Real-Time Processing of SAR Images
for Linear and Non-Linear Tracks

Russel Que, Octavio Ponce, Rolf Scheiber, Andreas Reigber
Microwave and Radar Institute
German Aerospace Center (DLR)
Wessling, Germany
Email: russel.que @dlr.de

Abstract—A distributed real-time processing framework is
used to implement a generic processor for linear and non-
linear tracks. The focus is on the implementation of direct back-
projection (DBP) and fast factorized back-projection (FFBP)
algorithms in the framework. The software is described in detail
on how it is tailored to achieve a real-time computation of a SAR
image using multiprocessors, multicore CPUs and GPUs. Results
are validated with airborne SAR data acquired by the DLR’s
F-SAR sensor.

I. INTRODUCTION

Airborne platforms have been used ever since the inception
of synthetic aperture radar (SAR). Although used mainly for
linear tracks, a number of applications has seen a growing
interest in non-linear tracks, particularly circular ones [1]-[4].
To process this new types of acquisition, the time-domain ap-
proach to SAR focusing has proven to be the most generic and
flexible to implement [5],[6]. Direct back-projection (DBP)
is seen as the most accurate algorithm but computationally
intensive, in that, each image point is mapped to a point
in the radar echo where the value is interpolated and added
back to the image. Fast factorized back-projection (FFBP)
is based on DBP, and it is able to reduce the number of
computations, by using a more convenient reference system
in polar coordinates while accomodating accurately azimuthal
and topographic variations [1],[7].

As the algorithms improved, computing devices are also
becoming more powerful. This in turn no longer limits
the processing to powerful servers or to hours on personal
workstations. As computing boards can be mounted on-board
the platform, the possibilities open up to a myriad of real-
time applications. There have been attempts to achieve real
time capability in the past[8]-[11]. Here we present a new
framework for on-board processing that takes inspiration from
the one developed previously [12] for our multispectral, polari-
metric and high-resolution airborne sensor F-SAR [13],[14]. It
takes advantage of a collection of multiprocessor or multiple
computers to implement a distributed computing architecture.
With such a framework available, we implemented a generic
processor using time domain approaches for airborne SAR
acquired with arbitrary tracks, i.e., linear and non-linear.

II. FRAMEWORK

1) Description: The computing framework [15] is a pro-
grammable streaming processor using its own script-like lan-

guage to assign or run function modules on different nodes.
After creation of modules, the ethernet interconnections be-
tween them are established, depending on the input/output
requirements of each. In turn, the modules which live in their
own thread run continuously, while ingesting input data from
the ethernet streams and then sending out the results to one
or multiple destination modules. Fig. 1 illustrates a workflow
example.

2) Workflow: Processing on the fly can be a daunting task,
especially when using distributed computing with very high
data rate, as it requires careful planning of resources like
network capacity, memory, hard disk, multi-core CPUs, GPUs
and others. The complexity of this problem can be solved
by parallelization. Division of the application can first be
made across different nodes, where each node accepts data
streams, performs a task or algorithm then passes the output to
another. The framework does not have a star-based topology
but is rather, fully-connected, thereby saving network traffic
by allowing the data to be passed directly to the next module
anywhere in the network.

The second level in which parallelization can be employed
is in dividing the task further by using multi-core / multi-
threading programming or by offloading the computational
task to a graphical processing unit (GPU). Fig. 2 illustrates
the workflow for the generic processor we have developed
for arbitrary tracks. In this example, two nodes are used in
case of single-channel SAR acquisitions. However, additional
nodes can be added when more channels are required. The first
node would be the control node where the operator manages
the radar and processing system. Therein lies the execution
of the workflow script that setups the processing modules in
Node A and the rest. It contains as well the graphical user
interface (GUI) to view and verify results from the modules.
Node A, in particular, has three modules running in it. But
since PrepareRadarParameters and PrepareNavigation are not
computationally intensive, the RangeCompression module is
also run in the same node. The TimeDomainFocusingAlgorithm
has Node B all to itself.

III. STREAMING ARCHITECTURE OF THE FOCUSING
ALGORITHM MODULE

This module is the one responsible for focusing the com-
pressed radar echoes into a SAR image. In order to have a

— Sample
=) Workflow
Y = Funcl(X, params) @ NodeC =~~~ | |
Z = Func2(Y, params) @ NodeB
V = Func3(Z, Y, params) @ NodeC

Bifrost Daemon @ Node B

z

Control
Data Stream

7777777777777777 i Master -
Application
X «{ Funcl Y

Bifrost Daemon @ Node C

Bifrost Daemon @ Node A

Fig. 1. Workflow setup. A workflow script describes the interconnection of
a master application to the function modules it spawns in remote nodes.

