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Abstract—This paper presents and extends the idea of mul-
tipath assisted positioning, named Channel-SLAM. Generally,
multipath reception degrades the accuracy of the positioning
device as long as the receiver is based on standard methods.
In contrast, Channel-SLAM uses the multipath propagation of
the wireless signal to allow positioning in cases of insufficient
number of transmitters or increase the accuracy otherwise.
Channel-SLAM treats multipath components (MPCs) as signals
from virtual transmitters (VTs) which are time synchronized to
the physical transmitter and fixed in their position. To use the
information of the MPCs, Channel-SLAM estimates the receiver
position and the position of the VTs simultaneously and does
not require any prior information such as room-layout or a
database for fingerprinting. The simultaneous localization and
mapping (SLAM) algorithm is used by the receiver to estimate
its own position and the position of VTs as landmarks. This paper
investigates mapping of the receiver position, where we derive a
probabilistic map representation based on locations. Thus, if the
receiver knows its current location, we also know the probability
where the receiver moves for the next step. In order to estimate
and store the probability distribution of receivers motions as
a function of location, we propose a probabilistic map that
represents the receiver motion in a two-dimensional hexagonal
grid. Hence, as soon as the receiver returns to an already mapped
position, information of this position can be reused for positioning
to obtain better position estimations of the receiver position. The
algorithm is evaluated based on measurements with one fixed
transmitter and a moving pedestrian which moves on partially
overlapping loops. Based on these evaluations, we show, that the
algorithm is able to accurately map the trajectory as well as
reuse estimated map.

I. INTRODUCTION

With Channel-SLAM we introduced in [1]–[4] a novel algo-

rithm which uses MPCs for positioning instead of mitigating

them. Measurements with a moving receive antenna showed,

that some MPCs have a path life of several meters of the

receiver movement. These long visible paths can be used

by Channel-SLAM for positioning. Hence, Channel-SLAM

treats each MPC as a line-of-sight signal from a VT which

position is unknown to the receiver. These VTs are static

during the receiver movement. Channel-SLAM estimates the

receiver position and the positions of the VTs simultaneously,

thus, contrarily to other approaches like [5]–[8] the approach

does not require any prior information such as room-layout or

a database for fingerprinting. The only three conditions to be

fulfilled are the presence of a multipath environment, a moving

receiver as well as an initial prior knowledge of the receiver

states, i.e. position and movement.

This work builds on and extends the previous work on

Channel-SLAM. Channel-SLAM basically uses a two level

approach: The first level uses Kalman enhanced super resolu-

tion tracking (KEST) [9] to estimate and track the amplitude

and the delay of each MPC. The second level estimates the

positions of the receiver and the VTs based on the estimated

parameters of the MPCs simultaneously. Due to the movement

of the receiver, we use a recursive Bayesian filter approach

to estimate the probability density function of the receiver

position and the VT positions. Recently, we extended Channel-

SLAM for pedestrians and fused the heading estimations of a

gyroscope with Channel-SLAM. We evaluated the algorithm

based on measurements with one transmitter and a pedes-

trian carrying the receive antenna and a gyroscope. These

evaluations demonstrated the concept of Channel-SLAM and

showed that Channel-SLAM is able to determine VT positions

accurately. A method to estimate the position of the receiver at

the same time as landmarks is called SLAM, see [10]. Here,

the SLAM algorithm is used by the receiver to estimate its

own position and the position of VTs as landmarks. Usually

in robotics, SLAM covers the task of asserting whether the

robot returned to a previously visited area, after moving for

an arbitrary time which is called loop closure. This allows

the robot to reuse previously gained information. Hence, we

derive in this paper a probabilistic map representation based

on locations. Thus, if the receiver knows its current location,

we know the probability where the receiver will move for

the next step. In order to estimate and store the probability

distribution of receivers motions as a function of location, we

need to partition the space. We propose a probabilistic map that

represents the receiver motion in a two-dimensional hexagonal

grid. Hence, as soon as the receiver returns to an already

mapped position, information of this position can be reused

for positioning which obtains better position estimations of the

receiver position. To verify the refined algorithm, we perform

evaluations based on measurements. We used a scenario with

one fixed transmitter and a moving pedestrian, carrying the

receive antenna and a gyroscope in his hands. The pedestrian

was moving on partly overlapping loops. Hence, we show that

the algorithm is able to map the trajectory as well as reuse the

estimated map.



