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Path-Accurate Online Trajectory Generation for
Jerk-Limited Industrial Robots

Friedrich Lange1 and Alin Albu-Schäffer12

Abstract—Standard industrial controllers of robot arms define
constraints on the velocity, the acceleration, and the jerk and
abort execution in case any of them is violated. In addition
to satisfying these constraints, the presented method tries to
generate a trajectory that is path-accurate, i.e., that exactly tracks
the 6-dof shape of the desired path in axis space. Furthermore, the
computed trajectory is as close as possible to the original robot
program. This is reached by forward scaling and backtracking
until a feasible trajectory is obtained. In contrast to previous
work, blending of subsequent segments of the desired path is
prevented by interpolation of the arc length instead of direct
position interpolation. Because of its time-efficiency the algorithm
can be applied in each sampling step, e.g. every 4 ms for a
standard KUKA robot with RSI interface. Experimental results
demonstrate the approach.

Index Terms—Trajectory Generation, Motion Control of Ma-
nipulators, Industrial Robots

I. INTRODUCTION

TRAJECTORY generation is required for all robotic mo-
tion. Commonly it is executed offline, optimizing both,

the geometrical path that solves the task and the velocity
profile of the tool center point (tcp) when tracking this path
[1], [2], [3], [4], [5]. Such a computation may be time
consuming. In contrast, for online methods the computing time
is restricted, resulting in simpler methods. Online trajectory
generation is required if the robot program is interpreted
during its execution or if the desired path has changed, e.g.
because a workpiece is misplaced.

For online trajectory generation, first the path is computed,
i.e., a sequence of positions and orientations, or axis positions,
and a rule on how to interpolate between them, e.g. by straight
lines or circles. In order to be generic, in this paper we
assume that the path is represented by a sequence of axis
positions, where the distances between them are so small
that the intermediate course does not matter. Thus we do not
assume a differentiable or continuous path.

Second, a feasible trajectory is generated, which means
that a velocity profile is added to the path. This step is
treated in this paper. Feasible means that the constraints on
the velocity, the acceleration, and the jerk are met. Most robot
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manufacturers define allowed ranges for the axis positions and
their derivatives. For safety, tolerable load, moderate wear, and
minimal excitation of oscillations, the robot motion is aborted
whenever any of these constraints is violated. Otherwise
the commanded position, i.e., the first sampling step of the
generated trajectory, is sent to the position controllers of the
robot.

Most trajectory generation methods minimize the execution
time of the robot, as e.g. Refs. [6], [7], [8], [9], [10], [11],
[12], [13], [14], denoted as time-optimal path parametrization
(TOPP). In contrast, here the goal is a trajectory that, perhaps
after a temporary slowdown, is synchronized with the original
robot program, as in Ref. [15]. This is crucial when multiple
robots or devices share the same working space.

In addition, it is assumed that the updated desired path
has to be tracked exactly since otherwise a collision may
happen or the contact force may increase excessively. This
means that the generated motion has to be path-accurate.
For safety not only the Cartesian positions are tracked but
also the orientation. This is done by acting in the axis space
with e.g. 6 degrees of freedom (dof). It should be mentioned
that path accuracy is not always reachable without prediction.
For example, high curvature of the path is only possible at
low speed since otherwise acceleration limits are exceeded.
Besides, without exact knowledge of the robot dynamics,
it is not guaranteed that the desired path is really tracked.
Therefore the compensation of deviations caused by the robot’s
dynamics, as in [7], [16], [17], [18], is left for future work.

The authors have previously presented a method that in
most cases satisfies both, the robot constraints as well as the
path accuracy [19]. However, in special cases there might
be undesired blending of corners of the desired path, i.e.,
a large corner cut. This is a violation of path accuracy.
Therefore, in this paper the method is modified by a different
interpolation method denoted as arc length interpolation (ALI),
to be distinguished from the direct position interpolation (DPI)
of [19].

Instead of the 6-dof positions with DPI, ALI interpolates
a scalar parameter s which is denoted as arc length. Its use
for the generation of path-accurate trajectories is well known
[2], [6], [7], [8], [11], [13], [16], [20], [21]. However, in
these methods, in general, the kinematic constraints of the
robot along the desired path are converted to constraints of s.
Then the trajectory generation is solved as a one-dimensional
problem whose solution is finally mapped to the axis space.
The conversion of the constraints is not directly possible with a
desired path that is given by the sampled positions. Thus in this
paper another approach is presented that iteratively combines
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forward scaling and backtracking of the axis positions.
Forward scaling with ALI has already been presented for

the dual problem of stopping along a given path [22]. That
task is simpler, as it does without prediction and thus without
backtracking. Now that method is extended to the generic case.

