Webinar Participants
Mechanics of the seminar

- The webinar is being recorded, the URL will be sent out to participants and posted at www.coe-su.fs.org

- Participants from the US and Canada can:
 - Use Adobe Connect to receive the audio (PRIMARY method)
 - Dial 1-888-446-7584, access code 1120583

- International participants can:
 - Use Adobe Connect to receive the audio (PRIMARY method)
 - Use Skype or similar to dial 1-888-446-7584, code 1120583
 - Dial 212-372-3742 (caller paid call)

- Submit questions using the Chat feature
Now offering Professional Development Hours

- Professional Development Hours (PDH) for Professional Engineers (PE) now available
 - 1.0 PHD for this webinar
- Credits issued through the NYS Department of Education. Please confer with the state or country in which you register as a PE to determine whether or not the credit will transfer.
- For more information on obtaining PDH please email wojtoj@rpi.edu
Funded by the Volvo Research and Educational Foundations (VREF)

Main Goal: To jumpstart an integrative process, involving cities, private sector, and researchers to develop new freight systems paradigms that:

- Are sustainable
- Increase quality of life
- Foster economic competitiveness and efficiency
- Enhance environmental justice
CoE-SUFS Dissemination Programs

- **Peer-to-Peer (P2P) Exchange** to share global best practices and real world examples of sustainable urban freight systems

- **Next P2P (August, 2015):**
 - Cargo Cycles for Urban Freight: The American Experience

- **Workshops** to bring together public/private sectors and academia, to jointly work to address urban freight issues
 - Already held at: India, Brazil, Colombia, Canada, Mexico, Chile, and Australia
Agenda

- Relevance of cargo cycles for public authorities
- Transport market segments with cargo cycle use
- Cargo cycles and city logistics
- Hands-on perspective: messenger, a courier company
- ‘I replace a car’: Results from a two-year demonstration project
- Drivers and barriers for companies to use cargo cycles
- Closing remarks
Relevance of cargo cycles for public authorities
Different cities, different sizes, different economic environment...

... but we are all facing the same challenges (with differences in severity)

Challenges...
- Noise
- Pollution
- Greenhouse gases
- Traffic safety / accidents
- Congestion

But...
- Just building new infrastructure can not cover problems related to urban freight
- (Infrastructural) Measures are difficult to realize within urban areas
- Question of resources ...
Berlin is different...

Surface area: 892 km² / 344 mi²
Inhabitants: approx. 3,450,000
45% of households without a car*
Motorisation: 324 cars/1000 res. *
Employed: 1,700,000 (2011)
Unemployment rate: approx. 11%
Low commuting rate (290,000/150,000)
Polycentric city / short journeys
There are significant negative effects of traffic…

Accidents…

Emissions…

Noise…

… concentrated esp. to the (less motorized) inner city
Is there one simple/single solution?
How is urban freight reflected?

- Cause of significant negative effects (pollution, congestion, accidents, ...)

- “I can’t sleep at night” / “Why in my neighbourhood” / “Dangerous” / “Ban them from the inner city…”

→ Problems create a pressure to act instead of pro-actively shaping the system together

Result:

- Lack of awareness, lack of general understanding, limited knowledge about requirements of different stakeholder groups

- Politicians, boroughs, local economy, citizens, authorities, lobby groups: opponents or partners?

Approaches: ...
Cargo Cycles in Berlin's commercial transport

Something new or a renaissance of something old?

Cycling service men at Berlin-Potsdamer Platz in 1906

Source: Missmann 1987, S. 94
The shorter a „last mile“ is, the more „sustainable“ it can get...

Micro depots for mailmen
Potential and limitations of cargo cycles in urban freight

- Flexibility, much less dependence on traffic load, door-to-door transport
- Reliability (very important issue for urban logistics)
- Low “total costs of ownership“ (TCO), small initial investment (no fuel, if electric minimal costs, low insurance rates, land use for parking is limited, low maintenance costs)
- Drivers license / demographics
- Limitations for weight / volume / distances
- Truly „green logistics“

Potential from an urban perspective:

- Locally emission free (CO2, NOX, PM10 and PM2.5, noise), but impact is limited (number of trips vs. trip length)
- Uses existing infrastructure → land use
- Enables modal shift (especially for courier, express and parcel deliveries) and innovative logistics concepts
Legal background

- Cargo cycles are legally classified as bicycles, without or with an electrical assistance of up to 250 Watts
- Maximum width = 1 m; 3- or 4-wheeler even wider
- No regulation concerning payload
- No specific regulation concerning use of road space or bicycle lanes
- Parking on sidewalks is legal (without being an obstacle for others)
- Pedestrian zones: Free for cargo cycles if "free for bikes"; otherwise: pushing your bike is necessary!
Transport market segments with cargo cycle use
Fields of application for cargo cycles