The paper is structured as follows: Section II describes

the signal model and VTs, afterwards Section III derives the

proposed algorithm which is split into three subsections: Sec-

tion III-A addresses Channel-SLAM; Section III-B addresses

the mapping of the receiver position; Section III-C addresses

the particle filter (PF) implementation with the weight calcu-

lation; Thereafter, Section IV evaluates the algorithm based

on measurements. The last section, Section V, concludes the

paper.

Throughout the paper, we will use the following notation:

• (·)T , (·)H stands for matrix (or vector) transpose and

conjugate transpose, respectively.

• All vectors are interpreted as column vectors.

• x ⊙ y denotes the Hadamard-Schur product, i.e. the

element-wise multiplication of vector x and y.

• I denotes an identity matrix.

• Matrices are denoted by bold capital letters and vectors

by bold small letters.

• ‖A‖2 =
∑

l

∑

m |Al,m|2 represents the square of the

Frobenius norm of A with elements Al,m.

• a ∼ N
(
x;µa, σ

2
a

)
denotes a Gaussian distributed random

variable a with mean µa and variance σ2
a.

• 1 : k stands for all integer numbers starting from 1 to k,

thus 1, 2, . . . , k.

• p
(
x
)

denotes the probability density function of x.

• f−1(·)denotes the inverse of function f(·).
• c is the speed of light.

II. SIGNAL MODEL

As mentioned in the introduction, with Channel-SLAM [1]–

[4] we introduced a novel algorithm which uses MPCs for

positioning instead of mitigating them. Measurements with

a moving receive antenna showed, that some MPCs have a

path life of several meters of the receiver movement [11].

These long visible paths can be used by Channel-SLAM for

positioning. Fig. 1 shows a scenario, where the transmitted

signal is reflected on a smooth surface. The transmitter has

a fixed position and the receiver is moving on the indicated

path. When the receiver is moving also the reflection point,

indicated by R(tk) at the coordinates rr(tk) is moving. If

we mirror the physical transmitter position on the reflecting

surface, we obtain the position rVT of the VT which is

static during the receiver movement. The distance between

the VT and the receiver is equal to dTR(tk) + dRU(tk) =
‖rt − rr(tk)‖+ ‖rr(tk)− ru(tk)‖ = ‖rVT − ru(tk)‖ which

is equivalent to the propagation time of the reflected signal

multiplied with the speed of light. Fig. 1 exploits additionally

a scenario where the signal is scattered. The propagation

effect of scattering occurs if an electromagnetic wave impinges

an object and the energy is spread out in all directions.

Geometrically, the effect of scattering can be described as

a fixed point S in the pathway of the MPC for all receiver

positions. Hence, the propagation distance of the scattered

path is dTS(tk) + dSU(tk) = ‖rt − rs‖ + ‖rs − ru(tk)‖ =
‖rVT − ru(tk)‖+dVT where dTS(tk) = dVT > 0 is constant

and rs = rVT denotes the position of the scatterer. Thus,

Physical transmitter

Receiver

Virtual transmitter

Reflecting Surface

dTR(tk)

dTR(tk)
dRU(tk)

S = Virtual transmitter

dVT = dTS(tk)

dSU(tk)

R(tk) R(tk+1) R(tk+2)

Fig. 1: Two Scenarios: First: The transmitted signal is reflected

at a smooth surface. When the receiver is moving the reflection

point R(tk) is moving on the surface, indicated by R(tk),
R(tk+1) and R(tk+2). A VT can be defined by mirroring

the physical transmitter position at the surface as visualized.

Second: signal is scattered at S. When the receiver is moving,

S is fixed, hence S is defined as the position of VT. For the

propagation length a constant dVT needs to be added.

we define S as VT for the MPC and treat dVT > 0 as

an additional propagation distance associated to the MPC.

Fig. 2 shows a generalization of the considered multipath

effects. The transmitted signal is scattered at S and afterwards

reflected. Between the transmitter and S additional interactions

are possible. When the receiver is moving, the reflection point

R(tk) is moving on the surface. Hence, the VT is defined

by mirroring the scatterer S at the surface as visualized.

The propagation distance is therefore dTS(tk) + dSR(tk) +
dRU(tk) = dVT + ‖rs(tk)− rr(tk)‖ + ‖rr(tk)− ru(tk)‖ =
dVT+‖rVT − ru(tk)‖ where dTS(tk) = dVT > 0 is constant.

