]. In this context the problem of reactiveness is

also discussed [5, 6, 7]. We will consider reactiveness

as the generation and execution of a new system

variant depending on current and previous results.

Variability mechanisms shall be defined at particular

levels of abstraction, ranging from metamodeling to

implementation of the source code. Using a meta-

model for variability modeling requires appropriate

model transformation methods for mapping to the

execution level. This is a particular challenge, be-

cause such methods are not supported by the estab-

lished modeling and simulation environments used in

the engineering or production system domain. Anoth-

er approach is the combination with software tools for

requirement or variant management [8] or with do-

main oriented tools [4]. However, in this case often

different kinds of models have to be maintained and

kept consistent.

For these are reasons, in engineering and production

system applications variability is still often encoded

within the executable system models. However, these

models are often hard to manage. Therefore, specific

modularization and configuration methods have been

developed to tackle the complexity. From the simula-

tion theory the approach of dynamic structure or

variable structure systems [9, 10] is known. On the

other side, rather pragmatic solutions have been de-

veloped, such as for the MATLAB/Simulink envi-

ronment in [11, 12].

For the modeling and simulation of modular, hierar-

chical systems, Zeigler introduced the System Entity

Structure (SES) for specifying a set of system config-

urations, called a family of systems. The SES ap-

proach has evolved steadily to an ontology for model

and data engineering [13, 14]. In combination with a

model base (MB), organizing a set of configurable

A Framework for the Metamodeling of Multi-variant Systems and
Reactive Simulation Model Generation and Execution

basic models, the SES approach has been advanced to

a modeling and simulation framework (SES/MB)

[15]. In this paper, a reworked version of [16], we

extend the SES ontology by adding new features. In

addition, we advance the SES/MB framework to an

infrastructure for reactive model generation and simu-

lation execution and we refer to a prototype imple-

mentation. Using an exemplified multi-variant engi-

neering problem, a concrete SES model, which is a

metamodel, is developed. Based on the example,

fundamental elements and axioms of the baseline

SES ontology are briefly summarized. Next, some

extensions to the SES ontology are discussed. The

main new features are SESVariables and SESFunc-

tions, which expand the SES ontology by procedural

knowledge elements. After that, the selection of a

concrete system variant from an SES metamodel is

considered and the whole procedure for generating an

executable simulation model is depicted under the

aspect of reactiveness.

2 Multi-variant Engineering Example

The example is an extension of an application that

has been introduced by The MathWorks in [12] to

demonstrate features for variant modeling within

MATLAB/Simulink. We use that example to make

our approach comparable with The MathWorks solu-

tion for experienced users. The substantial problem

statement is illustrated in Figure 1a. Different control-

ler (ctrl) designs, based on a linear (lc) or a nonlinear

(nc) control structure, should be investigated using

different signal sources from a signal generator (sg).

In addition to the control structure, the signal types

{sine | ramp | step} and the number of signal sources

{1…3} may vary. Figure 1a shows the two control

approaches (lc_ctrl | nc_ctrl) as alternative submodels

of model ctrl. Due to the varying number of possible

input signals, both approaches lead to three different

internal model structures. The minimal internal struc-

ture of a ctrl model with one input signal is illustrated

with full lines. The extension for two or three input

signals is pictured with dashed lines. In the same

manner, the internal structure of the system generator

(sg) depends on the number and type of included

signal sources. Overall, the exemplary problem com-

prises (31+32+33)*2 various system structures. All

possible system structures can be aggregated using 7

basic systems. In this case, the basic systems are

blocks from the Simulink blockset, which represent a

model base (MB), as shown in Figure 1b.

Figure 1c illustrates as an example the model struc-

ture of a specific system variant, which we call a

model under study (MUS). In this case, the MUS

consists of an nc_ctrl model, which is influenced by a

sg model with three signal sources. Two sources are

of type sine and one of type step. For simplification

purposes, a separation between MUS and experi-

mental frame (EF) according to [15] is not consid-

ered.

