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ABSTRACT

Thunderstorm-related normalized economic and insured losses in the United States east of the Rockies

from the period 1970–2009 (March–September) exhibit higher peaks and greater variability in the last two

decades than in the preceding two decades. To remove the bias from increasingly detected losses over time

due to newly built-up locations, only large events that incurred normalized losses of at least $250million (U.S.

dollars) economically ($150 million insured) were selected. These are multistate damage events that are

unlikely to have been missed at any time within the analysis period, thus providing for homogeneity of the

events covered. Those losses, if aggregated, account for the major proportion (;80%) of all thunderstorm-

related losses in the period 1970–2009. This study demonstrates that the pattern of variability in the time series

of these losses can be seen as a reflection (‘‘fingerprint’’) of the temporal variability in severe thunderstorm

forcing. The meteorological information on forcing is inferred from NCEP–NCAR reanalysis data. No final

attribution of the climatic variability identified in thunderstorm forcing and losses—either to natural climate

variability or to anthropogenic climate change—can be conclusively arrived at in this study because of the

chosen methodology. Nevertheless, the expected impacts of anthropogenic climate change on the forcing of

convective storms appear consistent with these findings.

1. Introduction

Thunderstorms and related hazards, such as torna-

does, hail, heavy precipitation, and gusts from down-

bursts, pose a threat to life and safety (Simmons and

Sutter 2008, 2011; Dotzek et al. 2009). These phe-

nomena often cause as much annual property loss in

the United States as hurricanes, or even more; for ex-

ample, the record year 2011 had some $47 billion in

economic losses [$26 billion (U.S. dollars) insured

losses] (Munich Re 2012a,b). Often they cause more

fatalities than hurricanes (Diffenbaugh et al. 2008).

Normalization removes the impact that changes in

wealth over time have on losses. To this end, past

losses are rescaled according to the relative changes in

destructible wealth between the year of the loss and

today. Since the 1970s, normalized direct economic

and insured losses from such events have increased

in the United States (Changnon 2001; Neumayer and

Barthel 2011; Barthel and Neumayer 2012). In the

particular case of hail, studies have found that losses

from strong hailstorms and reports of large hail have

increased in recent decades (Brooks and Dotzek 2008;

Changnon 2009). Correspondingly, the thunderstorm-

related risk level has changed over the past four

decades.

In the current study, we analyze the time series 1970–

2009 of thunderstorm-related normalized losses from

sizeable events exceeding a large loss threshold. The

area under focus is the contiguous United States east of

1098W, and the losses have been aggregated annually

over the period March–September (Fig. 1).
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In the annual time series of such losses as displayed in

Fig. 2, the short-term variability and also the mean level

of loss are observably enhanced in the latter half of the

period as compared to the earlier half (see Fig. 2 and the

supplemental material). The new concept presented here

is to compare this pattern of change to the time series of

severe thunderstorm forcing as inferred from reanalysis

data. This way, we address the question whether changes

in the hazard can be deemed responsible for changes in

normalized losses. An analogous approach was once

suggested for the problem of the National Oceanic and

Atmospheric Administration (NOAA)’s Storm Pre-

diction Center (SPC) F2-F5 tornado classifications that

suffer from overrating in the past (Verbout et al. 2006):

According to Diffenbaugh et al. (2008), a comparison of

SPC’s tornado data with the information on large-scale

severe thunderstorm forcing as derived from reanalysis

data would shed more light on the problem. For the loss

data, we followDiffenbaugh’s recommended comparison

to reanalysis data as another ‘‘report proxy.’’

The paper has the following outline: the data, related

concepts, and thresholds will be introduced and ex-

plained before the setup of the analysis method onwhich

it is focused. The final three sections will present and

discuss the new results of this study, draw conclusions,

and present a short outlook.

2. Loss data and concepts

In this study, Munich Re’s natural-catastrophe loss

database NatCatSERVICE is used. It registers loss

events associated with significant damage to persons and

property. It is of high quality and comprehensiveness

(Kron et al. 2012; Neumayer and Barthel 2011). As in-

sured thunderstorm-related losses are not reported

specifically for the individual hazards that constituted

the event (hail, tornado, etc.), the best available loss

measure aggregates across all perils of an individual

severe storm. The same holds for the direct economic

loss estimation (Kron et al. 2012). Thus, the inves-

tigation starts from the event loss as such, including the

FIG. 1. Positions of thunderstorm-related damage events (indicating main focus of loss) with

normalized direct economic loss exceeding $250million (273 events; normalization based on building

stock as a wealth proxy). Size of the blue-filled circles indicates the size of loss as classified by the

legend. Yellow-to-red shading indicates population density [LandScan (2009) population dataset].

FIG. 2. Time series of annual direct economic (bold) and insured

(dashed) thunderstorm-related U.S. losses 1970–2009 (season

March–September) from the region east of 1098W. Economic (in-

sured) losses exceeding $250 million ($150 million) per event are

annually aggregated and normalized to 2008 levels of wealth.

Normalization was based on (a) GDP and (b) building stock as

a proxy of destructible wealth. See section 2 for further details.
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damaging impacts of hail, heavy precipitation and re-

sulting flash flooding, lightning, strong winds, and tor-

nadoes in unknown proportions. This fits best the

equally holistic measure of severe thunderstorm forcing

that is used on the meteorological side (see section 3).

Recent studies utilized another source of thunderstorm-

related loss data. They started from estimates of direct

economic property losses from tornadoes reported

in NOAA’s SPC archive (Simmons and Sutter 2011;

Simmons et al. 2011). However, this data source cannot

be recommended at all for several reasons. The most

important one is the massive underestimation of direct

economic losses aggregated for tornadoes, hail, and wind

since 1996. It amounts to less than half of the documented

insured losses. This constitutes fundamental error, since

economic losses have to be substantially greater than

the insured portion of losses (see the appendix for more

details).

