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ABSTRACT 

The base of the Eu:CROPIS (Euglena Combined Regenerative Organic food Production 

In Space) Attitude and Orbit Control System (AOCS) is the three layer AOCS software 

architecture of the TET-1 satellite (Technology demonstrator). Because of different 

AOCS requirements between TET-1 and Eu:CROPIS, a software reuse is only possible 

for software components in the interface layer. In the other two architecture layers, the 

software components have to be replaced by new implementations to fulfil the changed 

requirements of the Eu:CROPIS mission. In contrast to the former software evolution 

from BIRD (Bispectral Infra-Red Detection) to the TET-1 AOCS, the software evolu-

tion is forced in Eu:CROPIS by the reuse of software design principals applied in TET-

1. Without software reuse we are able to change the underlying scheduling mechanisms 

from a fixed time approach to a more reactive software system presented in this paper. 

1. INTRODUCTION 

The reactive scheduling mechanism used in the Eu:CROPIS AOCS is a result from ex-

periences from the BIRD mission [7]. This mechanism, named “tasking framework”, 

resolves one weakness in the BIRD and TET-1 AOCS software [8]: the scant timing for 

the control torque computation. The tasking framework is the core element in the opera-

tion system development of DLR’s OBC-NG (Onboard Computer – Next Generation) 

project, which will provide a distributed onboard computer platform for reconfigurable 

and high redundant systems. At the moment the tasking framework is implemented on 

top of Linux and is use in DLR’s ATON (Autonomous Terrain-based Optical Naviga-

tion) project and in the MAIUS (Atom-optical experiments on sounding rockets) mis-

sion. Eu:CROPIS uses a porting of the tasking framework from Linux to the ROBOSS 

operating system API on top of RTEMS.  

The next chapter sketches the Eu:CROPIS mission, the used satellite bus, and the 

AOCS. Chapter 3 presents the tasking framework and implementation details for the 

AOCS. The focus is set on the usage of the reactive behavior for the implementation of 

the diagnostic report service defined by the packet utilization standard [6], which is one 

of the main benefits of the tasking framework. The paper closes with a conclusion. 

2. EU:CROPIS 

The mission Eu:CROPIS is the demonstration of the feasibility of restartable and sus-

tainable life support systems. Such systems enable the production of food and atmos-

phere, and the utilization of waste like urine and phosphate [1]. Furthermore, the system 

should be reliable enough for long duration missions. The biological experiments re-

quire different levels of gravity. This is achieved by a spin stabilized satellite which can 



change its rotation speed and thereby the gravity in the biological experiment compart-

ments during mission time. The target gravities of Eu:CROPIS are 0.16 g (Moon) and 

0.38 g (Mars) respectively in the biological experiment compartments. They are placed 

at a reference radius of 0.35 m measured from the designed spin axis. The launch is 

planned in 2017 with a Falcon 9 as a piggy back start. 

The used satellite bus is based on the DLR compact satellite bus program, which is a 

research and development platform in a component-oriented design. The bus for the 

Eu:CROPIS mission is a spin stabilized platform with a cylindrical body with a diame-

ter of 1000 mm and a height of 1100 mm [3]. The bus has two sections: one with the 

separated payload compartments at the upper deck, and one with the bus section. The 

mass of the satellite is around 230 kg. The orbit is sun synchronous with at least 600 km 

altitude. 

The main requirement to be fulfilled by the AOCS is the generation of gravity in the 

biological compartments. Beside this, the AOCS is responsible to orient the z-axis into 

sun direction to ensure power generation by the solar panels. Thereby, the satellite bus 

is spinning around the z-axis between 5 to 31 rpm. To satisfy the power generation with 

the solar panels the spin axis has to be reoriented by ~1 deg/day to keep a sun pointing 

attitude 

As actuators, the AOCS uses three magnetic torquers to control the rotation and spin 

axis. It uses two magnetometers, 10 sun sensors, and four angular rate sensors with a 

tetrahedral mounting. In addition, two GPS receivers provide navigation information. 

The attitude controller uses five control state modes. The detumbling mode damps the 

rates of the satellite body sufficiently. It is the first mode when the AOCS boots up. The 

second mode is the spin up/down mode to change the spin rate around the z-axis. The 

spin mode holds a spin rate and orients the solar panels into the sun. For the solar panel 

deployment, the AOCS provide a deployment mode to handle the moments of inertia 

change. To indicate a problem in the AOCS, the fifth mode is the AOCS safe mode 

keeping the solar panels into sun direction. 

The attitude controller uses an Unscented Kalman Filter (UKF) approach as core of the 

attitude determination which is designed for spin stabilized satellite. For a detailed de-

scription of the used UKF and the AOCS see [4]. 