Ctrl Node

Node A
Prepare
Radar
Parameters
Node A Node A
Prepare Range
Workflow Navigation Compression
Script \\\\ /////
Node B //”h\‘\\ Node C
Y A i
Time-Domain Time-Domain
Focusing F ing
Algorithm Ch1 Algorithm Ch2
\ \
1 v
Framework Display Widgets

Fig. 2. Framework workflow of the generic processor for all types of tracks.

generic processor for all types of sensor tracks, be they linear,
circular or on any arbitrary track, the time-domain method
would be the most flexible approach for all those cases. In
particular, the DBP and FFBP algotrithms are implemented in
this processor.

The next crucial design step tackles the implementation
constraints and opportunities presented by the target machine
platform. Principally, the goal is how to design the most
efficient way to handle tens of gigabytes of streaming range
compressed data with only a standard memory, currently
16GB, and 1Gbps ethernet connection. Optimizing the transfer
of data should be prioritized, therefore, the ingestion of data
into data containers in memory is programmed to be non-
stop and independent of the kernel algorithm thread. When
the algorithm finished processing one data container, it simply
takes the next one from the queue without having to wait
or activate the TCP transfer. Since the memory is finite and
the algorithm itself needs a big chunk of free space, the total
memory size of the data containers in the queue is limited to
a few hundred megabytes.

Range Compressed
Stream

Navigation Stream Scene Tile Stream

tile

HH block Cme

deque ‘ HH

1500 1000 500.__ 5000 7_,,,_,5/' 2 1 0

= =

Synchronization Availability H
Dispatcher H
v H
< H
s e |
Complete Data E
Container c B A :
d :
H
block ~ ;" Algo Worker Thread H
/// Bank '

1500 1000 s00 7 ,

-
ya /
s 7

Image
Results

Computing
Device

Fig. 3. Streaming architecture and partitioning inside the focusing algorithm
module.

Aside from the range-compressed data, the navigation data
is also streaming in real time (see Fig. 3). Hence, in each
of the data containers, the navigation data is filtered and
synchronized with the SAR data. Upon alignment, the data
container is deemed complete and ready to be focused and
projected onto the scene. The scene however, as a geographic
coordinate grid, is also a streaming data from the navigation
module. It is automatically partitioned in a tiled arrangement
by computing if a particular tile is illuminated within the
ground footprint of the antenna. The idea of processing by
tiles is to avoid cluttering the memory with scenes that have
been already completely projected and scenes that are yet to
be relevant or ’seen’ by the current and active data containers.
Once a data container is fully projected onto all the relevant
scene tiles, it is discarded from the memory. Hence, at any
given time, the memory space is only occupied by active data
containers and active scene tiles, thereby reserving the rest of
the memory space to the algorithm thread.

As depicted in Fig. 3, the projection of the data container to
the scene tile is scheduled by a dispatcher that checks if there is
a worker thread available. The size of the worker bank can be
chosen to be the number of CPU cores or less if the algorithm
kernel is also already heavily parallelized/multi-threaded. To
take advantage of the powerful computing devices like a GPU
or Custom FPGA that can be attached to the machine node, the
worker thread has the possibility to offload the computation
to those. In the implementation of the framework, there is an
option to choose the computing device of the worker thread,
namely, CPU or GPU.

IV. TIME-DOMAIN FOCUSING ALGORITHMS

A. Direct Back-Projection

The direct back-projection is an exact method where a pixel
or position in space is traced to an index in a particular

range-compressed echo. The index is computed with respect to
the distance travelled from the transmit antenna, to the pixel
target and back to the receive antenna. It is however, not a
whole integer, and hence requires interpolation of the range-
compressed data. The values interpolated from each of the
azimuth range lines are then added coherently to produce a
focused image.

It is this pixel to range-compressed data mapping approach
that enables a highly resolved image-focusing regardless of
the track geometry. However, to obtain such a well-focused
SAR image, a simple linear interpolation will not suffice. It
can still be used, nonetheless, but only after performing a FFT
zero padding to first produce an up-sampled range-compressed
data. This approach is the one implemented in this paper for
the DBP, both in CPU and GPU. In some cases, like FFBP
in the next section, it is preferable and more efficient to avoid
the FFT zero padding and instead use a better interpolation
technique like sinc, cubic or others.