Normalizing past economic thunderstorm-related

losses to the current level of destructible wealth is con-

ventionally achieved by multiplying the original loss

with the relative change in real wealth per capita (PC),

population, and inflation in the affected region (Pielke

et al. 2008):

lossnormalized5 losspast

 
wealth PCtoday

wealth PCpast

! 
deflatortoday

deflatorpast

!

3

 
populationtoday

populationpast

!
.

Within this scheme, the product of the terms (real)

wealth PC, deflator, and population accounts for de-

structible nominal wealth today (numerators) and in

a past year (denominators), respectively. As no direct

measure for wealth is available, two different proxies

for nominal wealth were used instead of the above-

mentioned product: the nominal building stock (BS,

defined by the number of housing units within an ad-

ministrative region multiplied by the region’s median

home value), and the nominal gross domestic product

(GDP) (Pielke et al. 2008; Barthel and Neumayer

2012). The data source for these quantities—that is,

nominalGDP andBS—was theU.S. Bureau of Economic

Analysis (http://www.bea.gov). A discussion on the use of

GDP as a possible proxy for wealth within loss normali-

zation approaches can be found inNeumayer and Barthel

(2011) and Barthel and Neumayer (2012). The GDP per

region was calculated from the countrywide nominal

GDP per capita multiplied by the number of residents

per affected region, that is, the state in this study. In

terms of the BS, both the number of housing units and

the median housing-unit value were available at the state

level. As we use nominal values, the effect of inflation is

already included in those figures and does not need to be

accounted for by an additional term. As we additionally

considered insured losses, we had to include another

multiplicative factor in the normalization equation that

describes the ratio of today’s insurance penetration to that

of a past year (Barthel and Neumayer 2012). Insurance

penetration is defined as the ratio of annual property

premiums to the GDP (e.g., Cummins and Mahul 2009).

According to the current study, the normalization results

of the BS approach are not that different from the results

using GDP, as can be inferred from Fig. 2. To avoid

confusion, in the following the results are shown for BS-

based normalization, if not otherwise specified.

Although the impact of changes in destructible wealth

on loss has approximately been removed by normali-

zation, there might still be biases arising from exposure

change over time: (i) urban sprawl—that is, an ever in-

creasing area covered by destructible wealth—would

contribute to a positive trend in loss event frequency

from rather small convective events, if all other factors

were kept constant; and (ii) normalized losses from the

whole domain could increase over time solely because of

urban development in regions with higher hazard ac-

tivity in the south, that has gained by migration from the

north. This understanding led Changnon (2001) to the

conclusion that the observed increase in normalized

insured U.S. thunderstorm losses, event frequencies,

and spatial event sizes since the 1970s was not only due

to a fluctuation in meteorological conditions but also to

demographic shifts to the southern parts of the country

since 1950.

These biases can be made negligible by focusing on

large loss events indicative of severe weather with

multistate impacts. Those large events hit destructible

wealth already at the beginning of the analysis period,

that is, in the early 1970s. Thus, theymost likely have not

beenmissed.We chose normalized economic losses of at

least $250 million—those loss events, termed loss250,econ
in the following, covered not only many counties but

also several states. On average, such loss events be-

longing in a size bin from $250million to an upper bound

of (less than) $300 million affected 6.2 states in the first

decade of our analysis period (12 events), and 4.5 states

in the last (15 events). With this high threshold and the

associated extent of damage, homogeneity of the time

series can be approximately achieved, that is, it is highly

unlikely that such events have beenmissed at any time in

the analysis period and in any region within the domain.

Hence, the biases in event frequencies and from possible

population shifts to regions of higher hazard activity are

removed. The threshold of $250 million selects 80% of
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total thunderstorm-related economic losses east of the

Rocky Mountains in the period 1970–2009 (March–

September), that is, the major proportion.

Regarding the insured proportion of thunderstorm-

related losses, we used a threshold of $150million, which

corresponds to the fact that, on average, insured losses

are smaller by a factor of approximately 0.6 than the

associated economic losses in excess of $250 million.

Events with insured losses in excess of $150 million ac-

count for 81% of the total and are termed loss150,ins in

the following.

In sum, the selection criteria for losses comprise the

following: thunderstorm-related normalized direct eco-

nomic (insured) losses exceeding $250 million ($150

million) per event from the period 1970–2009 (March–

September) and from the contiguous United States

east of 1098W; 273 economic loss events were identified

in the database (BS-based normalization) which fulfill

the predetermined criteria (see Fig. 1).

3. Meteorological data and concepts

Individual thunderstorms occur on spatial scales of

tens of kilometers and time scales of several hours. The

development of cumulus clouds into severe convective

storms is strongly influenced by the larger-scale ‘‘envi-

ronmental’’ distributions of temperature, moisture, and

wind (Trapp et al. 2007). Today, convection parameters

derived from these atmospheric fields are often used to

investigate long-term trends in convection over past

decades (Doswell 1987; Houze 1993; Brooks et al. 2003;

Kunz 2007; Kunz et al. 2009). To this end, the re-

analysis project run by the NOAA National Centers

for Environmental Prediction (NCEP) and the Na-

tional Center for Atmospheric Research (NCAR) is

utilized in this study (Kalnay et al. 1996). The data-

set is not completely homogenous over time, because of

changes in the observing system during the reanalysis

period (1948 up to the present). This was caused by the

use of satellite data from the 1970s onward, increasing

numbers of observations from aircraft, ocean buoys

and other surface platforms, and a changing number of

soundings since the late 1980s. Reanalysis data are

a merger of model forecasts and observational data,

wherein spatial homogeneity is achieved by interpolating

results from observation-rich to observation-poor areas

on the basis of model equations. The data are available

worldwide (1923 94 grid points) with a spatial resolution

of 1.8758 in longitude and 1.9158 in latitude, correspond-

ing to a box of approximately 208km 3 174km at 358N.

