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Abstract
This work introduces a well-accepted image representation model in image analysis, namely the Bag-of-Visual-Words
(BoVW), to interferometric SAR (InSAR) images. As the low-level local features, Gabor- and fractional Fourier
transform (FrFT)-based feature descriptors are used. The supervised classification results with BoVW-Gabor and
BoVW-FrFT features are compared to those with global Gabor and global FrFT features. Although the global Gabor
features are better than the global FrFT features, by the implementation of BoVW model, FrFT outperforms Gabor
features. Also, the classification performances of different baseline acquisitions for the same scenes are compared. For
each baseline, the mean and individual class accuracies are improved by using BoVW-FrFT features.

1 Introduction

Today, automated and fast exploration of large databases
is important in many fields. Earth observation is one of
them, where many space- and airborne images pile up ev-
ery day. Among various imaging technologies, SAR and
InSAR are special candidates for scene classification.

On the other hand, recent developments in image process-
ing are consistently introduced to remote sensing field.
BoVW model is one of such successful techniques used
in target detection, object and scene classification, etc.

In this work, BoVW model is adapted for classification
of InSAR images by paying a special attention to the fea-
ture extraction step, as the acquisition geometry of such
images plays an important role in the interpretation of the
image content. The framework of BoVW model and its
implementation for InSAR images are given in Section 2
and Section 3, respectively. The experimental database
and the results are presented in Section 4 and Section 5.

2 Bag-of-Visual-Words Model

A text document can be represented as an orderless col-
lection of words from a dictionary by using the frequen-
cies of these words. This model is referred to as Bag-
of-Words (BoW) model, which is a prevalent method in
document analysis, such as document classification. The
Bag-of-Visual-Words (BoVW) model is an adaptation of
BoW model to image analysis, where each image is rep-
resented as an orderless collection of visual words from
a visual dictionary by a histogram of these visual words.
The BoVW image representation consists of 5 steps:

Step 1. Local feature detection: The images are divided
into overlapping or non-overlapping patches using a reg-
ular grid as in dense sampling [1]. Also, the local features
can be detected by random sampling or by a more com-
plex detector, such as interest point detector [2]. Without

loss of generality, these detected feature regions will be
referred to as local patches in the rest of this paper.

Step 2. Local feature extraction: For the local patches
detected in Step 1, the low-level feature descriptors are
extracted. The most common local feature in literature
is the scale-invariant feature transform (SIFT) [3]. Also,
there are studies which use very simple statistics such as
mean and standard deviation [4], and even the pixel val-
ues themselves [1] within a small local patch.

Step 3. Dictionary learning: Generally, an unsupervised
clustering algorithm, such as K-means clustering, Gaus-
sian mixture models [5] or random forests [6], is used to
learn the visual dictionary using all local features from all
images in the database. The cluster centroids obtained are
referred to as the visual words in the visual dictionary.

Step 4. Feature coding: Once the visual dictionary is
learned, the next step is to assign each local feature to a
visual word in the visual dictionary. This can be done by
hard voting, soft coding or Fisher coder.

Step 5. Feature pooling: In the last step, pooling is per-
formed to generate a fixed length image representation.
Max-pooling and sum-pooling are the common methods.

BoVW feature is an intermediate model relying on the
low-level features. The well-known bottleneck of this
model is the lack of global spatial relation of the local
features within an image, or in other words, its inability
of re-localizing objects in the image. Nevertheless, this
model has already proved itself as a successful method in
image retrieval thanks to its fixed-length feature descrip-
tor and ability to discriminate local objects in an image.

3 BoVW Model for InSAR Images

In this work, the BoVW model is used for classification
of single-look complex (SLC) SAR and InSAR images.
For this purpose, in the local feature detection step, non-
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overlapping dense sampling is used with different local
patch sizes. The visual dictionary is learned by means
of K-means clustering for different number of clusters,
and the local features are assigned to the nearest visual
words using hard voting. Hard voting is followed by
sum-pooling, which is equivalent to computing a his-
togram. The histogram of visual words for an image con-
stitutes the fixed-length BoVW feature descriptor, which
will later represent that image in a supervised classifier.

