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e Height-keeping performance of aircraft is a key element in ensuring safe
operations in RVSM airspace.
e Accurate pressure —geopotential relation is fundamental for meteorology
e We compare Trailing Cone (TC) and Numerical Weather Prediction (NWP) data
# e The accuracy of the TC and NWP data is useful for control of height keeping
DLR performance and assessment of weather analysis



Pressure sensors on HALO
the German High Altitude and Long Range Rsearch Aircraft, a Gulfstream G550
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A well-known problem: Aerodynamic disturbance of
static pressure distribution along an aircraft

Pressure Distribution
Along this Line
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#7 DeLeo and Hagen (1966)
DLR



Importance of static pressure p
e aviation e meteorology

height in standard atmosphere
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Method for determination of pressure/height
deviations, Az and Ap

A) Measurement at aircraft (AC): .
GNSS -> Height above NN: z, C) Heightand
AC sensor -> Static pressure: p,c pressure deviation

N

B) Numerical weather prediction (NWP)
from analysis or prediction

1) Altitude for given pressure p,c = Pywe

=2 Znwp >

2) Pressure for given height 2, = z\p

AZ = Zpc - Zywp

AP = Pac - Pnwp
- Pnwp

i DLR



Is NWP
accurate
enough?

Can it be
used for
checking
pressure
altitude
measure-
ments?

i DLR

REV ’*jW (Nature: September 2015)

doi:10.1038/nature14956

The quiet revolution of numerical
weather prediction

Peter Bauer', Alan Thorpe' & Gilbert Brunet”
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2-day forecast, 500 hPa geopotential: rms order 15 m

Verification to WMO standards
geopotential 500hPa
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Figure 15: WMO-exchanged scores from global forecast centres. RMS error over northern extratropics for
500 hPa geopotential height ( ‘ ' . In each panel the upper curves show the
six-day forecast error and the lower curves show the two-day forecast error. Each model 1s verified against 1ts own
analysis. JMA = Japan Meteorological Agency, CMC = Canadian Meteorological Centre, UKMO = the UK
Meteorological Otfice, NCEP = U.S. National Centers for Environmental Prediction, M-F = Météo France.



Same for surface pressure: rms order 1 hPa
Verification to WMO standards

Mean sea level pressure
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Figure 15: WMO exchanged scores from global forecast centres. RMS error over northern extratropics for
S * " mean sea level pressure (bottom). In each panel the upper curves show the
six-day forecast error and the lower curves show the two-day forecast error. Each model 1s verified against 1ts own
analysis. JMA = Japan Meteorological Agency, CMC = Canadian Meteorological Centre, UKMO = the UK
Meteorological Otfice, NCEP = U.S. National Centers for Environmental Prediction, M-F = Météo France.



Falcon with Trailing Cone

Photo: WTD61, Manching, 2011 Trailing Cone —
. : : (8
(provided by Oliver Brieger)



Trailing cone measurements behind DLR aircraft:
159 data points, 20-160 s leg-mean values, Germany

* HALO p: Weston Aerospace | ircraft | Region | Date | Flinhit __

Digital Pressure Module DPM HALO ALLGAU 15 April 2010 350, 250,150
78851BA, Ap< 0.006 hPa

SAXONY 22 June 2010 430, 350,250,
e FALCON p: Rosemount Model 40
1201FS Sensor with Ruska ALLGAU 24 May 2011 150, 250,270
7750i reference, Ap< 0.4 hPa. ,350,400
e Altitude above WGS84 with ALLGAU 16 September 430,350,250
differential GPS, Az< 0.5 m, —
after post-processing <0.1m ALLGAU 23 September 290,350,410,
e corrected for geoid : 20 10
FALCON ALLGAU 20 May 2011 250,330,150

undulation N = h-z (about 50




TC pressure measurement error from flyby maneuvers
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hydrostatically corrected pressure on the ground for HALO and Falcon