3. TASKING FRAMEWORK 

The Eu:CROPIS AOCS uses a reactive scheduling mechanism to control the order and 

timing of computation tasks, named as tasking framework. Starting point for the imple-

mentation is the way how estimator and predictor modules were organized in the BIRD 

AOCS. These modules are executed in a fixed order at a fixed time in the control cycle 

to combine all sensor inputs to an accurate attitude state vector. For TET-1, this static 

approach has been led to a scant timing between controller computation and the com-

manding of the control torque actuators. During the launch and early orbit phase 

(LEOP), a further timing violation of another bus application occurred which led to an 

unexpected AOCS state. Figure 1 A) depict an example of such a timing. 



In the new tasking framework, the timing behavior has been changed. Instead starting 

the computation at a predefined time in the computation cycle, it starts now whenever 

the information is available. All information values are stored in messages distributed 

by channels. The channels initiate the computation when all defined conditions are met. 

The timing with the tasking framework is depicted in Figure 1 B). In addition, the com-

puted values of the estimator and predictor modules are not stored in one AOCS state 

vector anymore but handled as messages on channels inside the AOCS software. These 

channels provide the synchronization mechanism for the data. This can be implemented 

as single or double buffers, or as more complex data structures like FIFO queues. The 

synchronization is triggered by the scheduler and a set of three methods which should 

be overloaded by the synchronization mechanism. 

 

Figure 1 Timing: A) Procedural B) Tasking 

 

In the tasking framework, all computations are performed by tasks instead of threads. A 

task can subscribe to suitable channels needed to provide the information for the com-

putation. Each task is started when a specified amount of information is available on all 

subscribed channels. It can also start immediately when a corresponding channel is sub-

scribed as final input. These specifications are configured by a task input, which estab-

lishes the subscription between channel and task. In contrast, a thread is only started 

once during the run time of the onboard software and should be implemented as an end-

less computation loop for the specified time frame. 

For computations requiring predefined timings in the computation cycle, the tasking 

framework provides a task event, which is triggered relatively to the reset operation or 

periodically by the onboard clock. This task event can be subscribed by a task instead of 

a channel in order to operate with a defined timing. A time-out is reached when a task 

event subscribed as final input. 

One computation can split into several tasks but managed as one group. This allows the 

parallelization of a computation on multi-core processor platforms. The behavior of 

tasks inside such a task group is slightly different to the behavior of an isolated task. By 

default, a task and all inputs of a task are reset by the scheduler when a task finishes the 

computation. The task can then be activated again as soon as the specified amount of 

information is available on the subscribed channel. For a task group, this reset is only 

executed when all tasks in the task group have been executed. Thus, a task inside a task 

group can only start again when all other tasks inside the group have been executed at 

least once in the previous loop. Such groups are used for example in the Eu:CROPIS 



AOCS for all tasks of the estimator, predictor and controller block or for the hand shak-

ing communication protocol with actuators. 

The reactive organization of the AOCS allows an immediate filtering for the diagnostic 

reporting service of the packet utilization standard (PUS). For this purpose, a filter task 

exists in the software which can dynamical be associated to a subset of channels in the 

AOCS. A new data item is filtered immediately when it is pushed to the channel. The 

subset of channels provides for the message data scalar values which can easily be fil-

tered. These values could be e.g. a rotation speed, a binary value, or the angle between 

rotation axis and the sun vector. Beside the relative filter defined by PUS, the 

Eu:CROPIS AOCS provides also filter for maximum, minimum, and epsilon values. 

4. CONCLUSIONS AND OUTLOOK 

This paper present the reactive scheduling mechanism used in the Eu:CROPIS AOCS. 

This kind of scheduling removes the overestimated time gaps between processing steps 

in the BIRD and TET-1 software. For TET-1, the scant timing provoked a malfunction 

of the AOCS during the LEOP, caused by a timing violation in another bus application. 

For Eu:CROPIS, such kind of malfunctions with respect to scheduling and the used 

synchronization between computation steps in the controller are no longer possible. 

The described filter concept used by the implementation of the diagnostic reporting ser-

vice shows how observations can be integrated into a computation process. Besides for 

the normal operation of the AOCS, such observations can also be used for FDIR (Fail-

ure detection and recovery) and surveillance checks. Furthermore, the split of pro-

cessing chains in several computation tasks allows the parallelization of onboard 

computing which yield more computation power. This is addressed in DLR’s OBC-NG 

project. The Eu:CROPIS AOCS demonstrates already today the potential power of dis-

tributed and reconfigurable onboard systems expected to become available in the next 

years also for the space domain. 
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