
VR-OOS: The DLR’s Virtual Reality Simulator for
Telerobotic On-Orbit Servicing With Haptic Feedback

Mikel Sagardia, Katharina Hertkorn,
Thomas Hulin, Simon Schätzle

German Aerospace Center (DLR)
Muenchener Str. 20,

82234 Wessling, Germany
+49 8153 28-1039

Mikel.Sagardia@dlr.de

Robin Wolff, Johannes Hummel,
Janki Dodiya, Andreas Gerndt

German Aerospace Center (DLR)
Lilienthalplatz 7

38108 Braunschweig, Germany
+49 531 295-2970

Robin.Wolff@dlr.de

Abstract— The growth of space debris is becoming a severe
issue that urgently requires mitigation measures based on main-
tenance, repair, and de-orbiting technologies. Such on-orbit
servicing (OOS) missions, however, are delicate and expensive.
Virtual Reality (VR) enables the simulation and training in a
flexible and safe environment, and hence has the potential to
drastically reduce costs and time, while increasing the success
rate of future OOS missions. This paper presents a highly
immersive VR system with which satellite maintenance proce-
dures can be simulated interactively using visual and haptic
feedback. The system can be used for verification and training
purposes for human and robot systems interacting in space. Our
framework combines unique realistic virtual reality simulation
engines with advanced immersive interaction devices. The DLR
bimanual haptic device HUG is used as the main user interface.
The HUG is equipped with two light-weight robot arms and
is able to provide realistic haptic feedback on both human
arms. Additional devices provide vibrotactile and electrotactile
feedback at the elbow and the fingertips. A particularity of the
realtime simulation is the fusion of the Bullet physics engine with
our haptic rendering algorithm, which is an enhanced version of
the Voxmap-Pointshell Algorithm. Our haptic rendering engine
supports multiple objects in the scene and is able to compute
collisions for each of them within 1 msec, enabling realistic
virtual manipulation tasks even for stiff collision configurations.
The visualization engine ViSTA is used during the simulation
to achieve photo-realistic effects, increasing the immersion. In
order to provide a realistic experience at interactive frame
rates, we developed a distributed system architecture, where
the load of computing the physics simulation, haptic feedback
and visualization of a complex scene is transferred to dedicated
machines. The implementations are presented in detail and the
performance of the overall system is validated. Additionally, a
preliminary user study in which the virtual system is compared
to a physical test bed shows the suitability of the VR-OOS
framework.

TABLE OF CONTENTS

1 INTRODUCTION . 1
2 RELATED WORK. 2
3 THE INTERACTIVE VIRTUAL REALITY ENVI-

RONMENT . 3
4 INTERACTION DEVICES AND TECHNIQUES 8
5 USE CASE SCENARIO . 11
6 EXPERIMENTAL RESULTS . 12
7 CONCLUSIONS . 13

REFERENCES . 15
BIOGRAPHY . 16

978-1-4799-5380-6/15/$31.00 c�2015 IEEE.

1. INTRODUCTION
Space systems like satellites are designed to operate for
a predefined mission period. Once on orbit, the system
hardware cannot be modified anymore. In opposition to other
technical systems like airplanes, automobiles, trains, etc.,
failed sub-systems cannot be repaired after launch. For this
reason, verification and validation over the development life-
cycle of a spacecraft is extremely important. Moreover, only
space certified sub-systems are allowed in order to ensure
a maximum quality and robustness. Nevertheless, it cannot
be excluded that sub-systems fail. Therefore, all essential
sub-systems are redundant to provide a backup in case of
malfunctions. If those fallback solutions do not work as well,
the whole mission could be in jeopardy.

In the past, spacecraft servicing missions were carried out
just for very prestigious or expensive space systems which
worked unsatisfactorily. The most famous cases are the
Hubble space telescope (HST) servicing missions. NASA
space shuttles brought astronauts to the telescope on orbit
to set the HST in operation after the replacement of an
incorrectly shaped mirror and to expand the mission by
installing technically advanced instruments and devices [1].
Repairing, maintenance, and extensions are the main incen-
tives for servicing missions [2]. But past missions were
extremely expensive. And an extravehicular activity (EVA)
of an astronaut is very perilous. Reducing costs and risks
are the main driving factors for research on robotic on-orbit
servicing (OOS) approaches.

Space systems are often unique copies, and suddenly appear-
ing malfunctions may merely be analyzed approximately on
Earth by the responsible engineers. Similarly, unexpected
complications may occur for standard maintenance activities
like device replacements or refueling operations. Therefore,
purely autonomous robotic servicing missions do not seem
to be reasonable. Instead, the most promising approach is
telerobotics. In this case, the service engineer controls a
service robot remotely in order to perform the maintenance
tasks. According to the robot camera images and the on-site
findings, the engineer can adapt the foreseeable tasks.

However, satellite systems in use nowadays are not designed
for service operations. It is also still an open question how
service satellites including robotic arms have to be specified
so that those systems can flexibly be used for several classes
of spacecraft systems. To elaborate a matching couple of
maintainable satellites and service satellites, a physical mock-
up could be built up in research laboratories. However,
especially when variants of solutions have to be investigated,
the physical approach can become very expensive and in-
flexible. Here, virtual workspaces come into play. Such

1

(a) (b) (c)

Figure 1. (a) The DLR’s humanoid SpaceJustin designed for researching on on-orbit servicing (OOS) telerobotic
maintenance; (b) The DLR’s bimanual haptic interface HUG for telepresence and virtual reality applications; (c) The

VR-OOS simulator on an immersive projection-based display for simulating and training telerobotic OOS tasks.

environments cannot replace physical tests completely but
can help to adapt current blueprints much faster in order to
iterate to feasible solutions. Those can then be constructed as
physical prototypes for final evaluations.

The goal of the project depicted in this paper is to specify
and evaluate appropriate interfaces between engineers and
immersive virtual environments (IVE). It is crucial that the
virtual scene appears as realistic as possible. Otherwise,
hypotheses cannot be proved adequately and findings could
be wrong. The closeness to reality requirement does not
only address the visualization. Indeed, in most cases, just
a plausible visualization of the virtual scenario may already
be sufficient. Much more important but also considerably
more challenging seems to be the interaction interface (see
Fig. 1). Virtual objects for assembly simulation have to
behave physically correctly. Therefore, collision detection
has to be fast and accurate. An efficient physics engine
has to manage multibody motion reliably. And finally, a
sufficient force feedback is essential to emulate a realistic
service environment to the engineer. In this line, it turns out
that haptic force feedback is superior to pure visual feedback
in terms of movement precision, mental workload, and spatial
orientation [3].

In this paper, we demonstrate our approaches to implement
immersive virtual workspaces for interactive satellite design
and remote servicing training. After a survey about related
work, the fundamental system architecture of the virtual
reality simulator is described in Section 3. The different
interaction devices incorporated and techniques developed
are explained in detail in Section 4. To demonstrate the
effectiveness of our approaches, a use case scenario has been
developed and is described in Section 5. After depicting
the experimental results in Section 6, we conclude the main
points of the current status of our project and point out
possible next research steps.

2. RELATED WORK
The potential of virtual reality (VR) technology for training
and simulation of on-orbit servicing tasks has long been
recognized. For instance, a virtual environment was used
for the training of EVA servicing activities for the Hubble
space telescope (HST) servicing mission in 1993 [4]. The
system included graphical representations of the HST, the
space shuttle cargo bay, as well as maintenance hardware. It
did not simulate the dynamic behavior of the objects and did
not include force feedback. Force feedback was integrated in

a similar VR simulation for astronaut training in preparation
for EVA on space shuttle missions [5]. This system also
included the dynamic simulation of the objects in zero-gravity
environments as well as the shuttle’s remote manipulator
system, and allowed payloads being manipulated. A VR
simulator for astronaut training using force feedback was
presented in [6]. An exoskeleton in addition to a data glove
was used as input and force feedback device. The software
framework included collision detection, force computation
and a dynamics module. The system focused on the task of
grasping a box using a handle, extracting it from a slot and
inserting it into another slot. A more recent VR simulator
for astronaut training used a data glove in combination with
a CyberGrasp for force feedback, a head-mounted display
and motion tracking, as well as physics simulation [7]. The
system was used to train astronauts for space walks, including
climbing along a handrail, and load retrieval.

Compared to these systems, our VR-OOS approach is unique,
as it sensibly combines novel sophisticated software and
hardware components for visualization, interaction, collision
detection, and tactile and force feedback. The technologies
provide a high level of immersion to the operator through
multi-modal feedback and can be used to verify designs, train
astronauts, or teach robotic systems to interact appropriately
in space environments. VR-OOS also allows for several use
case scenarios with multiple moving objects that are able to
interact with each other. An exemplary future mission which
may benefit from the VR-OOS system is the German orbital
servicing mission DEOS [8], [9]. The goal of this mission is
to demonstrate advanced maintenance tasks on a satellite by
using a torque-controlled robot [10]. Such a robot is equipped
with torque-sensors that precisely measure the interaction
forces between the robot and the satellite [11]. This advan-
tageous property allows for haptically teleoperating the robot
in space, which means that a human operator commands the
movements of the robots while perceiving and controlling the
interaction force that occurs in space.

This mission exploits DLR’s funded experience in torque-
controlled robots of more than two decades, since the first
light-weight robot was built in 1991. This robot technology
has shown its suitability for space during the ROKVISS
mission launched in December 2004, in which a robot arm
was teleoperated from ground including force-feedback [12].
Moreover, DLR could already successfully prove that their
haptic telepresent control concepts work in a real-world sce-
nario in which communication delays of more than half a
second occur [13]. The concept also works for complex
humanoid service robots such as DLR’s SpaceJustin (see

2

Fig. 1a), which may be used in a similar form for OOS tasks.