The paper is organized as follows: Next, the task is for-
mulated. Section III outlines the method of [19]. Then Sec-
tion IV replaces the interpolation which is used there. Finally
Section V compares the different approaches in experiments
using a KUKA industrial robot.

II. NOTATION AND PROBLEM FORMULATION

Notation: Derivatives are computed by backward differ-
ences, omitting the sampling time T0. This results in a simple
but unusual notation which is explained in the Appendix,
similar to [15]. Vectors of all axes are denoted by bold face
letters whereas single axes are in normal face with the index
as last subscript, e.g. qdi(k) with i ∈ {1, · · · , 6}.

Task: The task is to modify a sequence of given desired
positions qd(k) = (qd1(k), · · · , qd6(k))T of sampling steps k
in such a way that at the current time step k the resulting
commanded positions qc(k) = (qc1(k), · · · , qc6(k))T prefer-
ably satisfy the following conditions:

1) Feasibility: For all axes i ∈ {1, ..., 6}, the velocity
vci(k) = qci(k) − qci(k − 1), the acceleration aci(k) =
vci(k)− vci(k− 1), and the jerk jci(k) = aci(k)− aci(k− 1)
satisfy the constraints

|vci(k)| = |qci(k)− qci(k − 1)| ≤ v̄i (1)
|aci(k)| = |qci(k)− 2qci(k− 1)+ qci(k− 2)| ≤ āi (2)
|jci(k)| = |qci(k)−3qci(k−1)+3qci(k−2)−qci(k−3)| ≤ j̄i,

(3)
where ±v̄i, ±āi, and ±j̄i are the (symmetric) limits for the
velocity, the acceleration, and the jerk.

2) Path Accuracy: If a position qc(k) is on the desired
path, the next position qc(k + 1) will be on the desired path
as well. The desired path is defined by the sampled positions
qd(·) and the straight lines between them, i.e.,

qc(k) = (1− β)qd(k + κ− 1) + βqd(k + κ) (4)

with κ ∈ Z and 0 ≤ β < 1.
3) Synchronization: Even if qd(k) is not feasible, there is

at least a single κ1 ∈ N for which the commanded trajectory
reaches the desired trajectory, i.e.,

qc(k + κ1) = qd(k + κ1). (5)

This denotes that qc hangs qd at time step k + κ1.
Equation (5) implies that the sequence qd(k) does not only

represent the desired path but also the time steps k in which
the respective positions are desired.

III. ITERATIVE TRAJECTORY GENERATION

A. Trajectory Generation by Forward Scaling

1) Velocity Constraint: At the current time step k, first of
all it is checked whether the desired position can directly be
taken as command qc(k) = qd(k). Otherwise the velocity is
scaled. This applies if the desired position qd(k) violates (1) in

at least one axis i, i.e., |vdci(k)| > v̄i with vdci(k) = qdi(k)−
qci(k−1). Scaling the velocity between time step (k−1) and
k probably results in a path-accurate trajectory since the path
is not modified but the time profile of its execution.

The modification is executed in two steps. First, the scaling
factor α is computed from all limited components as

α = min
i, |vdci(k)|>v̄i

(v̄i/|vdci(k)|). (6)

This computation is always possible and results in 0 < α <
1. Then the velocity of all axes is scaled using

qc(k) = qc(k − 1) + αvdc(k). (7)

2) Acceleration Constraint: The velocity is scaled as well
if the desired position violates (2) in at least one axis i, i.e.,
|adci(k)| > āi with adci(k) = qdi(k)−2qci(k−1)+qci(k−2).
(7) gives

|qci(k − 1) + αvdci(k)− 2qci(k − 1) + qci(k − 2)| ≤ āi (8)

and hence the scaling factor is

α = min
i, |adci(k)|>āi

(
±āi + vci(k − 1)

vdci(k)
). (9)

The sign of ±āi is positive if adci(k) > āi, it is negative
if adci(k) < −āi. Otherwise axis i does not contribute to the
computation of α since the component i of (2) is satisfied.

If the result is 0 ≤ α ≤ 1, (7) satisfies (2) in all axes. Then
the modification is path-accurate.

Unfortunately, a scaling in an axis i1 ∈ {1, · · · , 6} may
cause a limitation in another axis i2 ∈ {1, · · · , 6}, since the
elements of qc(k), which are modified according to (7), have
to be used in (2) for verification. Simply speaking, if the
velocity has to be reduced because of a big desired acceleration
in axis i1, the reduction of the velocity of axis i2 may exceed
the maximum deceleration. Therefore all scaling is repeated
iteratively, where the qdi(k) for the computations in the next
iteration step are taken from the qci(k) of the previous iteration
step. The iterative execution of (7) and (9) ends when a
solution with 0 ≤ α ≤ 1 is found that satisfies the constraint
(2) for all axes i, or when α is not within the allowed range.
The number of steps of this iteration is not greater than the
number of axes. The modification of the desired trajectory will
not be path-accurate if a solution with 0 ≤ α ≤ 1 cannot be
found.