In the local feature extraction step of BoVW model, two
different low-level features, namely the Gabor-based and
FrFT-based features, which have been previously used
for classification of SLC SAR and InSAR images [7], [8],
are computed. The details of these low-level features are
presented in the following Sections 3.1 and 3.2.

3.1 Low-Level Gabor Features
The first local feature used in this work is the Gabor-
based feature descriptor, which is a well-known multi-
scale approach capturing the textural information [9]. It
is important to note that, due to the sub-aperture decom-
position of SLC SAR images in case of wavelet-based
representation such as Gabor filter banks, the amplitude
of the local patches for SLC SAR images is used [7].

In order to construct a local feature descriptor, Gabor
filter banks with 3 scales and 4 orientations are im-
plemented. Then, the 3 log-cumulants (log-mean, log-
variance and log-skewness) of the full Gabor response
(i.e., the real and imaginary parts of Gabor filtered local
patch) are appended [7], [9]. The feature descriptor of
length 72 for the (i, j)th local patch looks as follows:
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where µRS,O, σRS,O, γRS,O and µIS,O, σIS,O and γIS,O are
the log-cumulants computed from the real and imagi-
nary parts of the Gabor filtered local patch for scale
S ∈ {1, 2, 3} and orientation O ∈ {1, 2, 3, 4}.

3.2 Low-Level FrFT Features
FrFT is the generalization of standard Fourier Transform
and it decomposes the signal into chirps as in (2) where
α is the transform angle [10].

Fα (ξ) = Aα · exp(jπξ2 cotα)

·
∫

exp[jπ(−2xξ cscα+ x2 cotα)]f(x)dx

Aα =
exp[−j(π sgn(sinα)/4− α/2)]

| sinα|1/2

(2)

In [11], the FrFT is designated as an appropriate multi-
scale approach for SLC SAR images, where the scaling
is performed in the phase by controlling the transform an-
gle. Hence, as the second local feature, FrFT-based fea-
ture descriptors are computed from 9 images transformed
with different angles equally spaced between 0 and π.

As in Gabor-based features, the 3 log-cumulants (µRα ,
σRα , γRα and µIα, σIα, γIα) are computed from the full re-
sponse of local patches in the FrFT domain for each trans-
form angle α ∈ {0, 0.125π, 0.25π, . . . , π}, and then, ap-
pended to form the feature descriptor of length 54 [8]:
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4 Experimental Image Database
The database used in this work is composed of 3 sets
of StripMap SLC SAR and InSAR images acquired by
TanDEM-X mission with 3 different effective baselines
(88.2m, 128.4m, 229.6m) over Toulouse, France. The
size of an image is 200 x 200 pixels corresponding to an
area of about 400m x 340m on ground. There are 400
images from 8 classes representing different scenes con-
sisting of natural and man-made structures. These classes
are exemplified by a sample image in Figure 1.

C1-Agricultural C2-Forest C3-Industry C4-Mixed veg.

C5-Riverside C6-Urban 1 C7-Urban 2 C8-Waterbody

Figure 1: Classes in the InSAR image database.

5 Experimental Results
The local patch sizes (AW ) used in this work are 10, 20
and 40. Then, the corresponding total numbers of local
patches per image are 400, 100 and 25, respectively.

The choice of the visual dictionary size (K) is important
for the performance of the method. If the dictionary size
is too small, the visual words do not represent all the local
patches. On the other hand, a too large dictionary will be
vulnerable to noises, yielding very similar local patches
to be assigned to different visual words. Also, the dictio-
nary size determines the final BoVW feature descriptor
length. Usually, the dictionary size varies from several
hundreds to thousands and tens of thousands [12]. How-
ever, in this work, since the database is relatively small,
smaller dictionary sizes are used (K = 20, 30, 40, 50).

For the supervised classification of images, k-nearest
neighbor (KNN) classifier is used with Euclidean dis-
tance and k = 1. The 4% of the images are used as
the training set. The classification experiment is repeated
100 times, each with a different set of training samples,
and the average accuracies are presented.
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Figure 2: Performance of global Gabor and global FrFT
features for SLC/SLC detected and InSAR data.

First, the global Gabor and FrFT features extracted from
the whole image are compared for SLC (or SLC detected,
in case of Gabor features) and InSAR images [7], [8].
The individual class accuracies are presented in Figure 2.
As it can be seen from this figure, the global Gabor fea-
tures are more successful for this database than the global
FrFT features. Also, for both features, the use of InSAR
improves the accuracies especially for C1 and C2.