3. THE INTERACTIVE VIRTUAL REALITY
ENVIRONMENT

Our virtual reality (VR) simulator is designed to enable
real-time digital mockup interaction for the simulation and
training of typical on-orbit servicing tasks. It targets immer-
sive VR environments, e.g., using large projection-based 3D
displays or head mounted displays (HMD) with head-tracked
stereo vision, as well as various interaction devices for the
user to interact with the virtual world. Fig. 2 shows a block
diagram of the simplified system architecture. It consists of
four core components. The visualization component provides
photo-realistic real-time rendering of the scene from a user’s
viewpoint, including the satellite’s components, tools and
the space environment. It reads user tracking data xtracking,
such as head tracking or tracking of body parts, and passes
it on to the framework as user pose xuser. Similarly, the
collision and force computation component reads the pose
of the user’s hand x

hd

and calculates the respective force
F
hd

for providing haptic feedback to the user when collisions
occur during interactions with virtual objects. This force
is also used as Fuser to move manipulated objects in the
movement simulation. The movement simulation computes
the dynamic and kinematic behavior of the virtual objects
based on user input, interactions with other virtual objects,
and physical constraints. All three components above base
their simulations on predefined models that describe object
properties, such as geometry, material and mass, as well as
constraints, such as the maximum angle a joint can rotate.
Additionally, there is a state machine and logic control com-
ponent that steers the conditional behavior of virtual objects
during an assembly task, such as switching on lamps or
starting the motor on an electric screwdriver. It monitors
the data flow between the other components and changes
object states accordingly. Interaction devices include not only
haptic devices, but also displays, tracking systems, and other
interfaces, as well as various interaction techniques that allow
an efficient use of them.

A VR simulator has strict requirements for the accurate
simulation of the dynamic environment at interactive rates.
Typical use case scenarios can be complex and demanding
in computation. In order to fulfill the real-time requirement,
our framework uses a distributed architecture. This way,
force computation, movement simulation, and visualization
can run on dedicated machines. In addition, our framework
abstracts each component to be stand-alone with interfaces
for communication, data management, and simulation pro-
cesses. Internally, each component manages its own repre-
sentation of the simulation with its optimized algorithms and
data structures. Changes of input parameters and simulation
results are synchronized across the distributed components
by a network communication layer and a common message
format.

The advantage of such a generic abstraction is that it provides
modularity and improves the flexibility of the system. It
allows an easier implementation of alternative components
or inclusion of existing simulation systems and supports an
uncomplicated exchange of them. A disadvantage of using
a distributed system architecture is that the required network
communication for synchronizing the distributed simulations
induces delay and other negative effects due to network
characteristics, such as jitter and packet loss. Our framework
addresses this with a number of mechanisms for reducing

latency and maintaining consistency across the distributed
simulations. These include advanced message queuing, sep-
aration between reliable, and non-reliable messages and low-
overhead communication protocols, as detailed in [14]. We
report the end-to-end latency for transmitting synchronization
messages across the distributed simulation system in Sec-
tion 6.

State Machine and Logic Control
The logic component manages the states and events that are
not covered by the movement simulation. This includes
monitoring of states, for example, the on/off state of a virtual
switch, and triggering behavioral actions based on predefined
conditions, such as turning on a lamp when the state of a
virtual switch is on. It also includes the dynamic adjustment
of parameters for force computation or movement simulation,
such as stiffness or degrees of freedom in mechanical con-
straints. This makes the simulation of complex mechanics,
like the snapping mechanism of cable connectors, much
simpler.

Additionally, the logic component controls the data stream
between the distributed simulation components, checks the
validity and fulfillment of constraints, and can adjust data
if necessary before passing it on. For example, when the
force computation delivers a force that is above the maximum
allowed value, then the logic component can decide to cap the
force before passing it to the haptic device.

Visualization
Apart from training the correct sequence of sub-tasks, a goal
of the simulation environment is to allow the user to get an
awareness of the arrangement and appearance of parts and
tools. Hence, a realistic and high-quality visualization of the
satellite components and the space environment are important
factors for the success of a training simulation. This not
only includes the photo-realistic rendering of detailed virtual
objects with correct shading and high-resolution textures, but
also the correct representation of the environmental effects
that exist in orbit, such as bright sunlight, hard shadows, and
a moving earth in the background.

Being a training and analysis tool, another research aspect of
the visualization component is to augment the photo-realistic
visualization of the virtual scene with the information-based,
non-photo-realistic visualization of scientific data. Examples
are the display of collisions between the robot and satellite
parts, or the visualization of possible motion paths to avoid
collisions. Additionally, hints on the order of servicing sub-
tasks or other instructions could be overlaid on top of satellite
parts.

Utilizing the modular system architecture, we concurrently
developed three independent implementations of the visual-
ization component, each with its own specific advantages.
Each of the visualization implementations organizes the vir-
tual objects in a scene graph and continuously synchronizes
it with state updates from the movement simulation. One
implementation is based on InstantReality [15], a VR devel-
opment framework based on X3D that integrates well with
the existing robot simulation environment at DLR. Another
is based on the ViSTA VR-toolkit [16], a C++ framework for
the development of VR applications, used to implement ad-
vanced rendering techniques. A screenshot is shown in Fig. 3.
The visualization of realistic material effects of satellite
components has been realized through a number of shader
programs using the OpenGL shading language (GLSL). The

3

Movement
Simulation

bPhysics
 Enginej

Interaction
Devices

d
Interaction
Techniques

Haptic Device

VR Display

...

Collision Detection
Force Computation

Logic

Visualization

Models
d

Object
Properties

Service Robot
or Human

Target Satellite
Components

...

Fuser

xobj

xuser

xobj

xtracking

image

xhd

Fhd

bGeometryG MaterialG ConstraintsG MassG etc.j

Figure 2. Simplified system architecture with core components and data flow. Data is passed between the interaction
devices and core components. Additionally, the logic component monitors the data flow and allows one to change

object states for steering conditional object behavior. The simulations in the core components are based on predefined
models and object properties.

satellite’s multi-layer foil (MLI), for example, uses an envi-
ronment mapping shader for creating the metallic reflection
effect. Other parts use their own specific shaders to simulate
the visual effects of their particular surface materials.

The space environment draws stars at their known positions
extracted from ESA’s Tycho-1 star catalog with approxi-
mately 1 million entries. The atmospheric scattering effect
of Earth in the background is based on a clear sky atmo-
spheric model and calculates the scattering integral along
a ray through the scene. Our algorithm uses precomputed
scattering tables in order to achieve high frame rates [17].

All the above mentioned rendering techniques approximate
the effects of light and reduce accuracy in favor of short
computation times. We are currently developing a paral-
lel and distributed real-time ray-tracing system based on
NVIDIA OptiX2. Ray-tracing is an image generation method
that creates physically more accurate images by tracing the
path of light through the scene and considering some of
the physical properties of object materials. Our ray tracing
method allows high quality rendering of light effects, such
as reflection, refraction, and shadows; however, it is signifi-
cantly more computationally intensive. It splits an image into
smaller parts and computes these in parallel on a cluster of
12 graphics processing units (GPU). With this prototype, we
achieve a performance of up to 15 frames per second in high-
definition resolution (1920x1080 pixels).

Collision Computation: Data Structures
In order to perform virtual manipulation tasks with haptic
feedback, it is essential to employ a haptic rendering algo-
rithm. These algorithms detect the overlap between colliding
objects and compute a collision force that can be displayed
to the user. Several approaches have been presented in
recent years, but the field of collision feedback is still an
ongoing research topic. Some well known methods work with
simplified convex hull representations [18] or build hierarchi-
cal models [19] in order to achieve the challenging update
rates demanded by haptic applications. A thorough survey
about different haptic rendering methods is given in [20].
The haptic rendering algorithm used in our framework is an
improved reimplementation of the Voxmap-Pointshell (VPS)
Algorithm, initially presented by McNeely et al. [21], [22]
and improved by Barbič and James [23]. This algorithm com-

2NVIDIA OptiX - http://www.nvidia.com/object/optix.html

Figure 3. Real-time visualization of a satellite and space
environment realized through OpenGL shader language.

putes collision forces and torques of complex geometries with
an update rate of 1 kHz. To achieve such a high computation
frequency, two types of data structures are precomputed for
each colliding object-pair: voxelmaps and pointshells (see
Fig. 4).

Voxelmaps are 3D grids in which each voxel stores a discrete
distance value v 2 Z to the surface. Voxels on the surface
layer have v = 0, voxels in the kth inner layer v = k, and
voxels in the kth outer layer have v = �k. Additionally,
the scalar voxelmap function V (P) yields the signed distance
value of a point P in the voxelmap (see Fig. 5(a)). Pointshells
are sets of points uniformly distributed on the surface of the
object; each point P

i

has an inwards pointing normal vector
ni (see Fig. 5(b) and Eq. (1)).