Relevant transport market segments

- Mail deliveries
- Courier deliveries
- Parcel deliveries
- Home deliveries
- Service traffic
- Internal/own-account transport

not taken into account:
- private mobility
- transport of people
- mobile sales stalls

Results of an ongoing research project conducted by DLR Institute of Transport Research
Funding by the German Federal Ministry of Transport and digital Infrastructure
Mail deliveries
Courier deliveries
Parcel deliveries
Home deliveries
Internal/own-account transport
Service traffic
Cargo cycles and city logistics
Cargo cycles as part of city logistics schemes

London: Micro-consolidation center for office supply deliveries

Brussels: Mobile depot

Paris: Urban freight by barge and cargo cycles

Hamburg: Mobile depot
Cargo cycles as part of city logistics schemes

Berlin: Cooperation - The EU project CityLog
Is it that what we want?
CityLog: The Process
Hands-on perspective: messenger, a courier company
Messenger, a courier company (est. 1989)

- Basic philosophy: Sustainable logistics!
- Types of service: City logistics, Express deliveries national/international
- Several types of vehicles:
- Branches in 5 German cities, HQ: Berlin
- Cooperative system with freelance messengers
- Some achievements:
 - First CMC (Cycle Messenger Championships) in 1993
 - “Berlin rides bike” in 1995
 - “Location of ideas” in 2009
 - Pioneers of cargo bikes ...

Achim in 1989
Cargo cycles: Usual vehicle for messengers

Beginnings around 1900

"Long John" since 1930s

2007

2009

2012
Loading capacity of cargo cycles

- 8 shoe boxes
- 4 copy paper boxes
- 1 packing case...

or even more...

- ...25 shoe boxes...

- 1 pallet
'I replace a car':
Results from a two-year demonstration project
2012-2014
Main vehicle: *iBullitt Pedelec* (x40)

250 Watts engine, Payload: 100 kg (220 pounds)
Cargo box volume: 200 l (0.18 freight tons)

Additional vehicle: *CargoCruiser* (x1)

250 Watts engine, Payload: 300 kg (660 pounds)
Cargo box volume: 900 l (0.8 freight tons)
'I replace a car': Cargo cycle usage

<table>
<thead>
<tr>
<th>Number of shipments by cargo cycles</th>
<th>Share of all shipments of courier companies</th>
<th>Mean shipment distance (cargo cycles)</th>
<th>Total mileage (cargo cycles)</th>
<th>Share of total mileage of all vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>119.000</td>
<td>7.5 %</td>
<td>3.9 km</td>
<td>455.000 km</td>
<td>4 %</td>
</tr>
</tbody>
</table>

[Graph showing cargo cycle shipments per month from July 2012 to March 2014]
"I replace a car": Shipment distance and mileage

Shipment distance

- **Bicycle**: 6 km (~6.2 mi)
- **Cargo cycle**: 12 km (~12.4 mi)
- **Car**: 20 km (~12.4 mi)
- **Small van**: 60 km (~62 mi)
- **Large van**: 120 km (~124 mi)

Daily mileage

- **Bicycle**: 6 km (~6.2 mi)
- **Cargo cycle**: 12 km (~12.4 mi)
- **Car**: 20 km (~12.4 mi)
- **Small van**: 60 km (~62 mi)
- **Large van**: 120 km (~124 mi)

Sample size:
- Bicycle: n ~ 1.2 million
- Cargo cycle: n ~ 89,000
"I replace a car": Car substitution potential

Share of trips below 10km & transportable goods (ex-ante data)

- Substitutable deliveries: 42%
- Substitutable mileage: 19%
I replace a car: Change in modal split

Inner ring: before project (May 2011-June 2012) ~ 1.1 million obs.
Outer ring: during project (July 2012-March 2014) ~ 1.6 million obs.
'I replace a car': Characterization of messengers

<table>
<thead>
<tr>
<th>n=171</th>
<th>Type of vehicle</th>
<th>Bicycle</th>
<th>Cargo Cycle</th>
<th>Car</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (t1 survey 2014)</td>
<td>48</td>
<td>46</td>
<td>77</td>
<td></td>
</tr>
</tbody>
</table>

Demographics

- **Age Ø**: 39 years, 39 years, 50 years
- **Gender: male**
 - 90%, 93%, 95%
- **Education: high (Abitur)**
 - 74%, 67%, 33%