Next, the BoVW model is implemented based on the low-
level Gabor features for different local patch sizes. It can
be seen in Figure 3(a) and Figure 3(b) that the BoVW
model degrades the accuracies for both SLC detected and
InSAR images compared to the global Gabor features.

(a)

(b)

Figure 3: Performance of global Gabor and BoVW-
Gabor features for (a) SLC detected and (b) InSAR data.

(a)

(b)

Figure 4: Performance of global FrFT and BoVW-FrFT
features for (a) SLC and (b) InSAR data.

On the other hand, the implementation of BoVW model
improves the performance for FrFT features for both SLC
SAR and InSAR images for almost all classes in the
database as shown in Figure 4(a) and Figure 4(b).

In order to make a comparison of BoVW-Gabor and
BoVW-FrFT features for InSAR images, BoVW model
is implemented for all local patch and dictionary sizes
mentioned above. Then, the best features of each group
are selected and plotted in Figure 5.

For the BoVW-FrFT, the overall best result is obtained
with AW = 20 and K = 30. The mean accuracy (MA)
for this feature is 81.79%. On the other hand, for the
BoVW-Gabor, it is hard to find an overall best feature for
all classes. For instance, it is observed that the BoVW-
Gabor with AW = 40 and K = 20 improves the classi-
fication performance of classes C1, C2 and C4 only, and
the accuracies drop for other classes. Nevertheless, the
BoVW-Gabor with AW = 20 and K = 50 can be cho-
sen as the overall best feature descriptor considering the
highest mean accuracy of 78.55% and relatively balanced
individual class accuracies.

As it can be seen in Figure 5, although the global Gabor
features give better classification results for InSAR im-
ages than the global FrFT features, the FrFT-based fea-
tures outperform the Gabor-based ones by the implemen-
tation of BoVW model on these low-level features.
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Figure 5: Performance of Gabor-based and FrFT-based
features with and without BoVW model for InSAR data.

Finally, for the BoVW-FrFT features from InSAR images
with AW = 20 and K = 20, the effect of baseline (BL)
is summarized in Table 1. The mean and individual class
accuracies show that BoVW is quite successful for almost
all classes. The overall improvement in mean accuracy
for all BLs is 10-11%. For small BL, the implementation
of BoVW model improves the accuracies almost equally
except for C5 and C8. For medium BL, the improvement
of natural classes (C1, C2, C4) is significant, while for
large BL, the biggest classification improvements are ob-
served for urban-like classes (C3, C6, C7). That is, the
spatial discriminability of BoVW model together with
the strong interferometric signature of urban structures
for large BL results in a good classification performance.

Table 1: Effect of baseline on classification accuracy
Class Small BL Medium BL Large BL
index FrFT BoVW- FrFT BoVW- FrFT BoVW-

FrFT FrFT FrFT

C1 77.54 85.41 73.82 81.81 73.22 79.36

C2 82.21 92.24 75.42 96.60 88.83 98.30

C3 68.47 81.77 75.61 83.07 72.02 90.45

C4 52.22 64.60 42.58 59.94 57.53 60.81

C5 70.52 70.28 64.16 65.90 62.17 65.76

C6 69.61 80.94 75.26 79.53 66.31 88.84

C7 79.42 89.88 87.39 91.55 83.42 90.58

C8 88.03 83.88 83.34 81.92 83.45 80.57

MA 73.78 81.26 72.54 80.04 73.57 81.82

6 Conclusions
In this work, the BoVW model, which is a well-known
image representation method, is adapted to SLC SAR and
InSAR images with Gabor and FrFT being the low-level
features. The classification results show that although the
global Gabor features are better than the global FrFT fea-
tures, by the implementation of BoVW model, FrFT out-
performs Gabor features. Moreover, the method is as-
sessed for 3 different baselines, and for each baseline, the
FrFT-based BoVW feature is found to improve the mean
accuracy by 10-11%. Also, the spatial discriminability

of BoVW model together with the strong interferometric
signature of urban structures for large baseline results in
good classification performance. In the light of the initial
results, this work will be extended to a larger database
and the low-level local features will be further improved.
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