Figure 1. (a) Overall engineering problem with a set

of system variants; (b) Blocks from the Simulink

blockset representing the MB; (c) Model structure of

a concrete system variant.

3 Metamodel-based Variant Modeling

This section describes the specification of the exem-

plary problem to demonstrate multi-variant modeling

using an SES. The specification is based on the base-

line SES definitions in [13], but it uses some modifi-

cations based on former works in [17] and introduces

some new concepts, such as the SESFunctions.

A Framework for the Metamodeling of Multi-variant Systems and
Reactive Simulation Model Generation and Execution

3.1 SES fundamentals and SESVariables

The SES ontology supports the description of a fami-

ly of systems regarding their elements and the rela-

tions between them. It is axiomatically defined and

can be represented as a directed labeled tree. Nodes

are divided into two types, entity and descriptive

nodes, which can define specific attributes. Entity

nodes describe system elements and the system itself

(root node). The leaf nodes are always entity nodes,

whose attributes define a link to a basic model in the

MB (attribute mb) and possible parameter settings for

the referenced basic model. Descriptive nodes ex-

press relationships between entities and are subdivid-

ed into: aspect, specialization and multi-aspect nodes.

The SES axioms will be considered subsequently, as

necessary for the example. Figure 2 illustrates an SES

tree that maps the problem described in Section 2. In

the tree descriptive nodes are marked with name

suffixes: (i) DEC for aspect, (ii) SPEC for specializa-

tion and (iii) MULT for multi-aspect. At this point the

SES axiom alternating mode for entity and descrip-

tive nodes should be noted.

Figure 2. SES tree for the example in Figure 1a

Before describing the SES tree in detail, the new

concept of SESVariables as the input interface of an

SES is explained. This new feature was introduced to

support the integration of an SES metamodel, refer-

ring to the metamodel definition in [18], in the later

suggested infrastructure. In the infrastructure the

selection of a particular system variant depends on

the current settings of SESVariables. The selection

procedure itself is described in the next section.

SESVariables have a global scope and are written in

uppercase letters in the tree. Two SESVariables in the

tree in Figure 2 are defined as input arguments and a

third one as an auxiliary variable. They have the fol-

lowing definitions:

SESVariables={SPEC_CTRL,NSL} with

SPEC_CTRL ϵ {‘lc’,‘nc’}

NSL ϵ {(i),(i,j),(i,j,k)|

 i ϵ {‘sine[x]’,‘ramp’,‘step’}˄

 j ϵ {‘sine[x]’,‘ramp’,‘step’}˄

 k ϵ {‘sine[x]’,‘ramp’,‘step’}˄

 x ϵ {1,2,3}}

auxiliarySESVariable={NUM} with

NUM=numel(NSL)

According to the exemplary problem (see Fig. 1), the

variable SPEC_CTRL encodes the desired control

structure and the variable NSL specifies a list with the

signal sources to be selected. The index value x al-

lows the encoding of different parameter selections

for a sine signal. The auxiliary variable NUM calcu-

lates the current number of elements (numel) in

NSL. An example for an admissible value assignment

to SESVariables is given as follows.

NSL ={‘sine[1]’,‘sine[2]’,‘step’}

SPEC_CTRL={‘nc’}

 NUM =3

3.2 Decomposition of systems with variable

coupling relations

The system itself (mus) is represented in the SES tree

with the root node. The subsequent aspect musDEC

and vertical lines define a decomposition of mus

(parent) in the entities sg, ctrl and scope (children).

The aspect attribute {cplg=…} defines the coupling

relations of mus. Model couplings can be divided into

internal couplings (IC) between children, and external

input as well as external output couplings (EIC, EOC)

between the parent and its children. However, a cou-

pling relationship always has the following structure:

{‘SrcEntity’,’FromPrt’,’SinkEntity’,’ToPrt’}

In the example some ICs of entity mus depend on the

number of signal sources defined by sg (see Fig. 1).