Point-sphere hierarchies are built down-top using the points
of the plain pointshells. As shown in Fig. 4(c), the K closest
points are clustered together and the point in the cluster
closest to its center of mass is selected to be the cluster parent
point. When all points of the leaf level are clustered, the
clustering process for the next level is started using the parent
points. This process is repeated until only one point describes
the whole object. Next, for each cluster of each level, a
minimally bounding sphere [24] which recursively contains
all cluster children points is computed, as shown in Fig. 4(d).
Barbič and James [23] scatter points top-down and build
a similar structure, targeting simulations with deformable

4

(a) (b) (c) (d) (e) (f) (g)

Figure 4. Point sampled and voxelized representations of a virtual gripper and a handle. (a) Point-sphere tree of the
gripper: one sphere level in yellow and two successive point levels; (b) Close up of the two last point levels: the red set

contains K = 4 times more points; (c) Clustering of the point-sphere hierarchy: K closest points are ordered into
clusters (K = 4 in this case); (d) Minimally bounding spheres that contain all the children points of a cluster;

(e) Half-voxelized handle; (f) Close up of the voxelized handle. (g) Transversal section of the voxelized handle: distance
(turquoise-blue) and penetration (yellow-red) values are computed with the V (P) signed distance function in Eq. (1).

objects. In contrast, our approach uses minimally bounding
spheres in the clusters, and the algorithm is optimized for fast
and accurate collision detection between rigid bodies. In this
work, we used the fast and accurate voxelmap and pointshell
generator presented by [25].

Collision Computation: Distances and Penalty Forces
In this section, we explain the computation of distance or
penetration values and the calculation of penalty force values
based on the data structures described in the previous para-
graphs. In order to understand which points are selected for
this computation see the next section.

The total collision force and torque (f
tot

, t
tot

) for each
colliding object-pair is computed as the sum of all collision
forces and torques (f

i

, t
i

) generated by colliding points P
i

.
Points are colliding if their voxel value v � 0. Then, their
normal vectors n

i

are weighted by their penetration in the
voxelmap V (P

i

) resulting in the collision force f
i

. Torques
t
i

generated by colliding points are the cross product between
forces f

i

and point coordinates P
i

, all magnitudes expressed
in the pointshell frame that has its origin in the center of mass.
The computation of the single forces is summarized in Fig. 5
and Eq. (1):

f
i

= V (P
i

)n
i

= (v(P
i

)s| {z }
global

+ niei|{z}
local

)n
i

,

t
i

= P
i

⇥ f
i

, (1)

f
tot

=

X

i

f
i

, t
tot

=

X

i

t
i

{8i | V (P
i

) � 0}.

The signed distance function V (P
i

) of the voxelmap is
split into two components: global and local distances (or
penetrations). The global distance or penetration v(P

i

)s is
the value v of the voxel layer in which the point is multiplied
by the size of the voxel s; thus, it indicates the approximative
penetration of the point in the voxelmap. The local distance
or penetration n

i

e
i

is the projection of the vector between the
pointshell point and the voxel center ei on the normal vector
of the point; hence, it denotes the depth of the point within
the voxel.

Collision Computation: Hierarchy Traverse
The computation time of the algorithm depends on the num-
ber of points of the pointshell that has to be checked for

0

00

0

00

0

0

1

-1 -1 -1 v(P
i

) = 0

n
i

f
i

e
i

s
C

(a) (b)

H
0

B(HB)

H
0

A(HA)

(c)

P
i

Figure 5. (a) Voxelized and point-sampled objects in
collision. Each voxel has its voxel layer value v related to

its penetration in the voxelmap, and each point P
i

its
inwards pointing normal vector n

i

. (b) The single point
force f

i

can be computed scaling the normal vector using
its penetration with the penalty-based force computation
approach. The cross products of forces and points yield

torques. (c) Representation of the contact manifold
{P

i

,n
i

,V (P
i

)}. The physics engine can then compute the
motion that separates the objects from collision

(H0 H).

collision, whereas the voxelmap resolution (i.e., the voxel
size) affects only the quality of the force magnitudes [26].
Ideally, higher pointshell and voxelmap resolutions should
be used only in likely colliding areas, which is realized
using the point-sphere hierarchies. Note that increasing the
resolution augments the required memory space quadratically
in the case of the pointshell and cubically in the case of the
voxelmap.

Fig. 6 summarizes the hierarchy traverse which is called once
every cycle. At the beginning of each cycle, the uppermost
cluster, which has the sphere that encloses all points in the
pointshell, is pushed to a FIFO-queue. Then, the clusters of
the queue are iteratively popped in breadth-first manner. In
case the popped cluster sphere is colliding, the parent point of
the cluster is checked for collision and the children clusters
are pushed to the queue. If a leaf cluster is processed, all
points in the cluster are checked, not only the parent point.
Whenever a point is colliding, its single collision force is
added to the sum yielding the total force, as explained in the
previous subsection. A detailed explanation of the collision
computation with hierarchy traverse can be found in [27].

5

FIFO Queue

C0 POP Check
sphere

NO
COLLISION

COLLISION

Pop from front until
queue is empty

Check parent point for
collision and store

corresponding force or
add point to manifold

Push back all children
clusters of current
colliding cluster

PUSH

Check children points
for collision and store

corresponding force or
add point to manifold

Is leaf?
YES

NO

Figure 6. Breadth-first hierarchical traverse of the
point-sphere tree. The FIFO queue is initialized with the

root cluster c
1

that contains all points. Each cluster is
defined with a minimally bounding sphere (circle), a

parent point (red), K cluster points, and the addresses to
parent and children clusters.

Collision Computation: Force Scaling and Virtual Coupling
Forces and torques generated according to Eq. (1) need to
be scaled due to the fact that their stiffness strongly de-
pends on the number of points that collide, and therefore,
on the pointshell resolution that is used. In order to over-
come these effects, the empirical correction factor � defined
in Eq. (2) is used to scale the resulting collision forces
[f
VPS

, t
VPS

] = �[f
tot

, t
tot

]. The correction factor depends on
the total number of points in the pointshell N and the number
of colliding points n. With the chosen formula, we increase
the effect of contacts consisting of few colliding points:

� =

(⇣
ln(⇢N+e)

ln(n+e)

⌘
↵

1

⇢N

if n < ⇢N
1

n

if n � ⇢N,
(2)

The parameter ⇢ denotes the percentage of points that are
colliding; it is empirically set to be 1%, whereas ↵ = 2 and
ln(e) = 1.

Additionally, since the VPS Algorithm is a penalty based
method that yields volumetric forces [28], further force post-
processing is required to handle the so-called tunneling-
effect3 with a higher fidelity. In order to tackle this prob-
lem, the virtual coupling method explained in this section
was developed. Our implementation resembles a simplified
heuristics of the constraint-based haptic rendering algorithm
presented by Ortega et al. [29], commonly known as the God
Object Method. The goal of our implementation is to compute
a virtual coupling pose H

VC

of the object that remains on
the collision surface, although we penetrate the surface with
the haptic device (H

D

). In order to achieve that, we first
compute a step transformation vector �H out of the resulting
penetration (p > 0) and the collision forces and torques
computed by the VPS algorithm (f

VPS

, t
VPS

). This step
transformation denotes the minimal motion of the object to
resolve the penetration:

�H = ⌘p[�x, ��] 2 R6, (3)

3The tunneling effect appears among penalty-based algorithms when colli-
sion forces between objects that are just one polygon thick are computed.
In these cases, the penalty value – the penetration, in the case of the VPS
Algorithm – yields very small contact forces allowing interpenetration.

p

A

B

[f
VC

, t
VC

] = g(H
D

,H
VC

)

H
VC

= g(f
VPS

, t
VPS

, p)

[f
VPS

, t
VPS

]

H
D

Figure 7. Virtual coupling used to enhance the user’s
collision perception. Given that the VPS algorithm is a

penalty based method, there must occur interpenetration
in order to compute a collision force. Forces and torques
from the VPS are used to separate the interpenetrating

objects (moving them to the dashed configuration) while
displaying hard contacts on the surface.

where
p = max

i

(V (Pi)) > 0,

�� =

tVPS
ktVPSk

⇣
� kfVPSk

ktVPSk +

ktVPSk
kfVPSk

⌘�1
,

�x =

fVPS
kfVPSk�

kfVPSk
ktVPSkk��k.

(4)

The inertia and mass ratio is set to be constant with an
empirically determined value of � = 0.035m2. The filter
constant is ⌘ = 0.2. This step transformation �H and
the previous virtual coupling pose H

VC

are subtracted to
the haptic device pose H

D

. The projection of the resultant
pose on the VPS forces and torques yields the current virtual
coupling pose H

VC

shown in Fig. 7. In order to compute
the corresponding coupling forces and torques, first H

VC

is
transformed into object coordinates, and the translation and
rotation vector � is computed:

� = [x
�

,�
�

] 2 R6 H�1
D

H
VC

. (5)

This vector � contains the necessary components to compute
the virtual coupling forces:

[f
VC

, t
VC

] = [k
f

x
�

, k
t

�
�

]. (6)

The stiffness constants k
f

and k
t

are selected according to
the maximum stiffness that can be displayed by the haptic
device to obtain a realistic impression of collisions between
rigid objects while keeping it stable.

Although we are aware of the limitations of these heuristics,
this procedure turned out to be very satisfactory in practice.
Colliding objects are appropriately visualized on the surface,
avoiding the interpenetration configurations characteristic of
penalty-based haptic rendering algorithms. Moreover, hard
contacts can be generated even between thin or even non-
watertight objects.

Collision Computation: Multibody Framework
Our system allows for collision computation between several
objects. Fig. 8 shows the most important elements and

6

O1 O2 ON

ON

O2

O1 1/0 1/0 1/0
1/0

. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .

Pointshells Voxelmaps

Haptic Structures' Database

Collision Detection and
Force Computation Engines

VPS
Hierarchical

Relations Objects

Force / Manifold

Pose

VisuObject 1

Force / Manifold

Pose

VisuObject 2

Force / Manifold

Pose

VisuObject N
(F

,T
,M

) 1N

(F
,T

,M
) 12

(F
,T

,M
) 2N

∑

∑

∑

. . .

Collision Matrix

Movement Simulation (Physics Engine)

x

F / M

O1 O2 ON

ON

O2

O1 1/0 1/0 1/0
1/0

. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .

State Matrix

Configuration File

The Bimanual Haptic Device HUG

2 x (7 + 1) DoF

x
F

x
F

Visualization

CO
NT

RO
L

Figure 8. Overview of the multiple object environment framework for collision detection. Configuration steps and
data stream are shown, as well as the most important connections within the environment. The scenarios are easily

scalable and can be described in a XML-like configuration file.

A
ijf

ij

x
i

x
j

f
ji

O
i

O
j

x
i

x
j

f
i

=

P
f
ij

f
j

=

P
f
ji

Figure 9. Two objects (handle O
i

and module O
j

) linked
through a collision detection call or algorithm (A

ij

). The
user sends the pose of each object. Each algorithm

computes the collision between its corresponding objects
reading the last received pose (x

i

, x
j

). Each object
receives the collision forces, torques, and manifolds of its
corresponding algorithms, and sends a sum of all forces

(f
i

, f
j

) outwards to the user.

interfaces of the framework. In order to build a scenario,
the user describes in a simple configuration file the objects
present during the collision detection process. This de-
scription contains basically the file-paths of the objects and
their initial poses in the virtual reality, as well as additional
parameters required by the VPS algorithm. This simple but
powerful object-oriented script enables describing rich multi-
object scenarios in a very comfortable and scalable way.

Once the configuration file is parsed, the library

1. generates a data-base with all haptic data structures (vox-
elmaps and pointshells) used in the simulation,

2. determines which object pairs can collide with each other,
and thus, should be able to be checked for collision, and

3. starts and keeps the collision detection engine threads
(VPS) between objects that likely could overlap.

The whole object and algorithm pool is organized similarly
to a graph where the nodes are the objects and the edges

correspond to the collision detection algorithms. The imple-
mentation is parallelized.

As shown in Fig. 8, the user can set the pose of each object;
the contact forces or manifolds can be read independently.
Therefore, each object can be connected to a visualization
engine, a haptic device, or a movement simulator. This
structure allows for collaborative frameworks. Additionally,
the user has access to collision and state matrices. On the one
hand, the collision matrix provides the information whether
object O

i

is colliding with O
j

. On the other hand, the state
matrix can be used to activate or de-activate the collision
detection between objects O

i

and O
j

.

Each object is aware of all the objects with which it can
collide through the linking algorithms (see Fig. 9). Every
time a new collision force is sent to the object force buffer, all
object forces will be summed and sent outwards to the user if
the eldest object force is being updated in the force buffer.

Collision detection and force computation should be carried
out in a dedicated computer, given that it is an expensive and
critical task. The complexity of the problem can increase
quadratically with the number of objects in the scenario,
thus, additional methods must be employed in order to relax
it [30]. Two approaches have been implemented in our
framework: (i) object grouping and (ii) the use of spatio-
temporal coherence.

Object Grouping— By defining object groups in the con-
figuration file we create object families in which collision
detection between its members is not performed, since it is
not necessary. For instance, the collision detection between
the switches and the satellite can be saved, or the collision
detection between two consecutive links of a mechanism like
a gripper body and its jaws.

Spatio-Temporal Coherence—Collision detection has a high
spatio-temporal coherence, that is, the state in two consec-
utive cycles is very similar. This idea is implemented in
practice by observing the distance values (p < 0) of the

7

objects: the distance is divided by a maximum possible
arm movement velocity (1 m/s in our scenarios) yielding the
coherence time in which the collision query can be dispensed,
since we know objects cannot overlap during that time period.

Movement Simulation
Once the contact data of the objects has been computed, this
can be sent either to the haptic device so that the user feels the
contacts during manipulation, or to the movement simulation
module (see Fig. 8 right). This section covers the last case.
The connection to a haptic device is introduced in Section 4.

We use the physics engine Bullet4 for computing the move-
ment dynamics of the objects that are not coupled to the
user via the human machine interface. Many important
works were published in the past years regarding dynamics
simulation [31], and several physics libraries are publicly
available, each one with its advantages and disadvantages.
Our choice for Bullet is because this engine is open source,
multi-platform, supported by an active community of devel-
opers, and it ranks better performance results compared to
other libraries [32].

Bullet has its own collision detection engines, but to ensure
high update rates it usually works with simplified geometries.
Therefore, we bypass the collision detection of Bullet — both
narrowphase and broadphase — and directly use the rigid
body dynamics module which solves the motion equations
— i.e., Newton-Euler — of the objects subject to their
constraints. Note that each object of the scene has its own
representation as rigid body in Bullet.

We implemented two approaches for providing contact data
to the Bullet library. With the first method, forces and torques
computed by VPS are scaled and applied to the rigid body
representations in Bullet. With the second method [27],
we pass the contact manifold {(P, n(P), V (P) > 0)

i

}
(see Fig. 5) to the physics library. Then, Bullet computes the
corresponding constraint-based forces and integrates them
obtaining the object movement.

The main difference between both approaches is the physical
meaning of the forces. The second method seems certainly
a more coherent approach. However, the number of contact
points supported by Bullet is limited to a fixed number. On
the other side, the forces generated by our multibody collision
detection framework contain a weighted sum of all contact
points and are easy to integrate into Bullet. Due to these
reasons, the first method was used during the experiments
reported in this work. Future work will address this issue
by improving the contact manifold method.

4. INTERACTION DEVICES AND TECHNIQUES
One of the key characteristics of sophisticated virtual envi-
ronments is a real-time multi-modal interaction between the
human operator and the virtual world. To create an immersive
experience for the operator, such a virtual environment not
only involves vision but also other sensory modalities such
as the haptic modality. Our goal is to provide a multi-modal
virtual environment that delivers a lifelike simulation in order
to familiarize astronauts and robot operators to the specific
challenges that arise in telerobotic on-orbit servicing tasks.

Next to telerobotics, an application area of VR-OOS is as-

4http://bulletphysics.org/wordpress/

Figure 10. The bimanual haptic device HUG of the DLR
provides the human operator with force feedback from
the virtual world. Magnetic clutches couple the human
hands safely to the robots, while data gloves determine

the finger positions.

tronaut training. The effectiveness of training environments
is established on their ability to deliver a successful transfer
of training. In the context of virtual environments, the effec-
tiveness is determined by the amount of correct transfer of
skills and knowledge from the virtual environment to the real
world. When the environments and the situations are similar,
the relevant information is accessed and transferred — the
greater the similarity, the greater the transfer [33]. In order
to enable a great transfer of training, we seek to provide an
environment which includes realistic simulation of dynamic
and kinematic behavior of satellite components, as well as
provision of a natural and intuitive simulation of physical
interaction between human and the environment, especially
the realistic grasping of objects. Hence, selecting an appro-
priate interaction device and interaction technique is of vital
importance. VR-OOS is designed as a research platform to
investigate and advance novel interaction techniques. The
system not only includes support for immersive virtual en-
vironment and standard interaction devices such as motion
tracking of head, hand and fingers, or commercial haptic
feedback devices, but also novel custom built devices, which
are outlined in the following sections.

The DLR Bimanual Haptic Device HUG
The most relevant hardware component of the VR-OOS
framework is the DLR Bimanual Haptic Device HUG [34]
shown in Fig. 10. This highly sophisticated haptic device
is composed of two Light Weight Robot arms, which are
able to provide a human operator with realistic haptic force
feedback on both hands. The robots have seven degrees
of freedom each and are commanded at an update rate of
1 kHz, while the internal joint and motor current controllers
run at even faster rates of 3 kHz and 40 kHz, respectively. To
ensure safe operation, HUG is equipped with a multi-layer
safety architecture comprising collision avoidance, redundant
sensors, a dead-man loop, and magnetic clutches for the hand
interfaces.

Compared to commercial haptic devices, HUG has several
unique characteristics that bring valuable advantages to the
VR-OOS scenario:

• The workspace of the human arm is largely covered by the
robot arms [35]. Hence, the operator is able to intuitively
perform tasks that require large arm movements without
being restricted by the haptic interaction device.

8

(a) (b)

Figure 11. Two alternative hand interfaces: (a) The
active hand feedback device enables the operator to
control the grasping force applied on virtual objects;

(b) The robotic gripper with a manual switch was used
for the pilot study (see Section 6).

• A broad set of various hand interfaces may be used due
to the maximum payload of 7 kg per arm. The hand
interfaces currently used for grasping and manipulation
tasks in the virtual world are passive datagloves (Fig. 10)
and active force feedback devices attached as end-effector
to the wrists of HUG (left photo of Fig. 11). However,
in order to fairly assess the authenticity of the VR-OOS
simulation, a robotic gripper (right photo of Fig. 11) was
used for the pilot study of Section 6.

• Impedance and admittance controlled operation is possi-
ble due to torque and position sensors integrated in each
robot joint. Thus, the robots not only can be used to
provide the operator with force feedback, but also guide the
human hand along predefined trajectories or demonstrate
movements. This feature is especially useful for training
purposes.

• An additional force-torque sensor at the wrist of each robot
arm precisely measures the interaction forces between the
human and the device. These forces are used by an
impedance feedforward controller [36] to scale down the
apparent inertia to 30% of its original size.