The temporal resolution is 6h. As the area of investigation

is the United States east of the Rockies, the NCEP–

NCAR reanalysis data are used for the domain de-

picted in Fig. 3a.

The three most important factors for the development

of convection are atmospheric instability, high moisture

content at low levels of the atmosphere, and a trigger

mechanism that lifts an idealized parcel of air to a level

where the surrounding environment is colder and

denser. Hence, the parcel continues to rise. High mois-

ture is a source of latent heat, which can be transformed

into kinetic energy, and therefore helps the air to rise

(Emanuel 1994). One measurement that is preferen-

tially used in analyzing the condition of preconvective

environments is the convective available potential en-

ergy (CAPE; Moncrieff and Miller 1976; see Kunz 2007

for an overview). The great advantage of CAPE com-

pared to other convective measurements, such as the

widely used lifted index, is that CAPE is an integrated

measurement and does not reflect the gradient of a pa-

rameter on two predefined layers. As deep convection

materialized in long-lived thunderstorm cells needs fa-

vorable conditions within a layer with a depth of at least

500m or 100 hPa, the so-called mixed-layer CAPE

(CAPEml) was developed. This parameter is calculated

by assuming an air parcel characterized by mean values

FIG. 3. (a)Domain of the analysis, indicated by theNCEP–NCAR reanalysis grid points (red) belonging to theU.S.

mainland east of the Rocky Mountains (i.e., east of longitude 1098W). (b) Geographic position of the main focus of

loss of an exemplary severe thunderstorm event (black cross). For analysis, it is allocated to its nearest-neighbor grid

point (black dot). Green dots represent a 49 gridpoint neighborhood of a loss event.
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of temperature and moisture in a layer of 100 hPa above

ground (Brooks et al. 2003; Craven et al. 2002). Favor-

able conditions within this layer likely translate into

severe thunderstorms, provided that convection is initi-

ated. The variable CAPEml therefore measures the con-

ditional thermodynamic stability of the troposphere

based on a small vertical displacement of an idealized air

parcel. If the parcel contains certain levels of CAPEml—

that is, potential energy—the resulting maximal vertical

velocity can be derived by

wmax5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23CAPEml

q
,

where wmax is in meters per second and describes the

maximum vertical velocity within the updraft if all

CAPEml—that is, all potential energy—is completely

transformed into kinetic energy (for more details, see

Emanuel 1994; Dahl 2010).

For the organization of severe thunderstorms, the

vertical deep-layer wind shear (DLS) is also important

(Weisman and Klemp 1984; Klemp 1987)—in addition

to CAPEml. Here, DLS is defined as the absolute value

of the shear vector between the horizontal wind vectors

at ground level and 6 km above ground level (Brooks

et al. 2003). High values of DLS lead to a spatial sepa-

ration of updrafts and downdrafts within a thunderstorm

cell. This is the precondition for long-lived and strong

convective systems, as the separation guarantees the

continuing inflow of warm and moist air, providing the

necessary energy. It has been shown that the combina-

tion of the parameters CAPEml and DLS serves as an

adequate discriminator in analyzing the potential for

strong convective phenomena (Brooks et al. 2003, 2007;

Trapp et al. 2007, 2009; Sander et al. 2008; Sander and

Dotzek 2010).

Sander (2011) introduced the thunderstorm severity

potential (TSP) by combining the two parameters wmax

andDLS. TSP is in joules per kilogram, and is a measure

that combines thermodynamic and dynamic conditions

of the atmosphere:

TSP5wmax3DLS.

It is important to realize that TSP signifies the pre-

convective conditions, which need to be favorable for the

development of deep convection. Trigger mechanisms

such as lifting effects due to topography, fronts, or

convergence are crucial for initiating convection but are

not taken into consideration in this study. TSP can be

seen as an essential thunderstorm forcing variable.

The current study defines severe thunderstorm forcing

situations by the exceedance of a predefined high TSP

threshold per grid point. This was set at 3000 J kg21,

roughly corresponding to the 99.99th percentile of the

six-hourly data from all over the domain. Such an ex-

ceedance is termed TSP3000 in the following. As can be

inferred from a study on reanalysis-based CAPEml and

DLS ranges that have forced significant severe weather

in the past, the TSP range characterized by forcing of

significant severe weather starts from values of ap-

proximately 600 J kg21 (Fig. 1 in Brooks et al. 2003).

Thus, TSP3000 represents a very strong forcing situation.

4. Model setup

As this study investigates the possible role of the

temporally varying meteorological ‘‘observable’’ TSP as

an ‘‘implicit’’ driver of the impact time series of nor-

malized losses, a method setup with three successive

steps was chosen:

1) First, TSP observations are selected according to the

date of the loss event, and within a neighborhood

defined by a rectangle of 73 7 grid points centered in

the nearest-neighbor grid point to the loss event

location as displayed in Fig. 3b. In this case, a corre-

lation between the two time series is enabled by

a close correspondence in time and space. This is

called a forced correlation.

2) In the next step, TSP observations are selected

according to the date of the loss event but without

any spatial constraint. This allows for a correlation

with the losses that might happen because of corre-

spondence in time, which we call a semiforced cor-

relation because of the lack of any spatial constraint.

3) Finally, the two time series are correlated without

applying any additional selection criteria to TSP

observations (neither in space nor time, except that

both have to have occurred within the same March–

September season). We call this procedure an un-

forced correlation.

The argument involved in these three steps is the fol-

lowing: given that we find a substantial unforced corre-

lation between high TSP values and losses on an annual

basis (step 3), a comparison with the results of step 1 and

step 2 can reveal whether this correlation should be seen

as based on a physical causative relation of high TSP

values to high losses as expected for these steps.