To express such dynamics with minimal effort and to

keep a lean SES tree, the concept of SESFunctions

has been introduced. The SESFunctions are like ordi-

nary functions. They extend the declarative specifica-

tion defined by the baseline SES by procedural

knowledge descriptions. SESFunctions are calculated

during the processing of an SES, called pruning, and

are described in the next section. This means that the

terms:

cplg=c_mus (Children,NUM)

cplg=c_ctrl(Children,Parent,NUM)

A Framework for the Metamodeling of Multi-variant Systems and
Reactive Simulation Model Generation and Execution

represent ordinary function calls that return the cou-

pling relations, which depend on the current settings

of the input arguments. The variables Children and

Parent are implicit attributes of each tree node, which

save the names of the successor (left-to-right) and

predecessor nodes. Hence, the set of variable cou-

plings of entity mus, derived from the overall prob-

lem illustrated in Figure 1, can be defined using the

following SESFunction (in MATLAB syntax):

function cplg=c_mus(children,num)

%create empty data structure for couplings

cplg=cell(num+1,4);

%set variable ICs btwn sg & ctrl

for i=1:num %for 1 to num

 cplg(i,1:4)={children{1},num2str(i),…

 children{2},num2str(i)};

end

%set fixed IC btwn ctrl & scope

cplg(num+1,1:4)={children{2},’1’,

 children{3},’1’ };

end

The children sg and ctrl of mus are composed entities,

while scope is an atomic entity. Leaf node scope

maps a basic system in the SES and defines with its

attribute mb=’scope’ a corresponding link to the MB.

The decomposition of entity ctrl in the entities var

and add is specified by its successor node ctrlDEC. In

both control approaches, the linear and nonlinear (see

Fig. 1), the coupling relations of ctrl depend on the

number of external inputs, which again depend on the

current number of signal sources. Thus, the coupling

relations at ctrlDEC are specified by an SESFunction

analogous to node musDEC.

3.3 Variable system attributes and the speciali-

zation of systems

Leaf node add represents a basic model, such as node

scope. In contrast to scope, it defines a variable at-

tribute for parameter settings, using the SESFunction

call inputs=add_fcn(NUM). As illustrated in

Figure 1, the configuration of add depends on the

number of inputs. This problem is specified with the

following SESFunction (MATLAB syntax):

function inputs=add_fcn(num)

inputs(1)=‘|’; inputs(2:num+1)=’+’;

end

The characteristic of entity node var is specified by

the succeeding specialization node varSPEC, marked

with double-line edges. A specialization describes an

is-a-relation concerning the succeeding nodes; in this

case, entity var can be dtfcn or ltable. While pro-

cessing an SES, the selection is controlled by evaluat-

ing selection rules that are specified as node attribute.

In this case the following rule is defined.

srule_ctrl={SPEC_CTRL==’lc’  dtfcn |

 SPEC_CTRL==’nc’  ltable}

For specializations the specific SES axiom inher-

itance is defined. Its effects will be explained in the

next subsection. The leaf nodes dtfcn and ltable rep-

resent once again basic models. The node ltable

shows a further example for a variable attribute defi-

nition.

3.4 Variable decomposition of systems

According to the problem description in Section 2,

the node sg, following the aspect musDEC, represents

a system entity composed of a variable number of

signal sources of various types. Referring to the base-

line SES definition, such selection and composition

has to be specified using a combination of aspect or

multi-aspect and specialization nodes, possibly sup-

plemented by selection constraints. However, this

approach quickly leads to a confusing SES tree. In the

following, an approach for keeping a lean SES tree

will be described.

In former work [17] regarding concepts of SES, a

first idea for solving this specific problem was dis-

cussed under the constraint of relaxing the SES strict

hierarchy axiom. Based on this idea, we will suggest

a complete solution without the violation of the strict

hierarchy axiom. In Figure 2 the entity sg is charac-

terized by the succeeding multi-aspect sgMULT with

triple-line edges. According to the baseline SES defi-

nition, a multi-aspect is a special case of an aspect in

which the succeeding entities are homogeneous in

nature. Thus, it has only one succeeding entity node

and defines the number of replications of this node as

an attribute. Accordingly, the node sgMULT has one

succeeding entity node named s. However, the node

attribute definitions of the multi-aspect sgMULT and

the succeeding entity s are more complex referring to

the baseline SES definition. Node sgMULT specifies

in the SESVariable NSL a list of types for replication.