B. Fast Factorized Back-Projection

Overall, DBP, however exact and flexible it may be, is
still an extremely time-consuming approach. The FFBP was
introduced in [7] and it is used as a computationally efficient
solution to the DBP. It reduces the number of computations
significantly from a cubic M3 to a logarithmic M? xlogs (M)
behaviour, with respect to DBP. This is achieved by splitting
the synthetic aperture in smaller subapertures and also by
the resulting subaperture images in polar coordinates, which
reduce significantly the sampling requirements in the along-
track direction. Originally, this algorithm has been developed
for linear tracks, but a modified version for non-linear tracks
has been implemented in [1].

In order to tailor the FFBP for real time applications, the
original version has been modified [10]. Fig. 4 shows the
divide-and-conquer approach wherein the dataset is partitioned
into several angular apertures denoted by the ¢ progression, and
how those are combined with polar-to-polar interpolations over
several stages k to produce new subaperture images. In the
final stage, the resulting subaperture image is projected onto a
geocoded grid through polar-to-cartesian (P2C) interpolations.
As illustrated in Fig. 4, the processing flow is stopped when the
desired resolution is achieved at a given time and stage. One
additional advantage of the FFBP for real-time applications is
that the processing of the range compressed data can start at
the very beginning of the acquisition, i.e., without waiting for
big blocks of raw data to be preprocessed as seen in frequency-
based algorithms. The process of recomputing the dataset,
which involves angular realigning and interpolations, e.g., P2P
and P2C, over several stages, do require some computational
effort. But in total, it is far less time consuming than the
intensive effort needed when projecting range line by range
line as in DBP.

V. FIRST RESULTS

Shown on Fig. 5 is the result of a linear flight track
processed on a GPU using DBP. The three yellow slanted lines

t0 1 tO+1 ; tO+2 tO+3 tO+4 1 tO+5 ; t0+6 | t0+7
|PBP|§| PBP|§| PBP|§| PBP | |PBP|§| PBP|§|PBP || PBP |

k=1

k=2

k=3

Fig. 4. Fast factorized back-projection (FFBP) dependencies over time for the
real-time processor. Depending on the desired resolution, the processing chain
can be stopped at a given time to + ¢ and stage k. PBP indicates the polar
back-projection, while P2P and P2C refers to polar-to-polar interpolations and
polar-to-cartesian interpolation.

from right to left show the ground track of the near-range, main
beam track, and the far-range. In this figure the near-range is
selected to be the beginning of the echo, hence there are black
or invalid regions comprising some of the tiles. The far-range
is configured to be less than the length of the radar echo. Both
near and far-range are configurable, and in between those two
ground tracks will the scene tiles be automatically selected,
as evidently shown on the figure being ringed by blue lines.
Therefore, tiles that are activated essentially follow the course
of the sensor’s illuminated ground track be it curved, straight
or stays constant in case of circular path.

The presented example took about 6 mins to process a
2m x 2m grid resolution, 4°aperture and 4 looks using the
DBP algorithm on GPU to accelerate computation, which
otherwise, would take hours in a conventional CPU. With this
specific algorithm, cutting the grid resolution by a factor, on a
particular dimension, would cut as well the time by almost the
same factor. So by selecting 4m x 4m, in case of quicklook
mode, it would see the processing time reduced by a total
factor of 4, down to 1.5 to 2 mins. Moreover, by using a block-
FFT presumming, it can further reduce the focusing time by
a factor equivalent to the downsampling in azimuth.

An example of a curved/circular data take is shown in Fig.
6. The blue line represents the beam track on ground. As the
image shows, the tiles are correctly selected even for non-
linear tracks. Also, the adaptation of the algorithm works
correctly although the scene illumination is moving in an
arbitrary direction. The radiometric calibration is performed
for this case by computing the illumination history of the
ground together with the antenna beam profile and navigation
data.

VI. CONCLUSIONS AND FUTURE WORK

We have shown so far that the new framework can be used
to process close to real-time a linear track in spite of using a
very inefficient algorithm. Although the initial test algorithm
used is DBP, it was made to work fast enough due to the use of
GPU. The FFBP re-implementation in C++ and its integration
to the framework is still in preliminary stages. Once finished,

Fig. 5. Linear track; SAR image result tiles using DBP on GPU(Nvidia Tesla
C2070). Displayed on KDE Marble map widget with Openstreetmap. Grid
resolution 2 m x 2 m, 4 multilooks, 4°azimuthal aperture and no presumming.