To simplify and speed up the programming of such a complex
robotic system, a separate interactive robot viewer [37] intu-
itively augments robot parameters over a virtual representa-
tion of the haptic device HUG (see Fig. 12). It features round
arrows to indicate the torque difference between the measured
and commanded torques of the revolute robot joints, anno-
tated labels (also called billboards) to show the numerical
parameter values, and a transparent phantom of the robot to
reveal the target position of the motion interpolator. These
properties not only turn the robot viewer into a powerful tool
for supervising the state of the robotic system, but also enable
easily simulating and testing new control modules offline, i.e.,
without the robotic hardware.

With all its characteristic features, HUG enables the operator
to intuitively manipulate objects in the virtual scene, interact
with the virtual environment, and realistically feel 6-DoF
contacts while performing VR-OOS tasks. However, the
quality of haptic feedback does not only depend on the
haptic device and the haptic algorithm used, but also on the
parameters controlling the interaction between the virtual and
the real world. To this end, an analytical stability analysis
has been conducted [38] and recently complemented by an

(a) (b)

Figure 12. The robot viewer visualizes the current
position and system parameters of HUG. (a) The red
round arrows show torque differences between the

measured and commanded torques of the revolute robot
joints. (b) The green transparent robot phantom shows

the target position of the motion interpolator.

optimal control approach [39].

This approach allows to optimally set the parameters of
virtual walls and collisions between virtual objects. It is
physically motivated and maximizes the energy dissipation
of the transient response of a virtual collision. The method
is particularly advantageous for the challenging case of stiff
impacts, e.g., if simulating collisions between two stiff metal
parts. Thus, it contributes to further improve the quality of
haptic feedback provided by HUG.

Electro-Tactile Feedback
Haptic information plays a crucial role in diverse everyday
interactions, especially during perception, grasping, and ma-
nipulation of objects. While the haptic device HUG provides
robust force-feedback, which is important especially for tele-
operation tasks, such kind of devices are however floor-
mounted and can be bulky for some scenarios. This may
restrict the movements of users during training or analysis
tasks, for instance, while performing in spacious CAVE-like5

immersive virtual environments, where users may prefer to
move around to explore and understand the environment.
In order to cater to such needs, we developed promising
alternative mobile interaction devices, which even may be
used in parallel to HUG, to increase the level of interaction
and haptic feedback.

Fig. 13 shows the first prototype of our lightweight electro-
tactile device designed to simulate tactile sensations such as
touch, pressure, movement, and slip, that may occur during
grasping and manipulation tasks at the finger tip. Electro-
tactile stimulation is provoked by a current passed through the
skin, which excites directly the afferent nerves and causes tac-
tile sensation. Four different types of nerve endings, namely
Meissner’s Corpuscles, Merkel’s Disks, Pacinian Corpuscles,
and Ruffini Endings, can be stimulated in order to simulate
many different types of contact and sensation. Therefore,
electro-tactile feedback can evoke a range of sensations in-
cluding tingling, itching, vibration, touch, pressure, pinch, or
pain.

Our prototype generates short electric pulses (<100µs,
0 – 200 V) and applies them to the skin on the user’s finger
tips using small electrodes (2.54 ⇥ 1.28mm2). Each finger

5A Cave Automatic Virtual Environment (CAVE) is an immersive virtual
reality environment where different walls, floor and roof of a cube-like room
can be projected with images.

9

Figure 13. The first prototype of the electro-tactile
feedback device mounted onto a user’s arm.

Figure 14. The VibroTac provides tactile feedback on the
arm using six vibration motors equally distributed. The
variation of the rotation frequency of the motors enables

a higher resolution than the six segments.

is equipped with eight electrodes to activate different types
of nerve fibers at the same time and to enable the device to
provide spatial information on the finger tip. Additionally, the
thimbles of our prototype are equipped with infrared LEDs
which can be synchronized with optical tracking systems.

Vibro-Tactile Feedback
A further mobile feedback device that may be used in immer-
sive virtual environments is the VibroTac (see Fig. 14). This
tactile feedback bracelet consists of six vibrotactile actuators
which can apply vibrotactile stimuli to the human arm [40].
Each actuator can be activated and controlled independently
resulting in a variety of vibrotactile stimulation patterns that
can be generated and displayed to the user. It turned out that
this vibration feedback is perfectly suited to display direction
and collision information to the wearer of the device [41]. In
our application, we use the VibroTac to display contacts and
collisions between the human arm and virtual objects while
the arm is optically tracked.

Pseudo-Haptic Feedback
In case haptic feedback devices are not available or not
applicable for the preferred immersive virtual environment
due to their heaviness or complexity, pseudo-haptic feedback
can be an alternative. In order to improve grasp performance
where no haptic feedback can be provided to the user, we
proposed three simple pseudo-haptic methods to apply forces
onto virtual objects [42]. Our first method uses an indirect
interaction technique exploiting a standard interaction device
of our VR system, an ART6 Flystick2. The Flystick2 is a
tracked 6-DoF target that has six buttons and an analog thumb
joystick along the x and y-axis. We linearly mapped the
analog value of the joystick’s y-axis (up-down) to opening
and closing a virtual hand. Pushing the joystick completely
up would fully open the hand, and pulling it completely down

6http://www.ar-tracking.com

Figure 15. Representing heaviness of grasped virtual
objects through: (a) the distance between tracked fingers

and thumb; (b) the strength of pinching fingers and
thumb.

Figure 16. The first prototype of our myoelectric device
mounted onto a user’s arm.

would close the hand and apply the maximum force. In the
joystick’s neutral position, the virtual hand is closed, so that
no gripping force is applied. To apply a force to the virtual
fingers, the user has to pull down the joystick while the force
increases linearly with the analog joystick value.

Our second method is a direct interaction technique and
is based on the penetration caused by tracked finger posi-
tions when grasping a virtual object. This method uses a
combination of the kinesthetic and proprioceptive feedback
from the fingers (distance between fingers and the thumb)
mapped to the grip force in combination with the simulation
of appropriate visual feedback of the object behavior (e.g.,
object being lifted / not lifted). A standard finger tracking
device from ART is used in this method and illustrated in
Fig. 15a.

Our third method is also a direct interaction technique and
exploits self-haptic feedback — the tactile feedback created
by the user’s fingers when pinching the fingertips and the
thumb for grasping a virtual object. The strength of the pinch
is mapped directly to the strength of the grasping force in
combination with the simulation of the appropriate visual
feedback of the object behavior (e.g., object being lifted /
not lifted / almost lifted). For grasping light objects, the
user pinches very gently. Grasping heavy objects requires the
user to pinch stronger. We implemented this method using
a finger-tracking device that has been extended with a pinch
intensity sensor from ART. It has electrodes attached to the
thimbles and measures the electrical impedance between the
thumb and any of the four fingers through skin contact. The
method is illustrated in Fig. 15b.

10

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 17. Use Case Scenario. The columns show the several tasks of the use case scenario, where a broken electronic
module must be replaced. (a) and (e): remove the MLI cover of the satellite; (b) and (f): turn off the switch of the
broken module; (c) and (g): grab the handle tool and insert it into the hole of the module; (d) and (h): take off the

broken module. The rows show two setups that enable the user to interact with the use case scenario. (a) to (d): the
teleoperated Space Justin; (e) to (h): a virtual reality simulation using a power wall, finger tracking, and pseudo-haptic

feedback.

Myoelectric Input
Optical, magnetic, inertia, and ultrasonic tracking systems
cannot measure forces on user’s fingers after closing the hand
for grasping. To solve this issue, various techniques have
been developed, such as resistive sensors, as also used above
for measuring the pinch force of the pseudo-haptic feed-
back, or piezo-elements, conductivity measurement between
fingers, force-feedback or myoelectric devices. However,
readymade consumer products, like the MYO from Thalmic7,
do not offer low-level access to hardware and only provide
gesture recognition. Most other available interaction devices
are desktop based, heavy, difficult to apply to the user, or
invasive, and therefore, not applicable for everyday’s research
in immersive virtual environments. Hence, we developed
our own myoelectric prototype device as shown in Fig. 16.
It measures the myoelectric signals of the muscles at eight
locations distributed evenly over the upper forearm.

All of our previously introduced feedback and input devices,
namely electro-, vibrotactile, pseudo haptic feedback, and
myoelectric input, can be used in parallel to the HUG, and
hence further enrich the level of immersion for the human
operator.

5. USE CASE SCENARIO
Our use case scenario is designed to represent a variety
of manipulation tasks and is based on a physical satellite
mockup that is used to demonstrate the manipulation capa-
bilities of DLR’s telepresence system (Fig. 1a and 1b; upper
row of Fig. 17). The virtual mockup allows the fulfillment
of these tasks in our simulation (see Fig. 18). We define a
general procedure called “replacement of a malfunctioning
satellite module” which englobes most of the tasks that can
be carried out (see Fig. 17). In this procedure, first, the MLI
cover wrapped around the mockup is lifted. Then, the switch

7http://www.thalmic.com

related to the broken module is turned off to disconnect the
module from its power supply. This new state is displayed
by a color change of the lamp located above the module from
green to red. To unplug the module, a handle is needed which
is grasped with a two-finger gripper. The handle is inserted in
the corresponding hook on the module allowing the removal
from its cavity. A new module can be inserted in the cavity
and the power supply is switched on.

These tasks are realized using various combinations of the
components described in Sections 3 and 4, emphasizing
the modularity of our approach. The first row of Fig. 17
shows the interaction with the physical mockup performed
by SpaceJustin, a humanoid upper body with 17 + 30 DoF
(7 for each arm, 3 for the torso and head and 15 for each
robotic hand) shown in Fig. 1b, which is teleoperated using
the bimanual haptic device HUG (see Section 4). Simulating
the humanoid robot in the virtual environment is one of the
goals of our simulation.

