Sentinel 5P validation by CoMet HALO (SNITCH) #28632

Andreas Fix and Gerhard Ehret
DLR German Aerospace Center, Oberpfaffenhofen (Germany)

Heinrich Bovensmann
Institute of Environmental Physics (IUP), U Bremen, (Germany)

Christoph Gerbig
Max-Planck-Institute for Biogeochemistry, Jena (Germany)

Klaus Pfeilsticker
Institute of Environmental Physics, U Heidelberg (Germany)

Martin Zöger
DLR German Aerospace Center, Flight Experiments Oberpfaffenhofen (Germany)

Knowledge for Tomorrow
Introduction

• In April/May 2017 the partners have planned an airborne field campaign called CoMet (Carbon Dioxide and Methane Mission for HALO)

• The goal of CoMet is to measure gradients of the dry-air columns of both CH$_4$ and CO$_2$
 ➔ use measurements to estimate local, regional, and sub-continental scale fluxes with inverse modelling
 ➔ identify and quantify local and regional sources of greenhouse gases (e.g. power plants, landfills, city plumes, geological sources, wetlands)
 ➔ prove that the proposed payload constitutes an adequate instrumentation for validation of spaceborne greenhouse gas missions such as S5P, MERLIN, CarbonSAT, …)

• For the S5P validation activities the team proposes to generate synergy make use of the gathered CH$_4$ data from this campaign.
 ➔ related to Phase E2, i.e. routine exploitation phase
CoMet Instrumentation

Active + Passive Remote Sensing + in-Situ

<table>
<thead>
<tr>
<th></th>
<th>Active Remote Sensing/Lidar</th>
<th>Passive Remote Sensing</th>
<th>In-Situ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Instruments</td>
<td>CHARM-F</td>
<td>MAMAP</td>
<td>CRDS, Flask Sampler</td>
</tr>
<tr>
<td>Ancillary Instruments (see Poster!)</td>
<td></td>
<td>mini-DOAS</td>
<td>Attitude, p, T, rel. hum. dropsondes</td>
</tr>
</tbody>
</table>

A payload consisting of such suite of active, passive and in-situ instruments is unique
CHARM-F: DLR`s Greenhouse Gas Lidar

Measurement principle
Integrated Path Differential Absorption Lidar

Main data product
X_{CH_4} (@1.64µm); (X_{CO_2}@1.57µm)

Advantages:
• independent of sunlight
• not affected by thin clouds and aerosol
• high accuracy

CHARM-F is certified for operation on HALO and was recently flown for the first time
MAMAP/MAMAP2D (U Bremen): Methane Airborne MAPper

Measurement principle
- absorption spectroscopy using scattered/reflected solar radiation (as SCIAMACHY, OCO, GOSAT)

Main data product
- XCH4 (and XCO2) via proxy approach with typical uncertainty of 0.3% or better

Status
- Planned extension with a 2-dim imaging SWIR and NIR (for O₂) channel → MAMAP2D
- MAMAP flew on various aircraft, but not yet on HALO
- Certification required
- Funding is pending
In-Situ Instruments (MPI Jena)

JIG: Jena Instrument for Greenhouse Gases

Measurement Principle
- Cavity Ringdown Spectroscopy

Main data product
- Measures profiles of CH$_4$, CO$_2$, CO, H$_2$O and uses H$_2$O to convert to dry air mole fractions

Status
- Certified for HALO
- Heritage from IAGOS
- Successful HALO test flights with CHARM-F performed
- Measurement Examples → Poster

Precision/Accuracy:
- CH$_4$: 2ppb
- CO$_2$: 0.1ppm
- CO: 2ppb
- Time resolution: ~ 2.3 s

JAS: Jena Air Sampler

Measurement Principle
- Flask sampler for laboratory analysis

Main data product
- CO$_2$, 13CO$_2$, 18OCO
- CH$_4$, 13CH$_4$, CH$_3$D
- N$_2$O, CO, H$_2$, SF$_6$

Status
- Under development
Measurement Strategies and Tentative Flight Patterns

40-60 flight hours,
~8 flights
~4-6 weeks duration

TCCON sites
Power plants
Coal mines
Landfills
Volcanoes
S5P satellite tracks
Funding Situation

• Funding is needed for additional flight hours / and certification

• It was attempted to receive funding from
 • German Space Agency (MERLIN framework, on hold)
 • German Federal Ministry or Science and Technology (rejected at this stage)
 • DFG Priority Program HALO (pending, new operation model)

• MAMAP needs funding
 • Fly MAMAP2D on HALO CoMet
 • high schedule risk for a CoMet mission in the first half of 2017 due to still unclear funding situation (but we may aim for a 2D SWIR-1 system only ...)
 • Fly MAMAP1D (as is) on HALO CoMet
 • Fly MAMAP on a small aircraft

• DLR and MPI have some internal money
 • (enabling a down-scaled CoMet campaign)
Co-operation is highly appreciated

- TCCON Related Proposals
- AirCores
- Other Aircraft Activities

- More Information on Poster