3) Jerk Constraint: Scaling is required also if (3) is ex-
ceeded by at least a single axis, i.e., |jdci(k)| > j̄i with
jdci(k) = qdi(k) − 3qci(k − 1) + 3qci(k − 2) − qci(k − 3).
As with the acceleration, it is first tried to modify the desired
trajectory in a path-accurate way, i.e., by scaling the velocity.
(7) gives

|qci(k − 1) + αvdci(k)

−3qci(k − 1) + 3qci(k − 2)− qci(k − 3)| ≤ j̄i.
(10)

Thus the scaling factor

α = min
i, |jdci(k)|>j̄i

(
±j̄i + vci(k − 1) + aci(k − 1)

vdci(k)
) (11)
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Fig. 1. Modification of a 2 dof path by direct scaling (DS) the acceleration
at the corner of the desired path in order to comply with acceleration limits
(not path-accurate). The markers denote the sampled positions.

can be computed and inserted in (7). As with the acceleration,
this has to be repeated until a solution with 0 ≤ α ≤ 1 is
found that satisfies all constraints.

Similar to (9), in (11) the maximum jerk ±j̄i has a positive
sign if jdci(k) > j̄i and it has a negative sign if jdci(k) < −j̄i.
Otherwise axis i does not contribute to the determination of
the scaling factor.

B. Direct Scaling as a Last Resort

If no feasible axis positions qc(k) exist from Section III-A,
an alternative solution is computed. It satisfies all kinematic
constraints mentioned in Section III-A, but the resulting trajec-
tory is not path-accurate. This algorithm is denoted as direct
scaling (DS) of the acceleration and the jerk.

If an acceleration limit (2) is exceeded, the scaling is done
for all axes using

qc(k) = qc(k − 1) + vc(k − 1) + αadc(k) (12)

(cf. (33) with i = 1), where the scaling factor α is computed
from the constrained axes by

α = min
i, |adci(k)|>āi

(āi/|adci(k)|). (13)

This modification of the desired position is always possible,
since 0 < α < 1, provided that an acceleration limit is
violated. Scaling the acceleration results in a position between
that one which would be reached with zero acceleration and
the desired position which is not reachable, see Fig. 1.

If a jerk limit (3) is exceeded, the scaling is done for all
axes using

qc(k) = qc(k − 1) + vc(k − 1) + ac(k − 1) + αjdc(k) (14)

(cf. (35) with i = 1), and
α = min

i, |jdci(k)|>j̄i
(j̄i/|jdci(k)|) (15)

computed from the constrained axes only. This results in 0 <
α < 1, provided that a jerk constraint is violated before the
direct scaling (DS).

C. Inhibition of Overshooting by Backtracking

Direct scaling and the corresponding path inaccuracies can
be avoided in the case that the desired trajectory is known
in advance. Then the forward scaling of Section III-A can be
done predictively. If no feasible solution is found for a time
step k + κ, a modification of preceding positions is possible,

e.g. qc(k + κ− 1), instead of computing qc(k + κ) by direct
scaling. This generally inhibits overshooting after reaching the
desired trajectory with a too high velocity or acceleration. The
consideration of preceding time-steps is called backtracking.
In contrast to direct scaling it is path-accurate.

For brevity, k + κ is denoted as k′ in the following.
Constraints of the velocity according to (1) need no back-

tracking, since (6) and (7) always give a feasible commanded
position.

Constraints on the acceleration according to (2) can be
resolved by modifying qdi(k

′) and qci(k
′ − 1), in order to

result in a feasible aci(k
′). This is done using

qbai(k
′) = qci(k

′ − 1) + α(qdi(k
′)− qci(k

′ − 1)) (16)

qbai(k
′ − 1) = qci(k

′ − 2)

+(1 + α)(qci(k
′ − 1)− qci(k

′ − 2))/2.
(17)

qdi(k
′) is the desired position or a position that has been

computed previously by backtracking. qci(k
′ − 1) has been

computed by forward scaling or previous iteration steps of
backtracking.

Equation (17) has been chosen such that with α from (13),
(16)-(17) result in |abai(k′)| = |qbai(k′) − 2qbai(k

′ − 1) +
qci(k

′−2)| ≤ āi with |abai(k′)| = āi for the most constrained
axis.