Regarding these three steps, we applied the following

settings: (i) every thunderstorm-related loss event comes

along with latitude and longitude coordinates. This lo-

cation was specified by the main focus or spatial center of

damage that occurred during the event. (ii) Investigating

only TSP valueswithin a neighborhood of 73 7 grid points

(step 1) spans a box of about 1900 km on the diagonal.
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This appeared to be an adequate spatial representation

for the 6-h time resolution of the reanalysis data, since

the fastest thunderstorms cannot travel across the box

within six hours. If a smaller environment were chosen,

then some large TSP events could be missed. (iii) The

period of outbreak and damage for events of loss250,econ
regularly spans several consecutive days, with an aver-

age of four days. As TSP has to be high already before

the thunderstorm hazard materializes, we included the

previous day in addition to the event period.

Two ways of investigating the exceedances of

a threshold have been specified:

1) Every TSP value exceeding the threshold can be

counted as one exceedance. As the temporal resolu-

tion of the reanalysis is 6 h, there is a theoretical

potential of four exceedances per day for any given

grid point. Hence, during a loss event period, the

maximum theoretical number of possible TSP

threshold exceedances equals 4 3 [number of grid

points within neighborhood (49)] 3 [number of

event period days plus preceding day]. This approach

accounts for frequency only.

2) In a second approach, all TSP values exceeding the

threshold are summed up. In this case, information

about the intensity of the thunderstorm forcing is

retained, which may also have materialized in the

events and associated losses.

Previous experience suggests to use both (i) the fre-

quency and (ii) the intensity-related approaches (for

TSP and for loss) to benefit from a comparison of

both.

5. Results and discussion

a. Distribution properties

For a better understanding of the correlation prop-

erties between TSP3000 and loss250,econ, a closer look at

the distribution properties of the variables wmax, DLS,

TSP, and economic loss will be of help. Figures 4a and 4b

show the probability density functions (pdfs) of 6-hourly

values of wmax and DLS, derived from histograms of the

NCEP–NCAR data over the period 1970–2009 for all

grid points shown in Fig. 3a. The two curves demonstrate

FIG. 4. Pdfs of four datasets considered in the analysis, collected from the domain (see Fig. 3a) over the period

1970–2009 (March–September). (a) Six-hourly values of wmax 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23CAPEml

p
(m s21) from NCEP–NCAR re-

analysis data. Red line indicates a power-law fit with exponent520.485. (b) Six-hourly values of DLS (m s21) from

NCEP–NCAR reanalysis data. (c) Six-hourly values of TSP (J kg21), based on the product of 6-hourly wmax and

6-hourly DLS at each grid point. Dashed line shows the threshold value of 3000 J kg21 used in the current study; red

line indicates an exponential (Poissonian) fit with exponent520.002 77. (d) Normalized economic loss data (US$, in

millions) from the NatCatSERVICE database exceeding $50 million. Dashed line indicates the threshold of $250

million used in the current study; red line indicates a stretched exponential fit with exponent 5 0.284.
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an important difference.While the pdf ofwmax appears fat

tailed because of its power-law shape (displayed as

a straight-line fit in the double-logarithmic plot) with an

exponent 20.485, the pdf of DLS (in semilogarithmic

scales) falls off quickly at large values. A cross-correlation

analysis of both data yields R 5 20.32, indicating rather

weakly anticorrelated behavior between wmax and DLS,

which suppresses the production of very extremeTSP.As

a consequence, the pdf for 6-hourly TSP values (in par-

ticular for large values) shown in Fig. 4c cannot be in-

terpreted as the exact convolution of the pdfs from

Figs. 4a and 4b.However, it is clearly of exponential type,

indicated by the straight line in the semilogarithmic plot,

hence showing pronounced short-tail behavior, imply-

ing only little variability among extreme TSP values. This

together with a clear upper limit at about 4000 J kg21

indicates a very narrow variation of subsamples of large

TSP events, for example, TSP above a large quantile

threshold. This feature will be of substantial importance

in the following.

Figure 4d shows the pdf of the normalized loss data for

events caused by convective storms with economic

damages of at least $50 million (the threshold of $250

million used here is marked off by the dashed vertical

line). The shape of the pdf clearly indicates a stretched

exponential distribution (red fit) and therefore has fat-

tail characteristics, that is, there is a large variability

among extreme losses. However, it must be noted that

while the pdf of TSP is based on about 6.7million values,

the pdf of loss is based on roughly 600 values. Because of

the short-tail characteristics of the atmospheric param-

eter TSP—in contrast to the fat-tailed loss distribution—

the TSP parameter does not exhibit any tendency to-

ward extraordinary outliers.

b. Annual time series of thunderstorm severity
potential and loss

As a first step of the time series analyses, Fig. 5 dis-

plays the curves for absolute numbers of TSP3000 per

method step, that is, for forced, semiforced, and un-

forced correlations. The coarse pattern of an increase in

annual variability in the second half-period 1990–2009 as

compared to the first half-period 1970–89 is preserved

from forced to semiforced and unforced correlation.

Correspondingly, for each time series the standard de-

viation is lower for the first half-period than for the

second (8.5, 11, and 18.2, as against 14.9, 23.1, and 28.1).

Additionally, most peaks and relative minima are at

identical temporal positions. These findings are impor-

tant: the coarse pattern is robust against the successive

removal of spatial and temporal coherence constraints

between losses and TSP. The similarity between the

coarse patterns of the curves can be explained by the

observation that disastrous loss250,econ events are asso-

ciated with many severe thunderstorms, covering a large

multistate region. As a precondition of these widespread

thunderstorms, at times spanning multiday event pe-

riods, high TSP values prevail and can extend beyond

the neighborhood of the event’s coordinates, as defined

in Fig. 3b. Consequentially, in the semiforced case

TSP3000 tends to display higher numbers than in the

forced case, where the neighborhood constraint limits

the region from which exceedances can be counted.