Income

- **Below 500 €**
 - 14%, 20%, 3%
- **2500 € and more**
 - 2%, 0%, 19%

Job organization

- **Working as messenger only**
 - 75%, 57%, 74%
- **Working hours per week Ø**
 - 30.1, 27.2, 47.0
- **Using only one type of vehicle**
 - 83%, 26%, 79%
"I replace a car": Factors influencing cargo cycle acceptance of individual messengers

Dependent variable: Rejection of electric cargo cycles
Data: 2 survey among messengers, before and at the end of the field test

negative coefficients: more likely to reject

<table>
<thead>
<tr>
<th>Variable</th>
<th>M1</th>
<th>p</th>
<th>M2</th>
<th>p</th>
<th>M3</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socio-demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.056</td>
<td>0.000</td>
<td>0.042</td>
<td>0.001</td>
<td>0.048</td>
<td>0.001</td>
</tr>
<tr>
<td>Gender: female</td>
<td>1.359</td>
<td>0.003</td>
<td>1.631</td>
<td>0.001</td>
<td>0.991</td>
<td>0.062</td>
</tr>
<tr>
<td>Net. income: >€2000</td>
<td>1.036</td>
<td>0.002</td>
<td>0.957</td>
<td>0.006</td>
<td>0.702</td>
<td>0.057</td>
</tr>
<tr>
<td>Education: low/medium</td>
<td>0.628</td>
<td>0.011</td>
<td>0.497</td>
<td>0.056</td>
<td>0.424</td>
<td>0.139</td>
</tr>
<tr>
<td>Job circumstances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car ownership</td>
<td></td>
<td></td>
<td>0.759</td>
<td>0.006</td>
<td>0.549</td>
<td>0.077</td>
</tr>
<tr>
<td>Possibility to bundle shipments</td>
<td></td>
<td></td>
<td>-0.797</td>
<td>0.001</td>
<td>-0.723</td>
<td>0.007</td>
</tr>
<tr>
<td>Personal attributes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest in vehicle technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.621</td>
<td>0.001</td>
</tr>
<tr>
<td>"I totally agree that electric cargo bikes attract onlookers’ interest.”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.272</td>
<td>0.000</td>
</tr>
<tr>
<td>Experience with cargo bikes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.358</td>
<td>0.000</td>
</tr>
<tr>
<td>n=362</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>3.315</td>
<td>0.000</td>
<td>-2.725</td>
<td>0.000</td>
<td>-0.508</td>
<td>0.465</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-214</td>
<td></td>
<td>-204</td>
<td></td>
<td>-176</td>
<td></td>
</tr>
<tr>
<td>Pseudo R² (Mcfadden)</td>
<td>0.125</td>
<td></td>
<td>0.165</td>
<td></td>
<td>0.279</td>
<td></td>
</tr>
</tbody>
</table>
Drivers and barriers for companies to use cargo cycles
Factors influencing companies' decisions to use cargo cycles

<table>
<thead>
<tr>
<th>Environmentally specific factors</th>
<th>Company-specific factors</th>
<th>Vehicle-specific factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Regulative framework conditions</td>
<td>• Type of fleet decision-making</td>
<td>• Compatibility with transport tasks</td>
</tr>
<tr>
<td>• Socio-spatial context</td>
<td>• Companies' strategic orientation</td>
<td>• Relative advantage/disadvantage compared to conventional vehicles</td>
</tr>
<tr>
<td>• Economic framework</td>
<td>• Individual attitudes of decision makers</td>
<td>• Availability (trialability) of cargo cycles</td>
</tr>
</tbody>
</table>

Results of an ongoing research project conducted by DLR Institute of Transport Research
Funding by the German Federal Ministry of Transport and digital Infrastructure
Closing remarks
Closing Remarks

- It’s still a long way to go...
- ...but: cargo cycles have been proven as an established element of urban freight in various European cities
- Market for cargo cycles / cargo cycle deliveries is growing
- Analysis of user acceptance is crucial
- What do we need: (some examples)
 - Awareness of the topic and the different interest groups
 - Sufficient data
 - Partners for the process
 - Clear responsibilities
- Statistics are missing, calculating potentials is an option, but local impact differs → discussion and research is needed
- First projects delivered real and relevant data, not just for cities, but especially for companies
- Perfect potential for synergetic effects between private and commercial bicycle use (e.g. investments into cycling infrastructure)
Do you want to know more?

cyclelogistics.eu (English)

lastenrad.vcd.org (German)

Publications:

... or ask us!
Thanks from Berlin!
Questions?

Achim Beier
messenger Transport+Logistik
achim.beier@messenger.de

Johannes Gruber
German Aerospace Center (DLR)
Institute of Transport Research
johannes.gruber@dlr.de

Julius Menge
Berlin Senate Department for
Urban Development and Environment
Julius.Menge@SenStadtUm.Berlin.de