Similarly, constraints on the jerk according to (3) can be
resolved by modifying qdi(k

′), qci(k′− 1), and qci(k
′− 2), in

order to result in a feasible jci(k
′). This is done by

qbji(k
′) = qci(k

′ − 1) + α(qdi(k
′)− qci(k

′ − 1)) (18)

qbji(k
′ − 1) = qci(k

′ − 2)

+(1 + 2α)(qci(k
′ − 1)− qci(k

′ − 2))/3
(19)

qbji(k
′ − 2) = qci(k

′ − 3)

+(2 + α)(qci(k
′ − 2)− qci(k

′ − 3))/3,
(20)

where (19) and (20) have been chosen such that with α from
(15), (18)-(20) result in |jbji(k′)| = |qbji(k′)−3qbji(k

′−1)+
3qbji(k

′ − 2) − qci(k
′ − 3)| ≤ j̄i with |jbji(k′)| = j̄i for the

most constrained axis.

D. Iterative Procedure

In order to result in feasible and path-accurate trajectories,
forward scaling and backtracking are executed iteratively. The
procedure is as follows:

• Try qc = qd and check the constraints (1), (2), and (3)
predictively, i.e., for k+κ instead of k, with κ = 0, · · · , κ̄,
where κ̄ denotes the number of future time-steps for
which the desired trajectory qd(k + κ) is available.1

If needed, do forward scaling according to Sect. III-A. If
this is successful, continue with the next value of κ.

• Otherwise do backtracking according to Sect. III-C at
time-step k+κ. Then continue at the first modified sam-
pling step, i.e., time-step k+κ−1 or k+κ−2, depending
on the kind of backtracking. For this, all modified values

1κ̄ is at least in the order of magnitude of the number of time steps that
are needed to stop down from the current velocity v(k). A bigger value does
not compromise the procedure but needs additional computing power.
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qbai or qbji from backtracking are transferred to the qdi
of the respective time steps, since these are required for a
subsequent or future check of the constraints or a forward
scaling.

The iteration ends when
• κ̄ is reached (success),
• k+κ−1 < 0 respectively k+κ−2 < 0 is reached (failure),
• or when the maximum computing time is exceeded

(failure).
In the case of a failure, a feasible solution is reached

nevertheless by direct scaling according to Section III-B. This
is required e.g. if κ̄ is too small or if the desired trajectory is
recomputed during high speed motion.

E. Discussion

The method presented so far always results in a feasible tra-
jectory. But it is not ensured that a path-accurate trajectory is
found within the given computing time. This can be improved
heuristically by multiplying the scaling factor α in forward
scaling by cf ≈ 0.9, provided that α < 1.

The reached path accuracy may be inferior to what is
expected, especially in the following cases:

1) If the desired trajectory has been lost, subsequent posi-
tions are not guaranteed to reach the desired path. (This
case is not comprised in the above definition of path
accuracy.)

2) The position resulting from scaling vdc(k) lies always
on the straight line between qc(k− 1) and qd(k). So it
may be off the path if the latter is curved and these two
points are far from each other. Fig. 2 shows an example.

3) But even if the interpolation is done within single steps
of qd, the desired path can be lost by repeated forward
and backward interpolation during an iteration. Finally
the commanded path is significantly smoothed with
respect to the desired path.

Section IV provides a solution for the last two points, as
shown in Fig. 2.

IV. ARC LENGTH INTERPOLATION (ALI)

The desired path is given as sampled positions qd(k + κ),
which are connected by straight lines. In order to better
preserve the desired path, a scalar path coordinate s(k + κ)
is computed, also denoted as arc length. When the scalar
trajectory has been finally determined as a sequence s(k+ κ)
with κ = 0, · · · , κ̄, the spatial trajectory qc(k + κ) can be
computed from qd(k + κ) by a single interpolation. This is
denoted as arc length interpolation (ALI).

The result is illustrated in Fig. 2. It shows that all sampling
points of the commanded trajectory are on the desired path.
The blending appears only between adjacent sampling points
of the final trajectory. This cannot be prevented.

Arc length interpolation may be applied always when an
interpolation is done in the preceding sections. This concerns
(7), (16)-(17), and (18)-(20). Then, if a constraint of an axis
i is violated, the following steps are executed:

q
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Fig. 2. Example with a path error due to a delay during nonlinear motion:
After starting in time step k� 1, qd(k) (black +) cannot be reached because
of the acceleration limit. Instead, qc(k) is computed. In the next step, DPI
computes qc(k + 1) (red x) by scaling the line from qc(k) to qd(k + 1)
(black +). In the same way, qc(k+2) lies between qc(k+1) and qd(k+2).
With ALI, qc(k) is computed as with DPI, using (27) for qfa1(k) and (31).
Then (29) for qfa1(k+1) and (32) computes qc(k+1) (orange #) between
the previous executed position qc(k) and the next desired position, which
in this case is qd(k) (black +) and not qd(k + 1). Then qc(k + 2) is
computed by (27) for qfa1(k+2) and/or qfa2(k+2) and (31) between two
desired positions qd(k) and qd(k+1). qd(k+2) has no influence. Similarly,
qd(k+3) is determined. Thus there is no path error at the sampled positions
qc. For simplicity, jerk limits are not considered in this example.

