Sentinel 5P validation by CoMet HALO (SNITCH) #28632

Andreas Fix and Gerhard Ehret

DLR German Aerospace Center, Oberpfaffenhofen (Germany)

Heinrich Bovensmann

Institute of Environmental Physics (IUP), U Bremen, (Germany)

Christoph Gerbig

Max-Planck-Institute for Biogeochemistry, Jena (Germany)

Klaus Pfeilsticker

Institute of Environmental Physics, U Heidelberg (Germany)

DLR German Aerospace Center, Flight Experiments

Introduction

- In April/May 2017 the partners have planned an airborne field campaign called **CoMet** (Carbon Dioxide and Methane Mission for HALO)
- The goal of CoMet is to measure gradients of the dry-air columns of both CH₄ and CO₂
 - use measurements to estimate local, regional, and sub-continental \rightarrow scale **fluxes** with inverse modelling
 - identify and quantify local and regional **sources** of greenhouse gases (e.g. power plants, landfills, city plumes, geological sources, wetlands)
 - prove that the proposed payload constitutes an adequate instrumentation for validation of spaceborne greenhouse gas missions such as S5P, MERLIN, CarbonSAT, ...)
- For the S5P validation activities the team proposes to generate synergy make use of the gathered CH₄ data from this campaign.
 - → related to Phase E2, i.e. routine exploitation phase

CoMet Instrumentation

Payload: ~ 1.200 kg

Active + Passive Remote Sensing + in-Situ

Active Remote Sensing Passive Remote Sensing

Core Instruments CHARM-F MAMAP CRDS, Flask Sampler

Ancillary Instruments (see Poster!)

Ancillary Instruments Mini-DOAS Attitude, p, T, rel. hum. dropsondes

A payload consisting of such suite of active, passive and in-situ instruments is unique

CHARM-F: DLR's Greenhouse Gas Lidar

Measurement principle

Integrated Path Differential Absorption Lidar

Main data product

 XCH_4 (@1.64µm); (XCO_2 @1.57µm)

Advantages:

- independent of sunlight
- not affected by thin clouds and aerosol

bottom view ports

HALO racks for control electronics, power

supply and cooling

MAMAP/MAMAP2D (U Bremen): **Methane Airborne MAPper**

Measurement principle

absorption spectroscopy using scattered/reflected solar radiation (as SCIAMACHY, OCO, GOSAT)

Main data product

XCH4 (and XCO2) via proxy approach with typical uncertainty of 0.3% or better

Status

- Planned extension with a 2-dim imaging SWIR and NIR (for O₂) channel → MAMAP2D
- MAMAP flew on various aircraft, but not yet on HALO
- Certification required
- Funding is pending

In-Situ Instruments (MPI Jena)

JIG: Jena Instrument for Greenhouse Gases

Measurement Principle

Cavity Ringdown Spectroscopy

Main data product

 Measures profiles of CH₄, CO₂, CO, H₂O and uses H₂O to convert to dry air mole fractions

Status

- Certified for HALO
- Heritage from IAGOS
- Successful HALO test flights with CHARM-F performed
- Measurement Examples
 → Poster

Precision/Accuracy:

CH₄: 2ppb

CO₂: 0.1ppm

CO: 2ppb

time resolution: ~ 2.3 s

JAS: Jena Air Sampler

Measurement Principle

Flask sampler for laboratory analysis

Main data product

- CO2, ¹³CO2, ¹⁸OCO
- CH₄, ¹³CH₄, CH₃D
- N₂O, CO, H₂, SF₆

Status

Under development

Measurement Strategies and Tentative Flight Patterns

TCCON sites
Power plants
Coal mines
Landfills
Volcanoes
S5P satellite tracks

- ~8 flights
- ~4-6 weeks duration

CoMet HALO

Funding Situation

- Funding is needed for additional flight hours / and certification
- It was attempted to receive funding from
 - German Space Agency (MERLIN framework, on hold)
 - German Federal Ministry or Science and Technology (rejected at this stage)
 - DFG Priority Program HALO (pending, new operation model)
- MAMAP needs funding
 - Fly MAMAP2D on HALO CoMet
 - high schedule risk for a CoMet mission in the first half of 2017 due to still unclear funding situation (but we may aim for a 2D SWIR-1 system only ...)
 - Fly MAMAP1D (as is) on HALO CoMet
 - Fly MAMAP on a small aircraft
- DLR and MPI have some internal money
 - (enabling a down-scaled CoMet campaign)

Co-operation is highly appreciated