Another realization of the satellite maintenance use case is
shown in the second row of Fig. 17. A powerwall displays
a realistic visualization of the scenario simulating surface
materials, stars, and the atmosphere. Light-weight input
devices like the myolelectric input device or the finger track-
ing allow interaction with the virtual environment without
disturbing the visual immersion into the scene. The user
controls a virtual five-finger robotic hand and can interact
with deformable objects like the MLI cover wrapped around
the satellite.

A further setup uses the HUG to ensure the high immersion
of the user into the virtual environment by combining haptic
and visual feedback. The operator wears a head-mounted
display and his/her head movements are tracked allowing to
intuitively change the viewpoint in the virtual scene. The
VibroTac gives feedback on the lower arm of the user if
his/her elbow collides with virtual objects. The operator
controls the virtual counterpart of a two-finger gripper that
is also used in the pilot study described in the next section.

11

Figure 18. The interaction possibilities in the use case
scenario. The virtual representation of a satellite mockup
designed to test various manipulation scenarios, i.e., turn
on/off switches and (un-)plug modules using a tool. The

collision detection module and the physics engine have to
cope with the interactions between all the elements in the

scene, displayed with green arrows.

This unique setup will allow for a fair comparison between
real teleoperated and virtual tasks in future work.

6. EXPERIMENTAL RESULTS
This section reports some key performance values that are
more thoroughly discussed in [14] and presents the results
of a pilot user study that was carried out for evaluating the
system usability.

Performance
We measured the latency for transmitting messages to
synchronize the simulation components across the dis-
tributed simulation components and processing a simula-
tion cycle. The time between moving the hand using
the HUG and delivering the resulting force when touch-
ing a moving virtual object was on average t

1

= 2.8 ms,
(t
1

=

P
t
x

hd

+ t
Fuser + t

x

obj

+ t
F

hd

, for a description of
symbols refer to the data flow in the simplified system
architecture in Fig. 2). The time between moving the
hand and the visualization of the resulting movement of
a touched or pushed object was on average t

2

= 7.1 ms,
(t
2

=

P
t
x

hd

+ t
Fuser + t

x

obj

+ timage, note that timage does
not include the time waiting for the vertical sync refresh on
the graphics card). A more detailed discussion of the latency
measurements of the distributed system can be found in [14].

Pilot User Study
We conducted a pilot study to evaluate the virtual reality
simulation and compare it to the real world in order to detect
the most important evaluation parameters for a later more
thorough study. We present the results we obtained to give
an idea on the system usability.

The participants were instructed to perform four manipulation
tasks with the satellite mockup in three different conditions.
The four manipulation tasks are shown in Fig. 19; they
consisted in (a) colliding against a specified square on the
satellite mockup, (b) turning off two switches on the satellite,
(c) grabbing the handle tool, and (d) inserting the handle tool

in a module of the satellite.

The tested conditions consisted of:

1. R: Tasks performed in the reality (R) on a physical
mockup of a satellite with the bare hand.

2. RH: Tasks performed in the reality (R) on a physical
mockup of a satellite but guiding a robot arm of the HUG
(H) in gravity compensation mode (i.e., the robot arm
followed the movements of the human without resistance).

3. VR: Tasks performed in the virtual reality (VR) on the
virtual mockup of the satellite (1:1 replica of the physical)
using the robot arm of the HUG.

In the conditions RH and VR, shown in Fig. 20, the par-
ticipants had to move the gripper of Fig. 11 attached to the
end effector. This setup was used to ensure that virtual and
physical scenarios were as similar as possible.

Five students of the DLR (23.4 years on average, 1 female)
without experience with the system and moderate experience
with computer games participated in the study. The tested
conditions were permuted in order to decrease learning ef-
fects. In all conditions, participants started their movement
from a predefined initial position situated approximately cen-
tered with respect to the satellite and about 0.3 m above it.
They were asked to carry out the tasks twice, and as quick
and precise as possible without stopping between tasks. Each
experimental trial finished when the handle was correctly
inserted into the module.

We evaluated the performance with objective and subjective
measures. Overall, the system proved its usability, since all
participants could successfully fulfill all tasks. The most rel-
evant objective measure was the time to complete the task, as
shown in Fig. 21, whereas Table 1 collects the questionnaire
and the obtained answers related to the subjective measures.
The objective data was recorded during the experiments and
the users were asked to answer the corresponding part of the
questionnaire after completing each condition.

The objective results show an increase in time to complete
(TTC) the task comparing R (avg. 5.5 s, std. dev. 1.1 s) and
RH (avg. 20.7 s, std. dev. 4.3 s). This clearly is the influence
of using a robot arm and a gripper to fulfill the tasks, as all
participants were completely new to the system. Performing
the tasks in VR took in average 29.8 s (std. dev. 7.0 s).

The subjective results show a moderately high presence (item
1.1 from Table 1) and realism (items 5.1 to 5.4) evaluation
of our system. It is worth pointing out that the standard
deviations indicate the need of a bigger sample to formulate
generally valid statements; as mentioned at the beginning
of this section, we pursued a pilot study in order to detect
tendencies and relevant parameters.

In this line, deviation values below 15% are highlighted in
green in Table 1, whereas values above 25% are shown in
orange. We conducted a short interview with the participants
that originated high deviation values in order to find out the
reasons for their choice and found out relevant information to
consider in future evaluations. For instance, the high devia-
tion in item 4.3 is due to a participant who was particularly
sensitive to having the system around him constraining the
otherwise natural movements; in the other conditions this
awareness decreased, since he was interacting with the HUG
as a tool.

12

(a) (b) (c) (d)

Figure 19. Participants had to perform four tasks in the pilot study: (a) Collide with the satellite box on a given spot
starting from a fixed position situated approximately centered with respect to the satellite and about 0.3 m above it;
(b) Turn off two switches; (c) Grab the handle tool; (d) Plug the handle into the hole of a module. Two of the three

conditions are displayed here: RH (first row) and VR (second row).

(a) (b)

Figure 20. Setup for the pilot user study. The
participants move a gripper attached to one robot arm of
the HUG: (a) They perform the manipulation tasks in the

real world (RH condition) and (b) also in the virtual
reality (VR condition).

The increase in TTC commented previously corresponds to
an increase in physical and mental complexity in the RH
and VR conditions, as it is revealed by the average values
of questions 2.1, 2.2, 3.1, and 3.2, compared to the values of
items 4.1 and 4.2. Along this line, the evaluation of natural
interaction (items 2 to 4.4) decreases as devices and virtual in-
teractions are introduced during the tasks, reaching an overall
loss of 30% (items 2.4 and 4.4) according to our preliminary
evaluation. As far as the effect of HUG is concerned, we ob-
served a rather small effect of the HUG in the analyzed tasks
(items 6.1 to 6.4). Besides of the presented questionnaires,
at the end of the experiments the participants were asked to
answer the Simulator Sickness Questionnaire [43]; overall,
no significant effects were detected.

Although participants moved slower, the pilot study showed

Table 1

R RH VR

1 4,695 19,2749 20,6299

2 5,775 25,08495 39,875

3 5,005 17,5254 31,0908

4 7,345 25,39065 30,0547

5 4,755 16,17485 27,2051

AVG 5,515 20,69015 29,7711

STDDEV 1,10979727878563 103,45075 148,8555

Ti
m

e
to

 C
om

pl
et

e
(T

TC
) [

s]

0

10

20

30

40

Participant Number

1 2 3 4 5

27,205
30,05531,091

39,875

20,63

16,175

25,391

17,525

25,085

19,275

4,755
7,345

5,0055,7754,695

R RH VR

Figure 21. Average time to complete (TTC, [s]) the tasks
for each participant and condition; R: tasks performed

in the reality with the bare hand; RH: tasks performed in
the reality using the gripper attached to one robotic arms

of the HUG; VR: tasks performed in the virtual reality
with visual and haptic feedback using the HUG.

the successful performance of all given tasks using our virtual
reality simulation with haptic feedback.

7. CONCLUSIONS
In order to reduce costs and risks, telerobotic on-orbit ser-
vicing (OOS) becomes more and more important for main-
tenance and life extension of future spacecraft missions.
However, the space system and the service robot have to
fit together so that servicing operations are possible at all.
Furthermore, the operator has to be trained on the tasks to be
performed. To find optimal solutions, all interfaces between
operator and robot, as well as between robot and spacecraft,
have to be designed carefully. This requires continuous
design iterations over the development lifecycle. One of the

13

Table 1. Subjective Results of the experiments displayed in Fig. 19. Average and standard deviation values are given in
points and percentage values; Deviations below 15% are in green, whereas deviations above 25% are in orange. All

punctuations start at value 1 and increase unit-wise until their specified maximum value.