Even higher TSP3000 numbers tend to accumulate in the

unforced case, where the constraints of both spatial and

temporal coincidence with loss250,econ events were re-

moved from TSP3000. In this case, also days from beyond

the loss event periods can contribute. The fewer the

FIG. 5. Number of TSP3000 exceedances per March–September season in the period 1970–

2009, based on 6-hourly NCEP–NCAR data. Black curve: ‘‘forced’’ relationship of TSP3000 to

losses, i.e., exceedances coincide with loss event periods and fall within a 7 3 7 gridpoint

neighborhood enclosing the loss event locations (see Fig. 3b). Red curve: ‘‘semiforced’’ re-

lationship, i.e., exceedances occur all over the domain but must fall within loss event periods.

Orange curve: constraints removed, i.e., exceedances from all over the domain (Fig. 3a) and the

period March–September.
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constraints in space and time, the higher the numbers of

TSP3000 tend to be while still preserving the coarse

pattern of increasing variability over time.

Next, analyses of the correlation between the mete-

orological time series of TSP3000 and the impact time

series of losses are presented. As these will follow the

three successive method steps from forced to unforced,

the first type of correlation is due to a close correspon-

dence in time and space between loss250,econ and TSP3000

(step 1).

Figure 6a shows the number of threshold exceedances

per year, standardized by subtracting from each in-

dividual value the overall mean number of annual ex-

ceedances and dividing the result by the overall standard

deviation. Standardization—that is, the y axis is scaled in

units of standard deviation of the mean-centered dis-

tributions involved in the diagram—was chosen for the

sake of comparability of time series of different vari-

ables. Annual TSP3000 numbers are indicated by the

orange curve and annual numbers of loss250,econ events

by the green curve. Figure 6b displays the standardized

annually aggregated TSP3000 values (orange) and the

annually aggregated loss250,econ values (green). The

above-described type of standardization was chosen

since both the annual aggregates and the annual num-

bers of exceedances represent sums, transforming the

very asymmetric pdfs of TSP and loss (see Fig. 4) into

a more symmetric, almost Gaussian-like distribution

because of the central limit theorem. However, the

central limit theorem characteristics do not apply for

years with no or little activity, both in terms of TSP and

loss, leaving the charts in Fig. 6 still somewhat asym-

metric because of the lower bounds (TSP3000 represents

a larger quantile than loss250,econ, hence producing more

zero values that equal approximately 20.8 at the stan-

dardized scale).

There is a correlation between TSP and loss in both

graphs that is stronger in the latter half of the time pe-

riod under consideration (1970–2009) (see Table 1).

Anomalies such as in the year 1983, where TSP and loss

appear anticorrelated, reflect the level of uncertainty (or

noise) remaining in the standardized datasets. Although

the characteristics of TSP and loss appear similar in

parts of the time series, there are some years where

a closer look at Figs. 6a and 6b could lead to confusion.

Starting with the year 1974, the standardized numbers in

Fig. 6a seem to show consistency between loss250,econ
and TSP3000. Although there was no single TSP3000 ex-

ceedance during any loss event period and associated

73 7 gridpoint neighborhood in this year, we count five

major losses in 1974 (Table 2)—implying they were not

associated with our definition of severe thunderstorm

forcing. Alternatively, this ‘‘discrepancy’’ might reflect

issues of the spatial/temporal resolution of the reanalysis

FIG. 6. (a) Standardized annual numbers of loss250,econ events (green curve) and of TSP3000

exceedances (orange curve) in the period 1970–2009. TSP3000 is constrained by concurrence

with loss event periods and by occurrence within a 73 7 gridpoint neighborhood of loss event

locations (according to Fig. 3b). This represents a forced relationship of TSP3000 occurrences to

loss250,econ events. (b) As in (a), but with standardized aggregated values instead of numbers.

Table 1 provides correlation coefficients for (a) and (b).
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data. But in the same year, the accumulated values of

loss250,econ and TSP3000 present a great divergence in Fig.

6b. This is caused by an extreme loss of one single event

that amounts to more than $8 billion (BS-based nor-

malization). If only a few events occurred, but one was

associated with an extraordinary loss, then this situation

could result in a good correlation in numbers but

a rather bad one in aggregated values. In 2003, the

number of grid points that exceeded the given thresh-

olds did not adequately mirror the activity in terms of

the annual count of severe loss events (see Fig. 6a).

However, the aggregated values in Fig. 6b appear very

consistent. In this case, only six loss events occurred (see

Table 2), but most of them were associated with very

high damage. A clear signal and great conformity is

achieved in 1995 and 1998. These were active years with

above-average occurrences (11 and 16 events). The dif-

ference in the statistical behavior between loss and TSP

is foremost grounded in the fact that single losses can

reach enormous amounts because of fat-tail character-

istics (as shown above), and can occur in relatively small

frequencies per year. Thus, they account for consider-

able variability in annual aggregated values. Conversely,

the tail of the TSP distribution falls off quickly and ac-

counts for a limited distribution compared to the losses

(see above). Even annual aggregation cannot smooth

out this fundamental difference. Of course, a strong

contributor to the virtually unlimited characteristic of

the loss distribution is the fortuitousness in the quantity

of destructible wealth situated along the pathway of

individual thunderstorm cells.

In the following step, the spatially forced relationship

is removed (step 2). The two time series are correlated

merely under the constraint that TSP3000 registrations

fall within the loss250,econ event period, but without any

spatial constraint (semiforced relationship). The results

of the correlations (not graphically shown) using the

same standardized variables as in Fig. 6 are similar but

slightly better than in the forced case; see the correlation

coefficients in Table 1. This is plausible, as the time se-

ries of annual TSP3000 numbers exhibit roughly similar

patterns in both cases, with a tendency to reach higher

exceedance numbers in the semiforced case (see above;

Fig. 5).