The number of replications is implicitly specified by

the number of list elements. Remember the example

NSL={‘sine[1]’,‘sine[2]’,‘step’}

stated at the end of Subsection 3.1. Furthermore,

sgMULT defines variable coupling relations using the

SESFunction call cplg=c_sg(…), analogous to the

aspect nodes musDEC and ctrlDEC.

A Framework for the Metamodeling of Multi-variant Systems and
Reactive Simulation Model Generation and Execution

The entity s specifies an attribute type. The concrete

value of this attribute is determined by calling the

SESFunction s_fcn(NSL) when processing the

SES. The SESFunction s_fcn defines a simple itera-

tor.

function [type]=s_fcn(NSL)

persistent idx %static variable

if isempty(idx), idx=1; end %init iterator

type=NSL(idx); idx=idx+1;

if numel(NSL)==idx, idx=1; end %reinit iter

end

Thus, for each replication of entity s an individual

value assignment is made, such as in our supposed

case type=’sine[1]’, type=’sine[2]’ and type=’step’,

when processing the SES. Based on the setting of

attribute type, replications of entity s can be special-

ized using a succeeding specialization node. This is

specified in the SES tree with the node sSPEC, which

defines the various signal sources as succeeding enti-

ties and the following selection rule as its attribute.

srule_s={Parent.type==‘sine[x]’  sine[x]|

 Parent.type==‘ramp’  ramp |

 Parent.type==‘step’  step}

This means that the selection at sSPEC depends on

the value assignment to attribute type at the parent

node of sSPEC. Details of this subject will be dis-

cussed in the next section (see Fig. 4).

The leaf node entities sine, ramp and step once again

represent basic systems, which specify a link to the

MB and parameter configurations. The attribute

amp=#{1,2.5,3} of entity sine defines an ordered

multiset for different parameter configurations.

Therefore, specifications referring to a sine signal

source are extended by the index x to choose an ele-

ment from the multiset amp.

4 Selecting a Distinct System Variant

An SES, such as in Figure 2, codes a set of system

variants and is a metamodel referring to the definition

in [18]. For simulation studies a single or several

distinct system variants must be derived from the SES

metamodel. The selection of a particular model struc-

ture, including parameter settings for basic models,

depends on the current settings of SESVariables and

the selection itself is performed by graph pruning.

The result of pruning is a decision-free tree, called

Pruned Entity Structure (PES), which contains all of

the necessary knowledge for building a distinct simu-

lation model using basic models from the MB. Figure

3 shows one PES derived from the SES in Figure 2

using the described value assignments to the SESVar-

iables.

NSL={‘sine[1]’,‘sine[2]’,‘step’}

SPEC_CTRL={‘nc’}

 NUM=3

Figure 3. PES derived from SES in Figure 2

This PES codes a system structure analogous to the

MUS in Figure 1c. Subsequently, we will describe the

pruning operation in detail.

Starting at the root node of the SES, the first decision

operation occurs at aspect musDEC. The SESFunc-

tion called cplg=c_mus(Children,3) is executed to

determine the coupling relations. The result is:

musDEC.cplg={‘sg’ , ’1’ , ’ctrl’ , ’1’;

 ‘sg’ , ’2’ , ’ctrl’ , ’2’;

 ‘sg’ , ’3’ , ’ctrl’ , ’3’;

 ‘ctrl’, ‘1’ , ‘scope’, ‘1’ }

The next decision point is at multi-aspect sgMULT.