# Differences between trailing cone pressure sensor reading and
DLR



NWP analysis:

e NWP data from the Integrated Forecasting
System(IFS) of the European Centre for
Medium-Range Weather Forecasts (ECMWF)

Pr+1/2=Uer1/2+ D iz Dser K0, K.

z
* 0.25° horizontal resolution D = jgdz
e 91 layers (Ap ~ 14 hPa, Az~ 400 m at 0
tropopause) Pistr2
. . _ RTV
e 3-htime resolution D1 =Py — 0
e combined analysis + forecast Pr1/2
e model levels, |nterpolat|on: linear ~®, - RTV,k In P12
temporally and horizontally, Py 1/

e vertically in log(p)
 Somigliana-type gravity formula, height )
’ = 9.80665 2
dependence from DoD/NIMA TR8350.2 gr ms
 Including s.urf:?\ce gravity anomalies g from g=v,(z,0)+ g(d,\)
Earth Gravitational Model 2008 (EGM2008)

 assuming small horizontal wind
for z<13.5km: Ag/g <0.43%.

# gravity varies due to the distance to Earth’s center, Earth’s rotation and local
DLR gravity anomalies from crust density variations



g/g0

i DLR
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Deviation from sphere and rotation dependent gravity
variability are connected
(Spheroidal and spherical geopotential approximations)

Z z
D = I gdz Most NWP models use the spherical
0

approximation.

However ECMWEF uses ® for variable g
C when assimilating altitude dependent
observations (e.g. GPS radio occultation
data)

L

high g

lines of
constant

geopotential ® low g

a 1.5a

Bénard (QJRMS, 2014)
see also Staniforth (QJRMS, 2014)



Gravity is latitude and longitude dependent

Free-air Gravity Anomalies From the
Earth Gravitational Model 2008 (EGM2008)

0° 30° 60° 90° 120° 150° 180" 210° 240° 270° 300° 330" 360°

Free-air gravity anomalies computed from EGMO8, averaged over 5 arc-minute by 5 arc-minute cells on the surface of the Earth. A gravity anomaly
is the difference of actual (observed) gravity from a nominal (theoretical) value. The unit is “milliGal” (denoted mGal, where 1 mGal = 10 ms?),
which corresponds approximately to 1 part per million of the gravity acceleration sensed by an observer on the Earth’s surface. Notice the numerous
ﬁ geophysical features that are revealed, such as oceanic trenches, ridges, subduction and fracture zones, and seamount chains.
DLR

Pavlis et al. (JGR, 2012)



Results

159 test points from

6 days with 2 aircraft
(Halo H and Falcon F)
for FL 50 -430 hft

Ap, Az computed for
constant (g=c)
gravity

Max deviations:
0.75 hPa, 27 m

i DLR
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Results

159 test points from
6 days with 2 aircraft
(Halo H and Falcon F)
for FL 50 -430 hft

Ap, Az computed for
constant (g=c) and
variable (g=v) gravity

Max deviations:

0.68 hPa, 9 m

i DLR
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Flight level
dependence:

Significantly
smaller deviations
of Az and Ap

for variable g

than for

constant g

i DLR
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Mean deviations

gravity model Ap/Pa
g=9.80655 ms?_[RIITN: 39.90+16.2

g=7,(¢,A)+Ag 0.61£2.8 -0.8114.9

not only the mean errors but also the standard
deviations are smaller for variable g than
constant g!

i DLR



Low sensitivity
to flight level, FL

Significantly smaller
deviations for variable g
than for constant g

i DLR
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Low sensitivity to Mach
number,
time of day,
number of flight,
and aircraft (H or F)

i DLR
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Random errors

(deviations of single values from average over all legs
at constant FL)

Importance of gravity and DGPS/INU postprocessing

gmodel | o(Ap) | o(A7)

HALO
g=9.80665 m s 5.63 Pa 1.10 m
5.40 Pa 1.04 m
g =y, +Ag 5.33 Pa 1.02 m
online DGPS 6.98 Pa 1.49 m