1) The reachable axis position q#∗i(k
′) is computed that

satisfies the limit, with # ∈ {f, b} and ∗ ∈ {v, a, j}.
Other than in Section III, (7) is replaced by

qfvi(k
′) = qci(k

′−1)± v̄i (21)
qfai(k

′) = qci(k
′−1) + vci(k

′−1)± āi (22)
qfji(k

′) = qci(k
′−1) + vci(k

′−1) + aci(k
′−1)±j̄i,

(23)

if the respective constraint is violated by qdi(k
′). In this

way the singularity of vdci(k
′) = 0 does not appear.

The sign of the limit ±v̄i, ±āi, or ±j̄i is such that the
modification with respect to qdi(k

′) is minimal.
Equations (16)-(17) and (18)-(20) are adopted without
change, but the α are not the minimal values from (13)
and (15) respectively, but individually

α = āi/|adci(k)| (24)
or

α = j̄i/|jdci(k)|. (25)

2) A scalar parameter s∗i(k
′) is computed from this axis

position q#∗i(k
′), as explained in Section IV-A. For

simplicity, s is defined here by the elapsed time of
the desired trajectory, meaning that a position qd(k

′)
has the value s = k′. The exact definition is given
in Section IV-A. It is a linear interpolation between
subsequent sampling points of the desired trajectory or
between the previously executed position and the next
sampled desired position.

3) It is checked whether s∗i(k
′) < s(k′). In this case the

new value is taken as s(k′). So with ALI, the minimum
of the computed s∗i(k

′) is selected.

s(k′) = min
i
(svi(k

′), sai(k
′), sji(k

′)), (26)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2015.2506899

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



LANGE et al.: PATH-ACCURATE ONLINE TRAJECTORY GENERATION FOR JERK-LIMITED INDUSTRIAL ROBOTS 5

This corresponds to the minimum of the factor α with
DPI, according to (6), (9), or (11).

4) The resulting position qc(k
′) is computed. qc(k

′) is not
used for a recursive computation as with DPI, since all
forward scaling and backtracking steps are done on the
basis of s and not of previously computed qc. So, except
for the final computation of qc(k), the qc(k

′) serve only
for checking the constraints in further steps of 1), using
qc(k

′) instead of qd(k
′).

A. Computation of the Arc Length and the Resulting Position

The difference between ALI and DPI is that interpolation of
s(·) is not simply done by s(k) = s(k−1)+α(s(k)−s(k−1)),
similar to (7), but by an equation that computes s(k) from the
reachable positions q#∗i(k).

In order to comprise forward scaling as well as backtrack-
ing, the task is formulated to interpolate q#∗i(k

′ − k1) in the
interval between qci(k

′−k2) and qdi(k
′−k1). Then for forward

scaling, k2 = 1, whereas backtracking the acceleration or the
jerk needs k2 = 2 and k2 = 3 respectively. k1 = 0 is used for
(21)-(23), (16), and (18). Equations (17) and (19) correspond
to k1 = 1, whereas k1 = 2 is taken for (20).
s∗i(k

′ − k1) is computed from the q#∗i(k
′ − k1) using

s∗i(k
′ − k1) = s∗i(k

′ − k1)

+
q#∗i(k

′ − k1)− qdi(s∗i(k
′ − k1))

qdi(s∗i(k
′ − k1) + 1)− qdi(s∗i(k

′ − k1))
,

(27)

where s is the largest integer not greater than s.
Equation (27) is computed by trial and error, trying s∗i(k

′−
k1) = s(k′ − k1), s(k

′ − k1) − 1, · · · , s(k′ − k2) + 1, until a
s∗i(k

′ − k1) fits to the interval

s∗i(k
′−k1) ≤ s∗i(k

′−k1) < min(s(k′−k1), s∗i(k
′−k1)+1).

(28)
In the beginning, all values s(k′) are initialized by k′. Before
each computation of (27), s(k′−k1) is reduced to s(k′−k1+
1), whenever the latter is lower.

If no solution is found by (27) and (28),

s∗i(k
′−k1) = s(k′−k2) (29)

+
(q#∗i(k

′−k1)− qci(k
′−k2)) · (s(k′−k2) + 1− s(k′−k2))

qdi(s(k′−k2) + 1)− qci(k′−k2)

may give a feasible s∗i(k
′ − k1), with

s(k′ − k2) ≤ s∗i(k
′ − k1) < min(s(k′ − k1), s(k

′ − k2) + 1).
(30)

At most k′ − k1 − s(k′ − k2) + 1 equations (27) or (29)
have to be tested for computing s∗i(k

′− k1). In case multiple
solutions of s∗i(k′ − k1) exist, the biggest one is taken, since
it represents the smallest change with respect to the desired
trajectory, which corresponds to s∗i(k