To summarize, the propagation path of each MPC can be

equivalently described as a direct path between a VT and the

receiver plus an additional constant propagation length dVT.

If only reflections occurred on the pathway between physical

transmitter and receiver, this additional propagation length is

zero dVT = 0. If the MPC was interacting with a scatterer, the

additional propagation length is greater than zero dVT > 0.

Equivalently, we can interpret dVT as a constant clock offset

between the VT and the physical transmitter. Hence, Channel-

SLAM treats each MPC as a line-of-sight signal from a VT
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Fig. 2: The transmitted signal is scattered and afterwards

reflected at a smooth surface. When the receiver is moving

the reflection point R(tk) is moving on the surface. A VT

can be defined by mirroring the scatterer S at the surface as

visualized. For the propagation length a constant dVT needs

to be added.

whose position is unknown to the receiver. These VTs are

static during the receiver movement.

III. MULTIPATH ASSISTED POSITIONING

As mentioned in [1]–[4], the proposed algorithm considers a

multi level approach. KEST estimates and tracks the channel

impulse responses (CIRs) between NT physical transmitters

and the receiver. We assume that the signals transmitted by

each physical transmitter are separable, i.e. orthogonal in the

ideal case. Hence, the received signal vectors yv(tk) of trans-

mitter v = 1 . . . NT
1 are processed by the KEST algorithm,

which estimates for each MPC i, the propagation distance

dv,i(tk) = τv,i(tk) · c. For each transmitter v = 1, . . . , NT

we define the vector d̃v(tk) with

d̃v(tk) = [d̃v,0(tk), . . . , d̃v,Nv(tk)−1(tk)]
T (1)

with the KEST estimates for dv,i(tk). The measurement vector

z(tk) for Channel-SLAM is defined as

z(tk) = [d̃1(tk)
T , . . . , d̃NT

(tk)
T ]T . (2)

For each MPC i of transmitter v = 1, . . . , NT, with

i = 0, . . . , Nv(tk) − 1, we can define a VT with its position

rVT,v,i(tk) and an additional propagation length dVT,v,i(tk).
Knowing the positions of the VTs, the receiver position ru(tk)
for time instant tk can be estimated. A method to estimate the

position of the receiver at the same time as landmarks is called

SLAM, see [10]. Here, the SLAM algorithm is used by the

receiver to estimate its own position and the position of VTs

as landmarks. Usually, SLAM covers the task of asserting

whether the receiver returned to a previously visited area,

after moving for arbitrary time called loop closure. Realizing

reliable loop closure is both essential and challenging, which is

without doubt one of the greatest impediments to achieve long-

term and robust SLAM. Hence, in a Bayesian formulation, we

1Please note, that we will set NT = 1 in Section IV.

are interested in the posterior

p
(
x(t0:k) ,M(t0:k)|z(t0:k)

)
(3)

where M(t0:k) defines the probability map of receivers mo-

tion. We can factorize (3) into

p
(
x(t0:k) ,M(t0:k)|z(t0:k)

)
(4)

= p
(
x(t0:k)|z(t0:k)

)
· p
(
M(t0:k)|z(t0:k) ,x(t0:k)

)
(5)

= p
(
x(t0:k)|z(t0:k)

)

︸ ︷︷ ︸

Channel-SLAM

· p
(
M(t0:k)|xu(t0:k)

)

︸ ︷︷ ︸

mapping problem conditioned on the receiver state

(6)

where we assume that the map only depends on the receiver

state xu(tk). In (4), the first term p
(
x(t0:k)|z(t0:k)

)
defines

the posterior of Channel-SLAM described in Section III-A and

the second term p
(
M(t0:k)|xu(t0:k)

)
defines the posterior of

the mapping of the receiver described in Section III-B.

A. Channel-SLAM

Due to the movement of the receiver a tracking filter can be

applied which recursively estimates the position of the receiver

and of the landmarks. Recursive Bayesian filters estimate an

unknown probability density function (PDF) over time using

measurements and mathematical defined models, see [12].