In the final step, we not only neglect the predefined

spatial coherence but also the temporal coincidence as

prescribed by the event periods (step 3 according to

section 4). We take into account every TSP3000 occur-

rence anywhere in the domain of investigation (sche-

matized in Fig. 3a) during theMarch–September season.

Results for this unforced case are shown for loss250,econ
and TSP3000 in Figs. 7a and 7b, using standardized var-

iables. The correlations between loss250,econ and TSP3000

(numbers and aggregated values) are again kept in the

same ranges as in the foregoing method steps (Table 1).

As the correlations within these method steps should be

viewed as based on a physical causative relation, the

conclusion is that this causative relation is still suffi-

ciently captured by the unforced case. Hence, it is

physically sound to use numbers and values of TSP3000

collected from the whole domain and the whole season

for the correlation to the seasonal loss parameters.

TABLE 1. Pearson coefficientsR of correlation between TSP3000 and loss250,econ (loss150,ins). Rows: coefficients and p values (in brackets)

are displayed for steps 1 (forced), 2 (semiforced), and 3 (unforced). Coefficients differ according to the wealth proxy used for loss

normalization (GDP or BS based). Columns: for each of the indicated (sub) periods—i.e., 1970–89, 1990–2009, and 1970–2009—

coefficients and p values are given for annual numbers (num.) and aggregated values (aggr.).

Correlation analysis:

Loss and TSP3000

1970–89 1990–2009 1970–2009

num. aggr. num. aggr. num. aggr.

Step 1 (economic) GDP R 5 0.23 (p 5 0.33) 0.01 (0.97) 0.34 (0.148) 0.62 (0.004) 0.38 (0.016) 0.49 (0.001)

BS 0.28 (0.23) 0.02 (0.92) 0.38 (0.096) 0.63 (0.003) 0.43 (0.006) 0.5 (0.001)

Step 2 (economic) GDP 0.37 (0.11) 20.02 (0.95) 0.47 (0.037) 0.68 (0.001) 0.5 (0.001) 0.54 (0.000)

BS 0.33 (0.16) 20.04 (0.86) 0.45 (0.049) 0.64 (0.002) 0.49 (0.001) 0.51 (0.001)

Step 3 (economic) GDP 0.22 (0.57) 20.13 (0.35) 0.47 (0.036) 0.67 (0.001) 0.46 (0.003) 0.49 (0.001)

BS 0.17 (0.47) 20.15 (0.53) 0.43 (0.058) 0.64 (0.002) 0.44 (0.004) 0.47 (0.002)

Step 3 (insured) GDP 0.15 (0.52) 20.12 (0.60) 0.45 (0.046) 0.57 (0.009) 0.44 (0.005) 0.45 (0.003)

BS 0.07 (0.77) 20.16 (0.50) 0.42 (0.063) 0.53 (0.017) 0.41 (0.009) 0.43 (0.006)

TABLE 2. Example years and associated number of events in

three classes of BS-based normalized direct economic losses. In the

highest class, losses are given in brackets. The most active year

(1998) did not produce very extreme single events.

Selected

years

Number of events

$250 million–$1

billion

$1 billion–$4

billion

More than

$4 billion

1974 4 0 1 ($8.1 billion)

1992 5 5 0

1995 9 1 1 ($5.1 billion)

1998 14 2 0

2001 4 0 1 ($4.4 billion)

2003 2 3 1 ($5.1 billion)
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A one-to-one correlation between the annually aggre-

gated TSP3000 values and loss250,econ values (Fig. 7b) can-

not be expected, however. This is caused by the absence of

loss250,econ values of a typical size. Instead, we have a fat-

tail characteristic of the distribution that translates into

a wide loss range—from $250 million to more than $8

billion, that is, over more than 1.5 orders of magnitude.

Hence, the occurrence of a very large loss in a year with

very few loss andTSP events can destroy the correlation of

annually aggregated losses andTSP values in this spot, as is

FIG. 7. (a),(b)As in Figs. 6a,b, but temporal and spatial constraints are removed fromTSP3000

(i.e., neither concurrence with loss event periods nor spatial overlap with 7 3 7 gridpoint

neighborhoods of loss locations are prescribed). This constitutes an ‘‘unforced’’ relationship of

TSP3000 occurrences to loss250,econ events, i.e., TSP3000 exceedances occur all over the analysis

domain (see Fig. 3a) and at any time within the March–September season. Normalization

of losses250,econ based on BS (GDP) as a wealth proxy is indicated by the green (blue) curve.

(c),(d) As in (a) and (b), but for insured losses (loss150,ins). Again, two wealth proxies are used

for normalization of losses150,ins: BS (green curve) and GDP (blue curve). Table 1 gives

correlation coefficients for (a)–(d).
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the case mainly within the first two decades of the analysis

period (see also Table 1). The lack of stability of sums on

the loss side is somewhat compensated for in the annual

number statistics (Fig. 7a): here, a tendency toward better

correlations can be found in the earlier decades (besides

year 1983), because event numbers are more stable in this

regime of small annual counts than aggregated values of

parameters from fat-tailed distributions (Table 1).

In the last two decades 1990–2009 of the analysis pe-

riod, the increased frequency of loss events also improves

the aggregated losses compared to the two decades 1970–

89, translating into a much better correlation coefficient

for annually aggregated values of TSP3000 and loss250,econ
(Table 1). It is also improved over the first two decades

for the annual numbers (Table 1).

The correlations between time series of insured

loss150,ins and TSP3000 (standardized numbers and ag-

gregated values) are presented in Figs 7c and 7d. As has

to be expected, these correlations are very similar to the

results found for loss250,econ (see also Table 1).