′ − k1) = k′ − k1.
The axis positions of the arc length s(k′ − k1) can be

computed using

qc(k
′−k1) = qd(s(k

′−k1)) + (31)
(s(k′−k1)−s(k′−k1))·(qd(s(k

′−k1)+1)−qd(s(k
′−k1))),

for all axes i

check all limits

for qc(k)

qci(k) is     not feasible

s*i(k) ≥ s(k-1)+2

compute qf*i(k)

(21)-(23)

try to compute 

s*i(k)   (29)

s(k-1) ≤ s*i(k) 

≤ s(k), s(k-1)+1

s*i(k) = floor(s(k))

yes

try to compute 

s*i(k)   (27)

s*i(k) ≤ s*i(k) 

≤ s(k), s*i(k)+1

s*i(k) = s*i(k)-1

  s*i(k) is not      yet appropriate

s(k) = s*i(k)

qc(k) is updated

compute qc(k)    

(31)

compute qc(k)  

(32)

s(k) = s*i(k)

s*i(k) is feasible

s(k) = k

all axes are 

feasible

no

s*i(k) is feasible

no solution 

found

yes

yes

Fig. 3. Flow chart of ALI during forward scaling.

or

qc(k
′−k1) = qc(k

′−k2) + (32)
(s(k′−k1)− s(k′−k2)) · (qd(s(k

′−k2) + 1)− qc(k
′−k2))

s(k′−k2) + 1− s(k′−k2)
,

if s(k) < s(k′−k2)+1. This results in qc(k
′−k1) = q#∗i(k

′−
k1) for the most limiting constraint ∗i.

The simplified procedure with k′ = k, k1 = 0, and k2 = 1
is illustrated in Fig. 3.

B. Discussion

Other than with previous work, ALI is not a complete
trajectory generation method but an add-on to the approach
of Section III, improving the path accuracy.

The main features of ALI are as follows:
• Whereas DPI always interpolates between qc(k

′ − 1)
and qd(k

′), ALI selects the appropriate segment and
interpolates there. So no corner cut exists, as in 2) of the
list of Section III-E. The only blending appears between
subsequent sampled positions qc(k

′−1) and qc(k
′). ALI

and DPI are identical if there is only a single segment of
qd(·) between s(k′ − 1) and k′. The different cases are
illustrated in Fig. 2.
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• For integral s(k′), qc(k
′) = qd(s(k

′)). Otherwise qc(k
′)

is on the straight line between neighboring points of
qd or the previously executed position qc(k

′ − k2) and
qd(s(k

′ − k2) + 1).
• All iterative scaling only modifies the scalar arc length

s(·). Thus the original desired trajectory is not affected.
Consequently, no smoothing is present, as in 3) of the list
in Section III. The final commanded trajectory qc(·) is
computed from the s(·) and the qd(·) and not iteratively
updated from preliminary qc(·).

• In contrast to Section III-C, backtracking with ALI does
not always result in a feasible trajectory. This is explained
in the following and a solution is found.

Backtracking with DPI according to (16) - (17) or (18) - (20)
guarantees that qba(k

′) or qbj(k
′) are feasible. In particular,

α = 0 results in abac(k
′) = qba(k

′)− 2qba(k
′ − 1)+qc(k

′ −
2) = 0 or jbjc(k′) = qbj(k

′)− 3qbj(k
′ − 1) + 3qbj(k

′ − 2)−
qc(k

′ − 3) = 0, since the individual axes are all backtracked
similarly. But the same factor α may give different values
s∗i(k

′−1) (see Fig. 4) or sji(k′−2). Consequently, the updated
s(k′ − 1) and s(k′ − 2) may result in aci(k

′) 6= abaci(k
′) or

jci(k
′) 6= jbjci(k

′).
Therefore, backtracking with ALI is repeated, as forward

scaling is repeated in Section III whenever scaling because
of an axis i1 has caused a new limitation in an axis i2.
Convergence can be speeded up by multiplying α with a
decreasing factor, e.g. cb = 1 − 0.03l, where l ∈ N is the
iteration index. In this way, feasible backtracking is usually
achieved rapidly.