Thus, recursive Bayesian filters can be used to estimate the

PDF of a state vector x(tk) at time instant tk using the

measurements z(t0:k) from time instant t0 to tk. Hence, the

posterior PDF p(x(tk)|z(t0:k)) is estimated based on the prior

estimate p(x(tk−1)|z(t0:k−1)). Here, the state vector x(tk)
at time instant tk for Nv(tk) MPCs and NT transmitters is

defined by

x(tk) =
[

xu(tk)
T
, x̃VT,1(tk)

T
, . . . , x̃VT,NT

(tk)
T
]T

, (7)

with the receiver state xu(tk) and with

x̃VT,v(tk) =
[

xVT,v,0(tk)
T
, . . . ,xVT,0,Nv(tk)−1(tk)

T
]T

,

(8)

for each transmitter v = 1 . . . NT and

xu(tk) =
[

ru(tk)
T
,vu(tk)

T
, bu(tk), ρu(tk)

]T

, (9)

where ru(tk) is the receiver position, vu(tk) the receiver

velocity, bu(tk) and ρu(tk) the receiver’s clock bias and drift,

respectively. The parameters representing the VT of the i-th
MPC of transmitter v are defined as

xVT,v,i(tk) =
[
rVT,v,i(tk)

T , dVT,v,i(tk)
]T

, (10)

where rVT,v,i(tk) are the coordinates of the VT and

dVT,v,i(tk) the additional propagation distance.

Recursive Bayesian filtering consists of two steps, the

prediction step p
(
x(tk)|z(t0:k−1)

)
and a so called update

step with p
(
x(tk)|z(t0:k)

)
, which includes the measurements

z(tk) at time instant tk via the likelihood density function

p
(
z(tk)|x(tk)

)
. Assuming a first-order Markov model, the

transition prior p
(
x(tk)|x(tk−1)

)
used in the prediction step



of the recursive Bayesian filter is defined here as

p
(
x(tk)|x(tk−1)

)

= p
(
xu(tk)|xu(tk−1)

)
(11)

×
NT∏

v=1

Nv(tk)−1
∏

i=0

p
(
xVT,v,i(tk)|xVT,v,i(tk−1)

)
.

As described in the previous section, the transition

prior PDF of the VT state vectors xVT,v,i(tk),
p
(
xVT,v,i(tk)|xVT,v,i(tk−1)

)
associated to the transmitters

v = 1, . . . , NT and the MPCs i = 0, . . . , Nv(tk) − 1 is

stationary, hence,

xVT,v,i(tk−1) = xVT,v,i(tk) . (12)

Additional to the radio signals, we use an inertial measure-

ment unit (IMU) which provides heading information to the

algorithm. The gyroscope provides angular rates ∆(tk) in
◦/s, where we consider only the measurements ∆y,β(tk)
in yaw direction, see [13], [14]. Obviously, to obtain the

moving direction, angular rates ∆y,β(tk) have to be integrated

over time. However, because the error accumulates during

integration, we use the angular rates ∆y,β(tk), with

∆β(tk) = ∆y,β(tk) + nβ(tk), (13)

where nβ(tk) is the heading noise using a von Mises distribu-

tion. Hence, for the transition prior PDF of the receiver state

xu(tk), p
(
xu(tk)|xu(tk−1)

)
in a two dimensional Cartesian

coordinate system, the receiver position ru(tk) is calculated

as

ru(tk) = ru(tk−1) + (tk − tk−1)vu(tk) , (14)

with the receiver velocity

vu(tk) = R(∆β(tk)) · vu(tk−1) + nu(tk) (15)

and the rotation matrix

R(∆β(tk)) =

(

cos (∆β(tk)) − sin (∆β(tk))

sin (∆β(tk)) cos (∆β(tk))

)

, (16)

nu(tk) ∼ N (0,Qu(tk)) is transition noise. For the clock bias

and clock drift known prediction models can be applied, see

e.g. [15], [16].

Assuming the elements of the vector z(tk) to be independent

Gaussian distributed, the likelihood PDF p
(
z(tk)|x(tk)

)
can

be expressed as

p
(
z(tk)|x(tk)

)
(17)

=

NT∏

v=1

Nv(tk)−1
∏

i=0

1√
2πσd,v,i(tk)

e
−

(d̂v,i(tk)−dv,i(tk))2

2σ2
d,v,i

(tk) ,

where

dv,i(tk) = ‖ru(tk)− rVT,v,i(tk)‖+ dVT,v,i(tk) + bu(tk) · c
(18)

for the MPC i of transmitter v where σ2
d,v,i denotes the

variance.

Nhhexagons

Fig. 3: Representing a walked path by hexagons: the black line

indicates the walked path, the red hexagons shows the mapped

path.