In general terms, Fig. 7 again captures the clear in-

crease in variability and peak maxima from the first half

period (1970–89) to the second half period (1990–2009)

for both TSP3000 and loss250,econ (numbers and aggre-

gated values). Taking the standard deviation as ameasure

of variability, this is demonstrated in Table 3 (see also

the supplemental material). Hence, the meteorological

pattern of change found in the annual time series of severe

thunderstorm forcing situations (TSP3000) is reflected also

in the annual time series of losses (loss250,econ, loss150,ins).

c. Correlations of longer-term temporal patterns

The correlations measured at annual resolution are

affected by noise because of various factors already

discussed in statistical terms. In physical terms, such

noise can be caused, for instance, by the randomness of

destructible wealth exposed to a severe storm’s track or

missing trigger mechanisms needed to transform high

forcing into severe weather and loss. However, the noise

can be reduced by averaging over multiyear time in-

tervals: the close relationship and similarity between the

longer-term temporal patterns of loss250,econ and TSP3000

(standardized numbers and aggregated values) is obvi-

ous from plots of 7-yr running means in Figs. 8b.

TABLE 3. Standard deviations of standardized annual numbers

and aggregated values of loss250,econ and TSP3000, as displayed in

Figs. 7a and 7b. Referenced periods are indicated by the main

columns. Normalization on the basis of BS data is solely accounted

for (corresponding to green curves in Figs. 7a,b). For additional

metrics, see the supplemental material.

Standard

deviations

1970–89 1990–2009 1970–2009

num. aggr. num. aggr. num. aggr.

Loss (BS) std 5 0.633 0.709 0.928 0.964 1 1

TSP3000 0.746 0.741 1.153 1.154 1 1

FIG. 8. (a) Running 7-yr means of standardized numbers of loss250,econ events and TSP3000

exceedances (orange curve) per March–September season and whole domain (unforced re-

lationship). Losses250,econ normalized on the basis of BS (GDP) are indicated by the green

(blue) curve. (b) As in (a), but with standardized aggregated loss250,econ values and standard-

ized aggregated TSP3000 values.
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By means of normalization and a high loss threshold

per event, the imprint of increasing destructible wealth

on the time series of losses has been made negligible. As

the probability of loss (i.e., risk) is a function of the ex-

posed wealth, its vulnerability, and the hazard (Allen

et al. 2012), temporally changing properties of hazard

and vulnerability are left as drivers of change. Based on

the fingerprint-like similarity between the longer-term

patterns of variability in Figs. 8a and 8b, we conclude

that among the remaining drivers of change, it is pre-

dominantly the longer-term temporal variability of the

hazard (TSP3000) that is driving the longer-term change

in losses. The remaining differences between TSP3000

and loss curves, particularly the slightly steeper increase

in loss parameters from the first half-period to the sec-

ond half period, might be explained by two features:

1) The pattern of change in thunderstorm forcing might

come along with higher thunderstorm hazard in-

tensities in the second half-period. For instance, wind

damages increasewith gustwind speed in a nonlinear,

progressive way (Heneka et al. 2006; Leckebusch

et al. 2007; Donat et al. 2011). Analogously, residen-

tial building losses from hail increase in a progressive

way with kinetic hail energy (Hohl et al. 2002).

Consequently, there might be a stronger increase in

losses, and perhaps also in loss250,econ event numbers

from thunderstorms, if TSP3000 occurrences increase

in annual number and severe thunderstorms become

more intense.

2) A second explanation might be seen in an increase in

the vulnerability of buildings over time, for example,

through the rapid buildup of residential homes and

commercial facilities in thunderstorm-prone loca-

tions, whereby no efforts have been made to foster

resilience against thunderstorm hazards because of

the lack of specific building codes (Munich Re 2012a).

In-depth analysis of changes in vulnerabilities is still

an almost untapped field for research.

Notwithstanding these considerations, the following

was found as a robust result: The major contribution of

change in the longer-term variability of normalized

thunderstorm-related losses is brought about by the

longer-term changes in severe thunderstorm forcing.

d. Climate change

The current study does not develop a method setup

for attributing the changes in severe thunderstorm

forcing and losses over time to either anthropogenic

climate change or natural climate variability (or both).

Even so, the results of recent scientific studies imply that

the changes observed are consistent with the modeled

effects of anthropogenic climate change. This holds even

if it is plausible that large losses from severe thunder-

storm outbreaks also occurred in the 1950s and 1960s

(Changnon 2001), because today’s climatic regime could

be fundamentally different compared to these past de-

cades. Trapp et al. (2007, 2009) have found that climate-

model-based projections display indications of a regime

in which increasing specific humidity (as the main con-

tributor to increasing CAPEml over time) increases the

annual frequency of severe thunderstorm environments

(defined by the product of CAPEml and DLS) in

a transient climate model experiment since 1950. Sander

(2011) has found similar results in her climate-model-

based analysis of climate change effects on thunder-

storm activity in central Europe. As a precondition of

rising CAPEml, monthly observations of near-surface

specific humidity during the period 1973–1999 [Hadley

Centre/Climatic Research Unit Global Surface Hu-

midity dataset (HadCRUH; Peterson et al. 2011)] show

a clear increase in the Northern Hemisphere. In eastern

North America, this increase equals 3.6% (62.7). This

was shown to be in coarse statistical agreement with the

results from (anthropogenically forced) GCM runs over

this period (Willett et al. 2010). A similar finding has

been inferred from satelliteborne microwave sensor

data of atmospheric moisture content over the oceans,

also statistically corroborated by climate model experi-

ments (Santer et al. 2007). Hence, what this paper found

for the United States fits the concept of increasing hu-

midity that might be brought about by higher SSTs

(particularly the Gulf of Mexico) and associated higher

evaporation rates. Consistent with this reasoning, we have

found a strong increase in annual (March–September)

aggregated CAPEml in the United States east of the

Rockies since 1970. This increase translates into a rise

in the seasonal aggregate of maximum thunderstorm

cell updraft velocities wmax as a measure of available

maximum convective intensity (Fig. 9).