DLR



Reminder: JAA Administrative & Guidance Material
Section One: General Part 3: Temporary Guidance Leaflets

LEAFLET NO 6: Revision 1 GUIDANCE MATERIAL ON THE APPROVAL OF AIRCRAFT AND
OPERATORS FOR FLIGHT IN AIRSPACE ABOVE FLIGHT LEVEL 290

WHERE A 300M (1,000 FT) VERTICAL SEPARATION MINIMUM IS
APPLIED

Altimetry System Error (ASE) The difference between the pressure altitude displayed to the flight
crew when referenced to the International Standard Atmosphere ground pressure setting (1013.2 hPa
/29.92 in.Hg) and free stream pressure altitude.

7.3.2 Assessment of ASE, whether based on measured or predicted data will need to consider sub-

paragraphs (a) to (d) of 7.3.1. The effect of item (d) as a variable can be eliminated by evaluating ASE at
the most adverse flight condition in an RVSM flight envelope.

7.3.3 The criteria to be met for the Basic envelope are:

(a) At the point in the envelope where the mean ASE reaches its largest absolute value that
value should not exceed 25 m (80 ft);

(b) At the point in the envelope where absolute mean ASE plus three standard deviations of
ASE reaches its largest absolute value, the absolute value should not exceed 60 m
(200 ft).
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Conclusions

Accuracy of static pressure and height assessed with TC pressure and
DGPS altitude measurements and pressure/geopotential from ECMWF

essential: post-processed DGPS altitude data and variable g

Az <9 m for 159 data points from six flights

Mean temperature error <0.1 K below flight levels.

Agreement noteworthy for aviation and meteorology.

Ellipsoidal geoid and variable gravity important also for NWP
Geopotential is more sensitive to Ag than to Ahumidity in this test

Open: prediction of most suitable test conditions, other NWP system
data

Further tests at DLR, Institute of Flight Systems, Braunschweig, tbp

NWP data and the analysis method offer the potential for static
pressure calibration and for control of the height keeping performance
of aircraft during operation.
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DGPS data corrected for Geoid undulation, N = h-z

Difference between altitude h relative to WGS84 and height z above MSL.

#7 Global geoid undulations (Lemoine et al., 1998).
DLR  The undulations range from -107 m to 85 m.



Geoid undulation

The height z above MSL differs from the altitude h relative to WGS84 by about
50 m over the European continent. The altitude difference is known as geoid
undulation N, N=h-z.

L

Muters {m) from the Earth Gravitational Model 1996

& &
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IFS Temperature bias compared to radiosondes

vs forecast time: < 0.2 K below 150 hPa

bias of 41r2_0069
1000,850,700,500,300,250,200,100,50,30,10hPa temperature
Mean error

Europe N Africa (at 25.0t0 70.0,lon -10.0to 28.0)

Date: 20150809 12UTC to 20160304 12UTC | oper_ob od oper 0069 | Mean method: standard | Population: 414,412 ,410,408,406,404,402,400,398,396

&

100+

200
250
300

pressure /hPa

850

1000

500

700

...............................................................................................................................................................................

0.2to 0K

................................................................................................................................................................................

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

T T T T | T T T
6

Forecast Day

Thomas
Haiden,
ECMWE, pers.
comm., 2016

Figure 1. Mean error (top) and RMSE (bottom) of the IFS temperature forecast over Europe, verified
against uncorrected radiosonde data, as a function of height and forecast range. Verification period
is 9 Aug 2015 — 4 March 2016. The model version verified is 41r2, which became operational in

March 2016.



Temperature rms compared to radiosondes vs forecast time
<1K
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Figure 1. Mean error (top) and RMSE (bottom) of the IFS temperature forecast over Europe, verified
against uncorrected radiosonde data, as a function of height and forecast range. Verification period

is 9 Aug 2015 — 4 March 2016. The model version verified is 41r2, which became operational in
March 2016.
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