B. Map generation

To obtain p
(
M(t0:k)|xu(t0:k)

)
, we generate a probabilistic

map based on locations. Thus, if we know the current location,

we also know the probability where we move for the next step.

In order to estimate and store the probability distribution of re-

ceivers motions as a function of location, we need to partition

the space. Equivalently to [17]–[19], we discretize the space

into a grid of adjacent and uniform hexagons. Fig. 3 shows an

example where the walked path is indicated by the black line,

the corresponding discretized hexagon map is indicated by Nh

hexagons indicated in red with H = {H0, H1, . . . HNh−1}.

Let us assume the receiver moved from hexagon Hi to hexagon

Hj through the edge ei,j as shown in Fig. 4. Thus, we can

define the transition probability of the crossed edge with

me
i (tk) = p

(
xu(tk) ∈ Hj |xu(tk−1) ∈ Hi

)
. (19)

where i 6= j and e represents the index of each edge of the

hexagon with e = {0, 1, . . . 5} and
∑5

e=0 m
e
i = 1. We denote

with me
i (tk) the map random variable, a probability, that is

unknown to us. By observing the receiver states xu(t0:k) we

can estimate p
(
me

i (tk)|xu(t0:k)
)
.

The map random variable M(tk) can be decomposed as

M(tk) = {M0,M1, . . . ,Mi, . . . ,MNh−1} (20)

where Mi is a random variable vector of length 6 denoting

the transition probabilities of the hexagon with index i. The

division of the space into independent hexagons makes the

decomposition of the mapping problem into map estimation

sub-problems possible [17], one for each hexagon, with

p
(
M(tk)|xu(t0:k)

)
=

Nh−1∏

j=0

p
(
Mj |xu(t0:k)

)
. (21)

Please note, for notational conveniences Mi do not depend on

the time tk because the receiver might stay in one hexagon

for more than one time step.



Hi

Hj

ei,j

ru(tk−1)

ru(tk)

Fig. 4: Receiver movement form ru(tk−1) to ru(tk), respec-

tively from hexagon Hi to hexagon Hj through the edge ei,j .

C. Particle Filter Implementation

For a PF implementation of the Bayesian filter, the posterior

filtered density p
(
x(t0:k) ,M(t0:k)|z(t0:k)

)
of (3) can be

approximated by importance samples as

p
(
x(t0:k) ,M(t0:k)|z(t0:k)

)
(22)

∝
Ns∑

j=1

w(j)(tk) δ
(

x(tk)− x(j)(tk)
)

(23)

where Ns defines the number of particles and the weight

w(j)(tk) ∝ w(j)(tk−1) · w(j)
CS (tk) · w

(j)
M (tk). (24)

where the term w
(j)
CS (tk) defines the weight for the j-th

particle at time instant tk of Channel-SLAM, see Section III-A

and [1]–[4]. To obtain the weight w
(j)
M (tk), the transition map

is learned by particle j by counting each transition it makes

from x
(j)
u (tk−1) to x

(j)
u (tk) across edge ẽ and its local map

for hexagon Hĩ. Hence, each particle stores its whole path

through the hexagon grid. As mentioned in [17]–[19], learning

the map is based on Bayesian learning of multinomial and

binomial distributions, where the weight of each particle j
can be calculated by

w
(j)
M (tk) =

{

N ẽ
ĩ
+ αẽ

ĩ

Nĩ + αĩ

}

. (25)

The term N ẽ
ĩ

represents the number of transitions for edge ẽ
of hexagon Hĩ and Nĩ is the sum of all transitions of hexagon

Hĩ with Nĩ =
∑5

e=0 N
e
ĩ

for tk = t0, . . . , tk. The terms αẽ
ĩ

and

αĩ =
∑5

e=0 α
e
ĩ

represents the a-priori knowledge regarding the

number of transitions across the edges of Hĩ of particle j. If

no prior information is available, we choose empirically αẽ
ĩ
=

0.8. Additionally, if the particle crossed multiple hexagons,

the weight update is performed for all crossed edges.