If, nevertheless, repeated backtracking does not converge to
a feasible set of s(k′), s(k′ − 1), and s(k′ − 2), a solution
is enforced by several scalings with α = 0, until the result is

t

q , q desired trajectory q

q  with s   (k´-1,l)

s(k´,l-1)s(k´-1,l-1)

→s(k´,l)

s(k´-2,l-1)

1      2

scaling with a = 0.0

s   (k´-1,l)

s   (k´-1,l)

→s(k´-1,l)

a1

a2

a2

q  with s   (k´-1,l) → s(k´-1,l)

d

c

c a1

x

x

q

q

1

2

k k+1 k+2 k+3

Fig. 4. Example of backtracking in an iteration step l in which the s(k′ �
k1, l� 1) are not given by the sampling steps anymore. By backtracking the
acceleration with α = 0, qbai(k

′, l) according to (16) and thus s(k′, l) and
qc(k′, l) are adopted from s(k′ � 1, l � 1) and qc(k′ � 1, l � 1) of the
previous iteration step l � 1. But there is no unique sai(k

′ � 1, l) from the
two qbai(k

′�1, l) according to (17), marked by x. The lesser sai(k′�1, l)
is adopted as updated s(k′ � 1, l) and results in the updated qc(k′ � 1, l).
DPI would result in updated positions marked by x, thus leaving the path.

Fig. 5. KUKA robot with force sensor and pin which is in contact.

feasible. This is true at the latest for s(k′) = s(k′−1) = s(k′−
2) = s(k′ − 3), since then the interpolation is within a single
interval, as in Section III. The number of such backtracking
steps is in the order of magnitude of s(k′)− s(k′ − 3).

V. EXPERIMENTS

In the first experiment the robot tool moves horizontally,
overlayed by a vertical motion until a reaction force is
measured when touching the table (see setup in Fig. 5).
This happens in time step 3184 in Fig. 6, much earlier than
expected. Then the future desired trajectory is recomputed
such that the desired force will be executed with the original
desired horizontal motion. This approach is explained in detail
in [23]. It results in a step function since the actual position
at which the force is sensed is delayed with respect to the so
far desired trajectory.

Fig. 6 shows the experimental results of the first three axes
of a KUKA KR16 robot that is controlled at 250 Hz via
RSI Ethernet from an external computer. It displays that the
desired velocity of axis 1 remains constant whereas the desired
trajectories of axes 2 and 3 are significantly changed after the
impact. Fig. 7 shows the paths in the plane of axes 2 and 3.
Table I displays the used limits of velocities, accelerations and
jerks.

When the desired trajectory is changed (because of a sensed
contact), all tested methods succeed in a feasible trajectory. In
the first steps they are even identical. The steps 3184 to 3186
are not path-accurate, because the axes 2, 3, and 5 cannot be
accelerated fast enough.

TABLE I
ASSUMED LIMITS OF THE INDIVIDUAL AXES IN RAD/(SAMPLING STEP),

RAD/(SAMPLING STEP)2 , AND RAD/(SAMPLING STEP)3
(BEFORE FILTERING).

i v̄i āi j̄i
1 0.014 0.000074 0.000061
2 0.014 0.000037 0.000030
3 0.014 0.000085 0.000069
4 0.029 0.000250 0.000204
5 0.030 0.000252 0.000206
6 0.055 0.000450 0.000368
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Fig. 6. Desired and commanded trajectories using different methods.

Then the method without backtracking, i.e., DPI with only
forward scaling according to Sections III-A and III-B, executes
maximum acceleration until the desired trajectory is reached.
Thereafter, as far as the jerk limit allows, the deceleration is
maximum. In this way a poorly damped oscillation around
the desired path is executed. The robot motion may even
become unstable if the limits of the jerk are very restrictive.
So this “classical” approach is not suitable. The resulting path
is shown in Fig. 7.

In contrast, with DPI with backtracking there is no
overshooting since the acceleration is reduced in time.
Tracing the experiment discloses that time steps 3184 to
3186 require direct scaling (DS). In step 3187 the follow-
ing steps of forward scaling (f) and backtracking (b) are
done in order to comply with the constraints in brackets:
f(a2(3187)), f(a1(3188), a2(3188), a3(3188)), f(a3(3189)),
b(a2(3190), a3(3190), a5(3190)), b(a2(3189)), b(j2(3189),
j3(3189)), f(a2(3191)), b(a3(3191)), f(a1(3192), a2(3192)),
f(a2(3193)), and b(j2(3194), j3(3194)). Then the modified
trajectory is feasible until time step 3208 = 3187 + κ̄ and
qc(3187) is executed. Similarly, backtracking is performed in
each of the next sampling steps.
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Fig. 7. Desired and commanded paths using a force sensor. Each symbol
marks a sampled position.
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Fig. 8. Desired and commanded paths using a predictive sensor (5 times as
fast as Fig. 7). Each symbol marks a sampled position.

The result of the Reflexxes Motion Library [24] is similar to
this. It is obtained by computing trajectories from qc(k − 1),
vc(k − 1), and ac(k − 1) to qd(k + κ) and vd(k + κ). This
is done by tentatively calling the function RMLPosition for
κ = 0, · · · , κ̄ until the target is reached within at most κ time
steps.2 The intermediate time steps k, · · · , k + κ − 1 are not
considered, i.e., path accuracy does not matter.