According to the number of elements in SESVariable

NSL, the entity s, including its following sub-tree, has

to be replicated three times. During this operation

replicas of s are renamed to comply with the valid

brothers axiom. Moreover, any replica is assigned an

exact value to its attribute type by executing the itera-

tor SESFunction s_fcn with the input argument

NSL={‘sine[1]’,‘sine[2]’,‘step’}. The results of this

operation are the replicated and renamed entities s1,

s2, s3 with their identical sub-trees but an individual

value assignment to their attribute type, as illustrated

in Figure 4. Now, for each entity si the replicated sub-

tree is evaluated. This means that the selection rule

srule_s is evaluated for each node sSPEC. In our

case, it delivers the following selection sine[1], si-

A Framework for the Metamodeling of Multi-variant Systems and
Reactive Simulation Model Generation and Execution

ne[2] and step. Remember, the indices of sine denote

the parameter selection for the multiset of attribute

amp.

Figure 4. Part of ‘intermediate PES’ (sub-tree of sg)

during pruning of multi-aspect sgMULT

Next, the parent and child entity of each specializa-

tion relation is combined according to the inheritance

axiom. In this case, only the entity names and attrib-

utes have to be combined, e.g. sine_s1{mb=’sine’;…;

type=’sine[1]’}. Finally, the current coupling rela-

tions, specified at node sgMULT, are determined by

executing the SESFunction call cplg=c_sg(Children,

Parent, NUM). The result is:

sgMULT.cplg={‘sine_s1’, ‘1’, ’sg’, ‘1’;

 ‘sine_s2’, ‘1’, ’sg’, ‘2’;

 ‘step’ , ‘1’, ’sg’, ‘3’ }

The sub-tree of entity ctrl in Figure 2 is resolved in a

similar manner during pruning. The resulting cou-

pling relations for entity ctrlDEC are the following:

ctrlDEC.cplg ={‘ctrl’,‘1’,‘ltable_var’,‘1’;

 ‘ltable_var’,‘1’,‘add’ ,‘1’;

 ‘add’,‘1’,‘ctrl’ ,‘1’;

 ‘ctrl’,‘2’,‘add’ ,‘2’;

 ‘ctrl’,‘3’,‘add’ ,‘3’ }

As mentioned in the beginning, the PES contains all

of the necessary knowledge for building a simulation

model using basic models from the MB. Sometimes,

the PES contains unnecessary attributes due to the

pruning operation, such as type in the entities sine_s1

and sine_s2, which can be neglected when building

the simulation model. Moreover, referring to [15], the

PES can be flattened by restructuring. Then, in our

case the inner nodes sg, sgMULT, ctrl, ctrlDEC are

resolved and all coupling relations are restructured in

the cplg attribute of aspect musDEC.

5 Software Infrastructure and Proto-

type Implementation

Figure 5 shows the proposed infrastructure for multi-

variant modeling and reactive model generation and

execution. The core element is the SES/MB frame-

work according to [15], which is extended by an input

and output interface using the introduced SESVaria-

bles. This part of the infrastructure maps the func-

tionality as described in the previous sections: (i)

basic models are organized in an MB; (ii) the set of

system variants is specified in an SES; (iii) the selec-

tion of a particular system variant depends on the

current settings of SESVariables, it is performed by

the pruning operation and its result is a decision-free

tree structure, called PES.

Then, an executable simulation model (EM) can be

generated based on the PES and basic models from

the MB using an appropriate translation method. The

composition of EM as tuple (MUSi, EFj) means that

it consists of a Model Under Study (MUS) and a

corresponding Experimental Frame (EF), according

to the theory in [15, 19]. The indices i and j are mark-

ers for a certain system configuration. An EM is

transmitted to the Execution Unit (EU). The EU per-

forms three major tasks: (i) linking an EM with a

simulation engine; (ii) executing a simulation run;

and (iii) collecting the results.

Figure 5. Infrastructure for multi-variant modeling and

reactive model generation and execution

Once the execution phase is complete, the results are

sent to the Experiment Control (EC).

The EC manages the order of EM generations and

executions. Based on an application-dependent algo-

rithm, the EC computes new settings for SESVaria-

bles as current input for the SES/MB framework to

start the next cycle. Additionally, the EC collects all

intermediate results from the EU. By means of the

feedback loop, structural changes of a variable struc-

A Framework for the Metamodeling of Multi-variant Systems and
Reactive Simulation Model Generation and Execution

ture system or experiments with several system con-

figurations can be executed in a reactive manner.