TABLE I: Channel sounder settings

Parameter Value

RF center frequency 1.51 GHz

Bandwidth B 100 MHz

Number of sub-carriers N 1281

Sub-carrier spacing ∆f 78.125 kHz

Transmit power 10 mW

Signal period Tp 12.8 µs

Measurement rate Tg 1.024 ms

Transmitter antenna Omni-directional (V-polarized)

Receiver antenna Omni-directional (V-polarized)

IV. MEASUREMENTS

This section evaluates the derived algorithm based on out-

door channel measurements, in front of an hangar with a

fixed physical transmitter and a moving pedestrian as shown

in Fig. 5. The measurements were performed using the ME-

DAV RUSK-DLR broadband channel sounder in single-input

single-output (SISO) mode with the measurement parameters

as summarized in Table I. As shown in Fig. 6, the moving

pedestrian was equipped with the receive antenna and a Xsense

IMU [20]. We captured simultaneously the received signal

as well as the turn rates of the gyroscope of the IMU.

To measure the coordinates we use a tachymeter TPS1200
from Leica Geosystems AG [21] which is usually applied

in land surveying. The tachymeter has an accuracy in cm-

domain based on distance and angular measurements. With

the tachymeter, we are capable of measuring coordinates of

specific locations. As the transmit antenna is kept at fixed

positions, it is straightforward to measure the coordinates

of the transmit antenna once before each measurement run.

On the other side, the receive antenna moves during the

measurement. Hence, we mount a prism as shown in Fig. 6

next to the receive antenna on a stick above the moving person

to be always in line-of-sight (LoS) condition to the tachymeter.

The tachymeter transmits the measured coordinates to the

channel sounder which records the CIRs and the coordinates

simultaneously. Fig. 7 shows the scenario from top, with

the hangar, physical transmitter position, track, starting and

end position. The pedestrian was moving on the indicated

track for different loops for 556 s or 265 m, see Fig. 9. After

moving 176 s, 331 s,467 s the pedestrian returns to the starting

position. During the walk the pedestrian is moving with a

constant speed, between 375 s and 510 s, and between 477 s

and 495 s, the receiver is standing still. Fig. 8 shows the

preprocessed integrated turn rates of the gyroscope for the

receiver movement. The start and end time when the pedestrian

is standing is indicated by the vertical lines. Fig. 10 shows

the recorded unprocessed CIRs versus the receiver traveled

distance in seconds.

The accuracy of Channel-SLAM relies directly on the

accuracy of the CIR estimations of KEST. Fig. 11 shows the



Moving Pedestrian

Physical Transmitter
Hangar - Metal Doors

Fig. 5: Measurement scenario: The pedestrian is moving in front of an hangar which is equipped with metal doors. The metal

doors acts as a perfect reflecting surface for the transmitted signal.

PrismTransmit Antenna

Gyroscope

Receive Antenna

Fig. 6: Moving pedestrian: The receive antenna mounted on

a stick next to a prism for measuring the ground truth of the

moving pedestrian. The IMU is in the hands of the pedestrian.

estimation results of KEST for the CIR versus the receiver

traveled time in seconds. The figure shows long visible paths

which can be used by Channel-SLAM for positioning. Fig. 12

shows only the first two tracked paths of KEST which are

tracked for the whole receiver movement. The black dotted

line indicates the geometrical line-of-sight (GLoS) path, which

matches perfectly to the estimation of KEST for the first

path. The doors of the hangar are metalized and act as a

reflecting surface for the transmitted wireless signal. Hence,

we can obtain the position of a VT by mirroring the physical

transmitter on the reflecting surface as mentioned in Section II.

If we calculate the propagation distance between this VT and

the moving pedestrian, we can see that it matches to the

estimations of KEST, indicated by the dashed line in Fig. 12.

At some time points, the KEST estimations are biased which

may come from paths which are close to the reflected path as

shown in Fig. 11, e.g. from reflections of the ground.
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Fig. 7: Measurement scenario with a fixed transmitter and a

moving receiver. The receiver moves on the blue track for

556 s or 265 m, see Fig. 9.

Channel-SLAM does not need any prior information except

of a coarse receiver starting position. Hence, the receiver

position is initialized in a square with 2m × 2m around

the correct starting position. Due to the large number of

particles for covering the circular area around the starting

position, we use only the two paths of Fig. 12, hence, the

LoS path associated to VT0 and the first order reflection

associated to VT1 for Channel-SLAM. Here, Channel-SLAM

does not assume the knowledge of the transmitter position, the

position estimation of VT0 has to be estimated to the physical

transmitter position. Additionally, the position estimation of

VT1 has to be estimated to the mirrored position of the

physical transmitter at the hangar. Fig. 13, Fig. 14, Fig. 15

and Fig. 16 illustrate the performance of the derived algorithm.