Forward scaling and backtracking with ALI decelerates
significantly and thus reaches the desired trajectory later than
with the other methods (Fig. 6), but at an earlier position of
the desired path (Fig. 7).

In a second experiment the task is repeated 5 times faster,
where, instead of the force-torque sensor, a distance sensor
is simulated. This sensor can measure the table position in
advance, thus predict a changed desired trajectory that keeps
a minimum distance. The predictive approach decelerates early
enough, such that there is no overshooting (Fig. 8). This cannot
be exploited when using any of the two methods without
backtracking.

In this experiment, backtracking with DPI shows substantial
blending at the vertex, caused by up to 30 iteration steps. In
contrast, ALI reproduces the desired path exactly, which is
only possible by a stricter deceleration, resulting in a delay
k− s(k) of up to 9.5 sampling steps, using not more than 56
iteration steps for each trajectory.

The experiment verifies that, in combination with a predic-
tive sensor with little noise, the presented approach with ALI
can preserve the shape of the desired path according to the
definition of path accuracy in Section II.

The video attachment gives an impression of both experi-
ments. However, the different methods cannot be distinguished
there.

VI. CONCLUSION

The paper presents a trajectory generator that in each
sampling step continues the so far commanded robot motion
on the currently desired path, complying with constraints on
the velocity, the acceleration, and the jerk, and finally synchro-
nizing with the desired trajectory. The method is applicable to
industrial robots with standard robot programs, which in this
way are online-modified locally.

2Note that this is different to the intended usage. In addition, the used
backward computation of the derivatives is not adequate for the approach of
the library. Therefore the apparent overshooting and offset when using the
Reflexxes Motion Library are no deficiency of that library.
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Trajectory generation is done by forward scaling and back-
tracking, using either direct position interpolation (DPI) or arc
length interpolation (ALI), where the latter results in better
path accuracy. If no other solution is found, direct scaling
(DS) always gives a feasible position command.

The method can be extended to comply with other con-
straints, e.g. torque constraints or limitations on Cartesian
level. This can be treated similarly, but with time-variant
limits.

Further extensions are possible in order to speed up the
convergence. This will be the focus of future work.

APPENDIX

Without loss of generality, the sampling time T0 is expressed
in sampling steps instead of seconds. This results in T0 =
1. Then it can be omitted in the equations, meaning that for
rotational axes all quantities are dimensionless. For example
the acceleration a is expressed in radians per squared sampling
steps instead of rad/s2.

In addition, as in [19], all derivatives are computed by
backward differences, e.g. a(k) = v(k) − v(k − 1) =
q(k)− 2q(k− 1)+q(k− 2). With a(k+1) = · · · = a(k+ i)
this results in

q(k + i) = q(k) + iv(k) + i(i+ 1)/2 a(k + i) (33)

and
v(k + i) = v(k) + ia(k + i). (34)

For small i, this representation differs with respect to the
common equation q(k + i) = q(k) + iv(k) + i2/2 a. For
i = 1 the difference is a factor of 2 for the acceleration. But
this representation is consistent with the backward differences.

Similar to the acceleration, the jerk is defined by j(k) =
a(k) − a(k − 1) = q(k) − 3q(k − 1) + 3q(k − 2) −
q(k − 3). With j(k + 1) = · · · = j(k + i) this results in

q(k + i) = q(k) + iv(k) + i(i+ 1)/2 a(k)

+i(i+ 1)(i+ 2)/6 j(k + i)
(35)

and

v(k + i) = v(k) + ia(k) + i(i+ 1)/2 j(k + i), (36)

thus differing up to a factor of 6 from q(k + i) = q(k) +
iv(k)+i2/2 a+i3/6 j. This discrepancy is solved by adapting
the limits ā and j̄.
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[20] A. Amthor, S. Zschäk, C. Ament, A. Lorenz, and J. Werner. Method
and device for real-time-capable forth-order path planning for generating
continuous target trajectories free of jerk jumps. International patent
WO002010136586A1, 2010.

[21] C. Guarino Lo Bianco and F. Ghilardelli. Real-time planner in the
operational space for the automatic handling of kinematic constraints.
IEEE Trans. on Automation Science and Engineering, 11(3):730–739,
July 2014.

[22] F. Lange and M. Suppa. Trajectory generation for immediate path-
accurate stopping of industrial robots. In Proc. 2015 IEEE Int. Conf. on
Robotics and Automation (ICRA), pages 2021–2026, Seattle, WA, USA,
May 2015.

[23] F. Lange, W. Bertleff, and M. Suppa. Force and trajectory control
of industrial robots in stiff contact. In Proc. 2013 IEEE Int. Conf.
on Robotics and Automation (ICRA), pages 2912–2919, Karlsruhe,
Germany, May 2013.

[24] Reflexxes. http://www.reflexxes.ws/, last visited 2015.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2015.2506899

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