6. Conclusions

The pattern of change observable in the time series of

severe thunderstorm forcing situations (TSP3000) over

the period 1970–2009 reveals a clear increase of the an-

nual variability in the second half-period over the first.

For the first time, the current study has demonstrated that

this pattern, seen as a meteorological fingerprint, can be

identified in the time series of thunderstorm-related

normalized economic losses in excess of $250 million

(loss250,econ). This result holds for numbers and aggre-

gated values of these parameters collected from the

whole domain east of the RockyMountains in the period

March–September. The same finding applies to insured

losses in excess of $150 million (loss150,ins). These results
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gain additional weight from the fact that during the

period 1970–2009, normalized economic losses exceed-

ing $250 million per event account for the major pro-

portion (approximately 80%) of thunderstorm-related

losses in the United States east of the Rockies.

Correlation analyses have followed a three-step ap-

proach that successively has removed constraints in time

and space applied to the selection of thunderstorm-

forcing measurements (TSP3000). The successive steps

correspond to a move from a forced to an unforced re-

lationship between TSP and losses. A comparison of

these steps has revealed that the annual variability in

TSP3000 numbers and aggregated values, taken from the

whole domain and season (unforced case), sufficiently

captures the meteorological signal that constitutes the

correlation. Hence, this signal is reflected in the annual

loss record (loss250,econ, loss150,ins, numbers, and aggre-

gated values)—like a fingerprint of the climatic change.

Deviations from this general feature in individual years

can be readily explained by the distribution properties

of the variables involved. From these findings, we con-

clude that it is predominantly the change in hazard over

time—rather than the change in destructible wealth or

vulnerability—that has driven up normalized losses, as

reflected in the strong similarity of the longer-term signals

in Fig. 8. A secondary role may be left for other drivers,

most probably a change in vulnerability. There is more

research needed to shed additional light on this. But the

most prominent features are the increase in annual vari-

ability and multiyear averages over time, particularly

since the late 1980s.

As a conclusion, a high probability is assigned to cli-

matic variations primarily driving the changes in nor-

malized losses since 1970. Because of the chosen

methodology, the current study has not been able to

conclusively attribute the variability in severe thunder-

storm forcing situations and losses to either natural cli-

mate variability or anthropogenic climate change. Even

so, it was demonstrated that the findings presented are

consistent with the expected effects of anthropogenic

climate change. Climate-model-based studies might

further investigate this link in the future.

7. Outlook

This study demonstrates the ‘‘fingerprint’’ of the me-

teorological signal to be reflected within the loss signal.

Howmuch this variability over time is affected by natural

climate variability versus anthropogenic climate change

will be investigated in future work. Furthermore, we will

have a closer look at the interannual variability and where

the roots of these anomalies are. Additionally, the focus of

investigation will be set on other areas of the world.
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APPENDIX

Critical Perspectives on Loss Data

Information on direct economic loss per thunder-

storm peril—tornado, hail, and wind—is provided by

NOAA’s SPC archive and used by recent studies on

FIG. 9. Time series of 6-hourlywmax 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23CAPEml

p
over the period 1970–2010, aggregated

per March–September season from all NCEP–NCAR reanalysis grid points within the analysis

domain. A lower threshold of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CAPEml

p
5 42m s21 (corresponding to CAPEml 5 1764 J kg21)

was applied. A CAPEml value of approximately 1760 J kg21 was identified in an analysis in-

formed by insurance hail-loss data as a threshold criterion for hail vs nonhail days (Kunz 2007).

Formula of the fitted thin black curve:236:57x2 1 2792x1 20 545, with x equaling the position

of a year in the series.
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tornado loss time series (Simmons and Sutter 2011;

Simmons et al. 2011). The use of this loss data cannot be

recommended for the following reasons:

(i) Before the year 1996, the SPC archive provides

individual losses in order of magnitude intervals—

that is, the upper interval bound exceeds the lower

by a factor of 10. This classification necessarily leads

to enormous uncertainty for annually aggregated

figures. For instance, an individual loss falling in the

interval between $50million and $500million can be

close to the lower interval bound or to the upper,

which implies a very large uncertainty range. If the

classes were represented by their means, then the

annual aggregate could strongly deviate from the

real sum. Thus, it cannot be recommended to use

the data from before 1996.

(ii) As SPC’s archive provides direct loss estimates for

tornado, hail, and wind since 1996, the peril-specific

loss portions were aggregated on an annual basis

for the period 1996–2009. These sums are com-

pared with the best available data on annual in-

sured losses from thunderstorms taken from the

NatCatSERVICE database. To ensure compara-

bility, both the agricultural and the flood-related

(National Flood Insurance Program) loss compo-

nents were removed from the NatCatSERVICE

data, thus making these figures approximately

match the Property Claims Service reports. The

latter are the property insurance market standard

on loss information. In the first half-period 1996–

2002, the SPC aggregate of direct economic losses

from severe weather amounts to 53% of docu-

mented insured thunderstorm losses, and to only

36% in the second half-period 2003–09. These ratios

are proof of a massive underestimation by the SPC

figures because in reality, overall economic losses

cannot be smaller than documented insured losses.

(iii) Additionally, the time series characteristics that are

inherent in the measured insured loss data (strong

increase in variability over time) are completely

smoothed off in the SPC data (decrease in variabil-

ity over time).

Against the background of the three reasons listed

above, nothing should be inferred from SPC’s estimated

thunderstorm losses, and results of a time series analysis

based on SPC’s archived severe-weather loss data can-

not be deemed reliable at all.
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