The left sub-figures show the estimated CIR of Fig. 12 where

the vertical dashed line indicate the current time step. The sub-

figures in the middle show the estimation of Channel-SLAM:

estimation of VT0 in blue, estimation of VT1 in orange,
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Fig. 8: Integrated turn rates of the gyroscope for the receiver

traveled distance. The vertical lines indicate the time periods

when the pedestrian is standing. The vertical dashed line

indicates when the receiver is returning to the starting position.
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Fig. 9: Traveled distance in meter versus time in seconds. The

vertical lines indicate the time periods when the pedestrian is

standing. The vertical dashed line indicates when the receiver

is returning to the starting position.

mapping of the hexagons where the red hexagons indicate

the mapped path with the highest weight. The right sub-

figures show a more detailed zoomed version of the mapping.

Additionally, the middle and right sub-figures indicate by the

magenta crosses the ground truth, by the magenta arrows the

yaw measurements as shown in Fig. 8, by the green circles

the PF estimations of the receiver position and by the red plus

the minimum mean square estimate of the receiver position.

Fig. 13 shows the initialization at tk = 0 s: the middle sub-

figure shows initialization of the VTs of Channel-SLAM.

However, the initialization of of VT0 are not visible in this

Fig. 10: Recorded unprocessed CIRs versus the receiver trav-

eled distance in seconds.
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Fig. 11: Estimation results of KEST for the CIR versus the

receiver traveled distance in meters. The vertical lines indicate

the time periods when the pedestrian is standing and the

vertical dashed line indicates when the receiver is returning

to the starting position.

figure. Channel-SLAM has no prior information about the

physical transmitter position and the VTs positions. According

to the first delay measurements, all possible VT positions

are initialized in a grid around the starting position. Hence,

Channel-SLAM initializes the states for the VT position in

a grid with spacing of 0.5 m in the circular area around

the starting position with the radius of the estimated delay.

Similarly to Fig. 13, Fig. 14 shows the estimation results after

a receiver traveled time of tk = 100 s. Because of the arbitrary

receiver movement, the PF estimations for the locations of the

VT0 and VT1 are reduced, however, the position estimation

of the receiver has still a high variance. As soon as the

receiver returns to the starting position, the hexagon map can
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Fig. 12: Estimation results of KEST for the CIR versus

the receiver traveled distance in meters. Only the LoS path

and the reflected path are visualized. The black dotted line

indicates the GLoS path and the black dashed line indicates the

calculated propagation distance between VT and the receiver

for the receiver traveled distance. The vertical lines indicate

the time period when the pedestrian is standing.

be reused as shown in Fig. 15 where the receiver traveled for

tk = 200 s. Hence, the uncertainty of the position estimation

of the receiver is reduced. Fig. 16 shows the estimation results

at the end of the track. We can observe, that we are able to

map the receiver path accurately.

V. CONCLUSIONS

In this paper, we presented and extended the work on

multipath assisted positioning, called Channel-SLAM. The

new positioning method uses a SLAM approach to map the

receiver position. We propose a probabilistic map that repre-

sents the receiver motion in a two-dimensional hexagonal grid.

Hence, as soon as the receiver returns to an already mapped

position, information of this position can be reused to obtain

better position estimations of the receiver as well as the VT

positions. We evaluated the algorithm based on measurements

with a moving pedestrian and one fixed transmitter.
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Fig. 13: Initialization at tk = 0. The left figure shows initialization of the VTs of Channel-SLAM: in blue the PF estimation

of VT0 (not visible) and in orange the PF estimation of VT1. The right figure shows the initialization of the hexagons. The

magenta cross indicates the ground truth and the magenta arrow indicates the yaw measurements.
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Fig. 14: Receiver traveled time tk = 100 s. The left figure shows the VTs of Channel-SLAM: in blue the PF estimation of

VT1 and in orange the PF estimation of VT1. The red hexagons show the mapped track with the highest weight.
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Fig. 15: Receiver traveled time tk = 200 s. The left figure shows that the estimation of the VTs of Channel-SLAM converged

to the correct VT positions. The algorithm reuses the mapped location of the first loop.
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Fig. 16: Receiver traveled time tk = 556 s, end of the track. The left figure shows that the estimation of the VTs of Channel-

SLAM converged to the correct VT positions. We can observe by the magenta arrow that the heading was drifting by 50 ◦,

however, Channel-SLAM was not influenced.
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