Average Standard Deviation
Points % Points %

1. Overall Presence Evaluation in the VR
1.1. How present did you feel in the VR? (very present: 100) 62 62 31.14 31.14
2. VR: Tasks in the virtual reality with HUG
2.1. Mental complexity (very complex: 20) 8.8 41.05 5.02 26.42
2.2. Physical complexity (very complex: 20) 5.6 24.21 3.44 18.08
2.3. Constriction level (very high: 7) 3.6 43.33 1.14 19.00
2.4. Natural interaction (very natural: 7) 4.6 60 0.55 9.13
3. RH: Tasks in the physical reality with HUG
3.1. Mental complexity (very complex: 20) 4 15.79 2.74 14.41
3.2. Physical complexity (very complex: 20) 5.4 23.16 2.70 14.22
3.3. Constriction level (very high: 7) 4 50 1.22 20.41
3.4. Natural interaction (very natural: 7) 5.4 73.33 0.89 14.91
4. R: Tasks in the physical reality without HUG
4.1. Mental complexity (very complex: 20) 2.4 7.37 1.67 8.81
4.2. Physical complexity (very complex: 20) 2.6 8.42 2.07 10.91
4.3. Constriction level (very high: 7) 3 33.33 2.35 39.09
4.4. Natural interaction (very natural: 7) 6.4 90 0.55 9.13
5. How realistic was VR compared to RH in each exercise?
5.1. Collide with specified spot (very realistic: 7) 4 50 1.87 31.18
5.2. Turn off switches (very realistic: 7) 3.8 46.67 0.84 13.94
5.3. Grab handle (very realistic: 7) 4.8 63.33 1.79 29.81
5.4. Insert handle into module hole (very realistic: 7) 4.8 63.33 1.30 21.73
6. How similar was RH compared to R?
6.1. Collide with specified spot (very similar: 7) 6 83.33 0.71 11.79
6.2. Turn off switches (very similar: 7) 4.8 63.33 1.64 27.39
6.3. Grab handle (very similar: 7) 4.4 56.67 1.52 25.28
6.4. Insert handle into module hole (very similar: 7) 5 66.66 1.58 26.35

most feasible approaches is to carry out design development
and training with Virtual Reality (VR) simulators.

In this paper, we presented and evaluated the DLR’s VR
framework for simulating OOS tasks. We could show that
the depicted architecture supports two main user interfaces
efficiently: teleoperation with the DLR’s bimanual haptic de-
vice HUG and pure virtual environments with tactile, pseudo-
haptic, and haptic approaches. The HUG can efficiently be
used whenever realistic haptic feedback on both human hands
is required and large workspaces have to be covered. This
is especially the case in maintenance and repair tasks where
applying the correct amount of force to the objects involved
is crucial for task success. Assessed in a virtual environment,
the HUG can directly be evaluated for usage with real service

robots like DLR’s SpaceJustin (see Fig. 1). On the other hand,
virtual reality environments are more suitable for varying
test cases, as the configuration can quickly be changed with
low effort and subsequent costs. A usual disadvantage of
pure virtual reality environments, however, is the lack of
accurate haptic feedback. A combination of standard pointing
devices like the Flystick with myoelectric input sensors has
shown an improvement of interaction which alleviates the
drawback considerably. Additional feedback devices like the
shown vibro- and electrotactile devices attached to elbows
and fingertips are also very promising. Nevertheless, more
intensive research is required in this domain.

Besides the user interfaces, we presented a highly efficient
combination of algorithms for collision detection (our en-

14

hanced version of the VPS algorithm) and physical simu-
lation (Bullet physics engine). This allows the realization
of a complex use case in a manipulation scenario where a
broken electronic module must be replaced on a satellite.
The scenario involves removing a MLI cover, turning on/off
switches, using tools like handles, and extracting modules.
In other words, multibody simulation could be performed,
with and without movement constraints or articulation, while
keeping the 1 ms time constraint and enabling realistic virtual
manipulation tasks even for stiff collision configurations.

The framework was evaluated in terms of latency measure-
ments that proved to be sufficiently small to ensure a realistic
interaction with the simulation. Additionally, a pilot study
was conducted which clearly shows that our approach is able
to simulate maintenance tasks for OOS scenarios quite real-
istically. Although all participants could fulfill the required
tasks, the deviation in subjective results was quite high due
to the small number of participants. Hence, the next step will
be a thorough evaluation of the overall setup with a higher
number of users.

To further push the boundaries of our developed framework,
we currently exploit additional use case scenarios like tether-
ing, which is frequently needed for satellite maintenance. We
also plan to combine our framework with a terrain renderer
which generates very realistic scenarios that include a large
amount of environmental data in order to simulate manipula-
tion on planetary surface. Finally, we are also interested in
evaluating the system as a training environment. Due to the
distributed architecture, our system has potential to be used
as a collaborative setup where multiple users (e.g., student
and teacher) can interact with each other and the simulated
environment.

REFERENCES
[1] J. N. Tatarewicz, “The hubble space telescope servicing

mission,” in From Engineering Science to Big Science:
The NACA and NASA Collier Trophy Research Project
Winners, P. E. Mack, Ed. University Press of the
Pacific, 2006, ch. 16, pp. 365 – 396.

[2] A. Ellery, J. Kreisel, and B. Sommer, “The case for
robotic on-orbit servicing of spacecraft: spacecraft re-
liability is a myth,” Acta Astronautica, vol. 63, pp. 632–
648, Jun. 2008.

[3] B. Weber, M. Sagardia, T. Hulin, and C. Preusche,
“Visual, vibrotactile, and force feedback of collisions
in virtual environments: effects on performance, mental
workload and spatial orientation,” ser. Lecture Notes in
Computer Science, R. Shumaker, Ed. Springer Berlin
Heidelberg, 2013, vol. 8021, pp. 241–250.

[4] R. B. Loftin, P. J. Kenney, R. Benedetti, C. Cul-
bert, M. Engelberg, R. Jones, P. Lucas, M. Men-
ninger, J. Muratore, L. Nguyen, T. Saito, R. T.
Savely, and M. Voss, “Virtual environments in train-
ing: NASA’s hubble space telescope mission,” in In-
terservice/Industry Training Systems & Education Conf.
Springer-Verlag, Nov. 1994.

[5] D. Homan and C. Gott, “An integrated EVA/RMS vir-
tual reality simulation, including force feedback for
astronaut training,” in AIAA Flight Simulation Technolo-
gies Conf., 1996, pp. 216–223.

[6] M. Romano, M. Bergamasco, L. Bessone, R. Hender-
son, and F. Rossitto, “Advanced methods for astronaut

training: Computer based training and virtual reality
technology,” Aerotecnica Missili e Spazio, vol. 79, pp.
54–58, 2000.

[7] Y. Liu, S. Chen, G. Jiang, X. Zhu, M. An, K. Chen,
B. Zhou, and Y. Xu, “VR simulation system for EVA
astronaut training,” in AIAA Conf. and Exposition, Sep.
2010.

[8] D. Reintsema, B. Sommer, T. Wolf, J. Theater,
A. Radthke, J. Sommer, W. Naumann, and P. Rank,
“DEOS – the in-flight technology demonstration of
German’s robotics approach to dispose malfunctioned
satellites.” in Proc. of the 11th ESA workshop on ad-
vanced space technologies for robotics and automation
(ASTRA 2011). Noordwijk, The Netherlands: ESTEC,
2011.

[9] T. Boge, H. Benninghoff, M. Zebenay, and F. Rems,
“Using robots for advanced rendezvous and docking
simulation,” in Proc. Simulation and EGSE facilites for
Space Programmes (SESP), Noordwijk, The Nether-
lands, Sep. 2012.

[10] M. Sagardia, K. Hertkorn, T. Hulin, R. Wolff, J. Hum-
mel, J. Dodiya, and A. Gerndt, “An interactive virtual
reality system for on-orbit servicing,” in Proc. IEEE
Virtual Reality (VR), Mar. 2013, (Video).

[11] P. Rank, Q. Mühlbauer, W. Naumann, and
K. Landzettel, “The DEOS automation and robotics
payload,” in Proceedings of the symposium on advanced
space technologies for robotics and automation (ASTRA
2011). Noordwijk, The Netherlands: ESTEC, 2011.

[12] C. Preusche, D. Reintsema, K. Landzettel, and
G. Hirzinger, “Robotics component verification on ISS
ROKVISS – preliminary results for telepresence.” in
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS). IEEE, Oct. 2006, pp. 4595–4601.

[13] E. Stoll, U. Walter, J. Artigas, C. Preusche, P. Kremer,
G. Hirzinger, J. Letschnik, and H. Pongrac, “Ground
verification of the feasibility of telepresent on-orbit
servicing,” Journal of Field Robotics, vol. 26, no. 3, pp.
287–307, Mar. 2009.

[14] R. Wolff, C. Preusche, and A. Gerndt, “A modular
architecture for an interactive real-time simulation and
training environment for satellite on-orbit servicing,”
Journal of Simulation, vol. 8, no. 1, pp. 50–63, 2014.

[15] J. Behr, P. Dähne, Y. Jung, and S. Webel, “Beyond
the web browser - X3D and immersive VR,” Charlotte,
North Carolina, USA, Mar. 2007.

[16] T. van Reimersdahl, T. Kuhlen, A. Gerndt, J. Hen-
richs, and C. Bischof, “ViSTA: a multimodal, platform-
independent vr-toolkit based on WTK, VTK, and MPI,”
in Proc. Int. Immersive Projection Technology Work-
shop (IPT), Ames, Iowa, 2000.

[17] P. Collienne, R. Wolff, A. Gerndt, and T. Kuhlen,
“Physically based rendering of the martian atmosphere,”
in Virtuelle und Erweiterte Realität : 10. Workshop der
GI-Fachgruppe VR/AR, 2013, pp. 97–108. [Online].
Available: http://elib.dlr.de/86477/

[18] E. G. Gilbert, D. W. Johnson, and S. S. Keehrthi, “A fast
procedure for computing the distance between complex
objects in three-dimensional space,” IEEE Journal of
Robotics and Automation, 1988.