It

Neserper)

N
crdN

Fig. 6. Curved or circular track; Grid resolution 1.5 m x 1.5 m, single look,
4°azimuthal aperture and no presumming.

we expect that the speedup gained from it to be considerable
making it truly real-time. Future work will also entail creating
post-processing modules for real-time applications involving
multiple channels like polarimetry, GMTI and interferometry.

REFERENCES

[1] Ponce, O., Prats, P., Pinheiro, M., Rodriguez-Cassola, M., Scheiber,
R., Reigber, A., Moreira, A., Fully-Polarimetric High-Resolution 3-D
Imaging with Circular SAR at L-Band, 1EEE Trans. Geosci. Remote
Sensing, Vol. 52, 2014.

[2] P-O. Froelind, A. Gustavsson, M. Lundberg, and L. M. H. Ulander,
Circular-aperture VHF-band synthetic aperture radar for detection of
vehicles in forest concealment”, IEEE Trans. Geosci. Remote Sens., vol.
50, no. 4, pp. 13291339, Apr. 2012.

[3] L. J. Moore and L. C. Potter, Three-dimensional resolution for circular
synthetic aperture radar”, Proc. Algorithms Synthetic Aperture Radar
Imagery XIV, vol. 6568, SPIE Defense Security, Apr. 2007, p. 656 804

[4] E. Collin and H. Cantalloube, Assessment of physical limitations of high
resolution on targets at X-band from circular SAR experiments, presented
at the EUSAR, Jun. 2008 pp. 14.

[5] M. Soumekh, Synthetic Aperture Radar Signal Processing:With MATLAB
Algorithms, Hoboken, NJ, USA: Wiley, 1999.

[6] M. Albuquerque, P. Prats, and R. Scheiber, “Applications of time-
domain back-projection sar processing in the airborne case”, in Synthetic
Aperture Radar (EUSAR), 2008 7th European Conference on, June 2008,
pp. 1-4

[7] Lars M.H. Ulander, Synthetic-Aperture Radar Processing Using Fast Fac-
torized Back-Projection, IEEE Transactions on Aerospace and Electronic
Systems , vol. 39 , no. 3, pp.760 -776 , 2003

[8] Cantalloube, HM.J., Real-time Airborne SAR Imaging. Motion com-
pensation and Autofocus issues, EUSAR Conference 2012, Munich,
Germany, 2012.

[9] Simon-Klar, C., Friebe, L., Kloos, H., Lieske, H., Hinrichs, W., Pirsch, P.,
A Multi DSP Board for Real Time SAR Processing using the HiPAR-DSP
16, 1IEEE,, 2002.

[10] Lidberg, C., Olin, J., Optimization of Fast Factorized Backprojection
execution performance, Chalmers University of Technology, Sweden,
2012.

[11] Hast, A., Johansson, L., Fast Factorized Back-Projection in an FPGA,
Halmstad University, Sweden, 2006.

[12] Andres, C.; Keil, T.; Herrmann, R.; Scheiber, R., A multiprocessing
framework for SAR image processing, Geoscience and Remote Sensing
Symposium, IGARSS 2007.

[13] Reigber, A., Scheiber, R., Jdager, M., Prats, P., Hajnsek, 1., Jagdhuber,
T., Papathanassiou, K., Nannini, M., Aguilera, E., Baumgartner, S.V.,
Horn, R., Nottensteiner, A., Moreira, A., Very-High-Resolution Airborne
Synthetic Aperture Radar Imaging: Signal Processing and Applications,
Proceedings of the IEEE, vol. 101, no. 3, pp.759-783, 2013

[14] Jdger, M., Pinheiro, M., Ponce, O., Reigber, A., Scheiber, R., A Survey
of Novel Airborne SAR Signal Processing Techniques and Applications
for DLR’s F-SAR Sensor, International Radar Symposium (ISSN: 0885-
8985), 2015

[15] Que, R., Ponce, O., Baumgartner, S.V., Scheiber, R., Multi-mode Real-
Time SAR On-Board Processing, 11th European Conference on Synthetic
Aperture Radar (EUSAR).