Finally, the EC provides the overall results to the user

or another software component.

For the investigation of multiple system configura-

tions, such as in our introduced engineering example,

it can be useful to generate an EM suite, as illustrated

in Figure 5, and to execute it in a sequential or dis-

tributed manner by the EU.

The proposed infrastructure has been implemented in

the MATLAB/Simulink environment. Thus, a parallel

or distributed execution of EMs by the EU is directly

supported. Basic implementation aspects of the infra-

structure within MATLAB/Simulink and its usage for

solving a specific class of multi-variant problems are

discussed in [20]. A core element of the infrastructure

is the SES toolbox for MATLAB/Simulink, which has

been developed by the Research Group CEA [21, 22].

The toolbox provides a graphical SES editor and

several methods, such as: (i) merging to synthesize

various SESs’; (ii) pruning for deriving a PES; (iii)

flattening for the hierarchy reduction of a PES; (iv)

validity checking of an SES and PES; and (v) transla-

tion scripts or templates to build EM for Simulink or

MATLAB/DEVS [23]. Advanced engineering appli-

cations for deploying the SES toolbox for

MATLAB/Simulink in the field of model-based test-

ing can be found in [20]. Moreover, a new prototype

of the SES toolbox, implemented with Python and

supporting an XML interface, is in development to

open the way for investigating the approach in con-

junction with other simulation environments.

6 Conclusion

Multi-variant modeling and reactive model genera-

tion and execution is an important requirement in

systems and production engineering. This paper pre-

sented a metamodel-based approach using the SES

ontology and introduced an appropriate infrastructure

to solve this requirement. In addition to the baseline

SES definition, the approach uses some new exten-

sions which have been explained step by step based

on an engineering example. The introduced concept

of SESFunctions advances the declarative knowledge

representation through a procedural knowledge speci-

fication. Particularly for the modeling of systems with

a high degree of variability, the SESFunctions support

maintaining a lean SES even for complex problems.

In a next step, this assumption has to be proven by

applying the approach to more complex examples.

The discussed infrastructure, implemented within

MATLAB/Simulink, provides a basis for solving

more complex engineering problems. Currently, it is

used for developing the reactive and structure varia-

ble controls of interacting industrial robots and in the

field of objective fidelity evaluation of flight and

research simulators. Moreover, a new prototype of the

SES toolbox, implemented with Python and support-

ing an XML interface, is in development to open the

way for investigating the approach in conjunction

with other simulation environments.

ACKNOWLEDGMENTS

The authors, T. Pawletta and A. Schmidt, gratefully

acknowledge the grant from the German Science

Foundation DFG (PA 631/2).

References

[1] Capilla R., Bosch J., Kang K.-C. Systems and

Software Variability Management. Springer Pub.,

2013.

[2] Polzer A. et al. Managing complexity and varia-

bility of a model-based embedded software prod-

uct line. Innovations System Software Engineer-

ing. Vol. 8, 35-49, 2012.

[3] Sargardui G., Etxeberria L., Agirre J.A. Variabil-

ity management in testing architectures for em-

bedded control systems. In: The 4th Int. Conf. on

Advances in System Testing and Validation

Lifecycle (VALID 2012). IARIA Press, 73-78,

2012.

[4] Krausz M., Zimmer M., Reuss H.C. OverNight

Testing – The fully automated simulation envi-

ronment for evaluation of car concepts. SNE –

Simulation Notes Europe, Vol. 24(2), 87-94,

2014.

[5] Schmidt A., Pawletta T.: Ein Ontologie-basierter

Modellierungs- und Simulationsansatz am Bei-

spiel der ressourceneffizienten Planung spanen-

der Prozessketten. In: Proc. 15. ASIM Fachtagung

Simulation in Produktion und Logistik, Pader-

born, HNI-Verlagsschriftenreihe Bd. 316, 481-

490, 2013.