[19] S. Gottschalk, M. C. Lin, and D. Manocha, “Obb-tree:
A hierarchical structure for rapid interference detec-
tion,” in Proc. of ACM SIGGRAPH, 1996.

15

[20] M. Lin and M. Otaduy, Eds., Haptic Rendering: Foun-
dations, Algorithms, and Applications. A K Peters,
Ltd., 2008.

[21] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy,
“Six degree-of-freedom haptic rendering using voxel
sampling,” in Proc. of ACM SIGGRAPH, 1999.

[22] ——, “Voxel-based 6-dof haptic rendering improve-
ments,” Haptics-e: The Electronic Journal of Haptics
Research, vol. 3, 2006.

[23] J. Barbič and D. James, “Six-dof haptic rendering of
contact between geometrically complex reduced de-
formable models,” IEEE Trans. Haptics, vol. 1, no. 1,
pp. 39 –52, 2008.

[24] K. Fischer and B. Gärtner, “The smallest enclosing
ball of balls: Combinatorial structure and algorithms,”
in Proceedings of the nineteenth annual symposium
on Computational geometry - Annual Symposium on
Computational Geometry, 2003.

[25] M. Sagardia, T. Hulin, C. Preusche, and G. Hirzinger,
“Improvements of the voxmap-pointshell algorithm -
fast generation of haptic data-structures,” in 53. IWK -
TU Ilmenau, Sep. 2008.

[26] R. Weller, M. Sagardia, D. Mainzer, T. Hulin, G. Zach-
mann, and C. Preusche, “A benchmarking suite for 6-
dof real time collision response algorithms,” in ACM
Virtual Reality and Software Technology, Nov. 2010.

[27] M. Sagardia, T. Stouraitis, and J. L. e Silva, “A new fast
and robust collision detection and force computation
algorithm applied to the physics engine bullet: Method,
integration, and evaluation,” in EuroVR, 2014.

[28] J. Barbič, “Real-time reduced large-deformation models
and distributed contact for computer graphics and hap-
tics,” Ph.D. dissertation, Carnegie Mellon University,
2007.

[29] M. Ortega, S. Redon, and S. Coquillart, “A six degree-
of-freedom god-object method for haptic display of
rigid bodies with surface properties,” in IEEE Trans.
Visualization and Computer Graphics, 2007.

[30] J. D. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi,
“I-collide: An interactive and exact collision detection
system for large-scale environments,” in Proc. of ACM
Interactive 3D Graphics Conference, 1995.

[31] D. Baraff, “Dynamic simulation of non-penetrating
rigid bodies,” Ph.D. dissertation, Cornell University,
1992.

[32] J. Hummel, R. Wolff, T. Stein, A. Gerndt, and
T. Kuhlen, “An evaluation of open source physics en-
gines for use in virtual reality assembly simulations,” in
Int. Symp. on Visual Computing, Jul. 2012, pp. 346–357.

[33] C. J. Hamblin, “Transfer of training from virtual reality
environments,” Ph.D. dissertation, Wichita State Uni-
versity, Dept. of Psychology, College of Liberal Arts
and Sciences, May 2005.

[34] T. Hulin, K. Hertkorn, P. Kremer, S. Schätzle, J. Arti-
gas, M. Sagardia, F. Zacharias, and C. Preusche, “The
DLR bimanual haptic device with optimized workspace
(video),” in Proc. IEEE Int. Conf. on Robotics and
Automation (ICRA), May 2011, pp. 3441–3442.

[35] F. Zacharias, I. S. Howard, T. Hulin, and G. Hirzinger,
“Workspace comparisons of setup configurations for
human-robot interaction,” in Proc. IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems (IROS), Oct. 2010,
pp. 3117–3122.

[36] J. J. Gil, A. Rubio, and J. Savall, “Decreasing the
apparent inertia of an impedance haptic device by using
force feedforward,” IEEE Trans. on Control Systems
Technology, vol. 17, no. 4, pp. 833–838, Jul. 2009.

[37] T. Hulin, K. Hertkorn, and C. Preusche, “Interactive fea-
tures for robot viewers,” in Proc. Int. Conf. on Intelligent
Robotics and Applications, Oct. 2012, pp. 181–193.

[38] T. Hulin, A. Albu-Schäffer, and G. Hirzinger, “Passivity
and stability boundaries for haptic systems with time
delay,” IEEE Trans. on Control Systems Technology,
vol. 22, no. 4, pp. 1297–1309, Jul. 2014.

[39] T. Hulin, R. González Camarero, and A. Albu-Schäffer,
“Optimal control for haptic rendering: Fast energy dissi-
pation and minimum overshoot,” in Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), Nov.
2013, pp. 4505–4511.

[40] S. Schätzle, T. Ende, T. Wuesthoff, and C. Preusche,
“VibroTac: an ergonomic and versatile usable vibro-
tactile feedback device,” in Proc. IEEE Int. Symp. on
Robots and Human Interactive Communications (RO-
MAN), Viareggio, Italy, Sep. 2010, pp. 705–710.

[41] B. Weber, S. Schätzle, T. Hulin, C. Preusche, and
B. Deml, “Evaluation of a vibrotactile feedback device
for spatial guidance,” in Proc. IEEE World Haptics
Conference, Istanbul, Turkey, Jun. 2011, pp. 349–354.

[42] J. Hummel, R. Wolff, A. Gerndt, and T. Kuhlen, “Com-
paring three interaction methods for manipulating thin
deformable virtual objects,” in Proc. IEEE Virtual Real-
ity (VR), Mar. 2012, pp. 139–140.

[43] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G.
Lilienthal, “Simulator sickness questionnaire: An en-
hanced method for quantifying simulator sickness,” The
International Journal of Aviation Psychology, vol. 3,
no. 3, pp. 203–220, 1993.

BIOGRAPHY[

Mikel Sagardia studied Mechanical
Engineering at Tecnun (University of
Navarra, Spain) and at the Technical
University of Munich, and graduated in
2008. He works since 2008 at the DLR
- Institute of Robotics and Mechatronics
as a researcher in the field of virtual
reality. His research interests are in
the fields of collision detection, haptic
rendering, and physical simulation.

16

Katharina Hertkorn graduated in 2009
at the University of Stuttgart where
she studied Technical Cybernetics. She
works now at the DLR - Institute of
Robotics and Mechatronics as a re-
searcher in the field of telepresence and
shared autonomy. She is particularly in-
terested in the fields of control, grasping
with multi-fingered hands, haptics, and
shared autonomy.

Thomas Hulin received his Dipl.-Ing.
degree from the Technical University
of Munich in 2003. In that year, he
also joined the Institute of Robotics and
Mechatronics, German Aerospace Cen-
ter (DLR), Wessling, Germany. His
research interests include haptic de-
vices, control and algorithms, physical
human-robot interaction, tele- and space
robotics, robot visualization and skill

transfer. He was involved in the development of the vibro-
tactile device VibroTac, for which he received the DLR Inno-
vation Award 2012.

Simon Schätzle received his Dipl.-Ing.
degree in mechatronics from the Techni-
cal University of Munich in 2007. Since
then he is applied to DLR Institute of
Robotics and Mechatronics as research
scientist. His research field is in the
mechatronic design and human factors
of haptic human system interfaces focus-
ing on vibrotactile feedback. He was
involved in the development of the vibro-

tactile device VibroTac, for which he received the DLR Inno-
vation Award 2012.

Robin Wolff leads the Virtual Reality
team at Simulation and Software Tech-
nology at the German Aerospace Cen-
ter (DLR), where he works since 2010.
He received a PhD in Immersive Col-
laborative Virtual Environments at the
University of Salford, UK, in 2007 and
was working there as technical direc-
tor and researcher in several projects
afterwards. In 2009, he was a visiting

researcher at the Virtual Reality Laboratory at the Technical
University of Tampere, Finland. He received his MSc in Sci-
entific and Parallel Computation at the University of Reading,
UK, in 2004 and his Dipl.-Ing. in Computer Engineering
at the University of Applied Sciences in Berlin, Germany, in
2000.

Janki Dodiya is a Research Scientist at
Simulation and Software Technology at
German Aerospace Center (DLR). She
received her PhD in Virtual Environ-
ments at the University of Reading, UK,
in 2011. She received her MSc degree
in Network Centred Computing at the
University of Reading, UK, in 2005 and
her BSc in Computer Application at the
Sardar Patel University, India, in 2002.

Her current research activities include human computer in-
teraction techniques in immersive virtual environments.

Johannes Hummel studied Computer
Science at the Technical University of
Munich, and graduated in 2009. After
being a freelancer developing software
and user interfaces for simulation data
management, he works now at the DLR
- Institute for Simulation- and Software
Technologies as researcher in the field of
virtual reality. His research interests are
electro-tactile and pseudo-haptic feed-

back and myoelectric input devices for the improvement of
grasping in immersive virtual environments.

Andreas Gerndt is the head of the
department ”Software for Space Sys-
tems and Interactive Visualization” at
the German Aerospace Center (DLR).
He received his degree in computer sci-
ence from Technical University, Darm-
stadt, Germany in 1993. In the position
of a research scientist, he also worked
at the Fraunhofer Institute for Computer
Graphics (IGD) in Germany. Thereafter,

he was a software engineer for different companies with
focus on Software Engineering and Computer Graphics. In
1999 he continued his studies in Virtual Reality and Scientific
Visualization at RWTH Aachen University, Germany, where
he received his doctoral degree in computer science. After
two years of interdisciplinary research activities as a post-
doctoral fellow at the University of Louisiana, Lafayette,
USA, he returned to Germany in 2008.

17