[6] Schwatinski T., Pawletta T., Pawletta S. Flexible

Task Oriented Robot Controls Using the System

Entity Structure and Model Base Approach. SNE

– Simulation Notes Europe, Vol. 22(2), 107-114,

2012.

A Framework for the Metamodeling of Multi-variant Systems and
Reactive Simulation Model Generation and Execution

[7] Zander J. Model-based Testing of Real-Time Em-

bedded Systems in the Automotive Domain. PhD

Thesis, TU Berlin, 2008.

[8] Beuche D. Modeling and building software prod-

uct lines with pure::variants. In: Proc. 12th Int.

Software Product Line Conf., IEEE Comp. Soc.,

358-358, 2008.

[9] Barros, F.J. The dynamic structure discrete event

system specification formalism. Transactions of

the SCS International, No.1, 35-46, 1996.

[10] Pawletta T., Lampe B., Pawletta S., Drewelow, W.

A DEVS-based approach for modeling and simu-

lation of hybrid variable structure systems. In:

Modeling, Anlysis, and Design of Hybrid Sys-

tems, Lecture Notes in Control and Information

Sciences 279, Springer Pub. , 107-129, 2002.

[11] Haber A. et al. First-class variability modeling in

MATLAB/Simulink. In: Proc. of the 7th Int. Work-

shop on Variability Modelling of Software-

intensive Systems. ACM Press, 11-18, 2013.

[12] The MathWorks. Variant management.

http://de.mathworks.com/help/simulink/ug/variant

-management.html, Date of reading 12-Nov.

2015.

[13] Zeigler B.P., Hammonds P.E. Modeling and Simu-

lation-Based Data Engineering. Academic Press,

2007.

[14] Zeigler B.P., Sarjoughian H.S., Guide to Model-

ing and Simulation of Systems of Systems. Spring-

er Pub., 2012.

[15] Zeigler B.P., Prähofer H., Kim T.G., Theory of

Modeling and Simulation. Academic Press, 2000.

[16] Pawletta T., Schmidt A., Zeigler B.P, Durak U.

Extended Variability Modeling Using System En-

tity Structure Ontology within MATLAB/ Sim-

ulink. In: Proc. SprigSim-ANSS 2016, Pasade-

na/CA, USA, 62-69, 2016.

[17] Rozenblit, J.W., Zeigler, B.P. Representing and

constructing system specifications using the sys-

tem entity structure concepts. In: Proc. of the

1993 Winter Simulation Conf., 604-611, 1993.

[18] Pidcock W., Uschold M. What are the differences

between a vocabulary, a taxonomy, a thesaurus,

an ontology, and a meta-model? In: The Web

Graph Database, http://infogrid.org/trac/wiki/

Reference/PidcockArticle, Date of reading 7-July

2016.

[19] Traoré M., Muzy A. Capturing the dual relation-

ship between simulation models and their context.

Simulation Modelling Practice and Theory, No. 2,

126-142, 2006.

[20] Schmidt A., Durak U., Pawletta T. Model-based

testing methodology using system entity structures

for MATLAB/Simulink models. Simulation:

Transactions of SCS Int., Sage Pub., DOI:

10.1177/0037549716656791, 18 pp., 2016.

[21] Pawletta T., Pascheka D., Schmidt A., Pawletta S.

Ontology-assisted system modeling and simula-

tion within MATLAB/Simulink. SNE – Simulation

Notes Europe, Vol. 24(2), 59-68, 2014.

[22] Pawletta T., Schmidt A., Pascheka D. SES

Toolbox for MATLAB/Simulink. https://www.mb.

hs-wismar.de/cea/SES_Tbx/, Date of reading 12-

Nov. 2015.

[23] Deatcu C., Schwatinski T., Pawletta T. DEVS

Toolbox for MATLAB. https://www.mb.hs-

wismar.de/cea/SES_Tbx/, Date of reading 12-

Nov. 2015.

http://infogrid.org/trac/wiki/%20Reference/PidcockArticle
http://infogrid.org/trac/wiki/%20Reference/PidcockArticle
https://www.mb/

