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Abstract-This paper presents a novel failure-tolerant 

architecture for future robotic spacecraft. It is based on the 

Time and Space Partitioning (TSP) principle as well as a 

combination of Artificial Intelligence (AI) and traditional 

concepts for system failure detection, isolation and recovery 

(FDIR). Contrary to classic payload that is separated from the 

platform, robotic devices attached onto a satellite become an 

integral part of the spacecraft itself. Hence, the robot needs to 

be integrated into the overall satellite FDIR concept in order to 

prevent fatal damage upon hardware or software failure. In 

addition, complex dexterous manipulators as required for on­

orbit servicing (OOS) tasks may reach unexpected failure 

states, where classic FDIR methods reach the edge of their 

capabilities with respect to successfully detecting and resolving 

them. Combining, and partly replacing traditional methods 

with flexible AI approaches aims to yield a control 

environment that features increased robustness, safety and 

reliability for space robots. The developed architecture is 

based on a modular on-board operational framework that 

features deterministic partition scheduling, an OS abstraction 

layer and a middleware for standardized inter-component and 

external communication. The supervisor (SUV) concept is 

utilized for exception and health management as well as 

deterministic system control and error management. In 

addition, a Kohonen self-organizing map (SOM) approach was 

implemented yielding a real-time robot sensor confidence 

analysis and failure detection. The SOM features non­

supervized training given a typical set of defined world states. 

By compiling a set of reviewable three-dimensional maps, 

alternative strategies in case of a failure can be found, 

increasing operational robustness. As demonstrator, a satellite 

simulator was set up featuring a client satellite that is to be 

captured by a servicing satellite with a 7-DoF dexterous 

manipulator. The avionics and robot control were integrated 

on an embedded, space-qualified Airbus e.Cube on-board 

computer. The experiments showed that the integration of 

SOM for robot failure detection positively complemented the 

capabilities of traditional FDIR methods. 
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1. INTRODUCTION 

Currently, the operation and further development of robotic 
systems in space is an important topic as there is a multitude 
of applications. Using the Shuttle and Space Station Robotic 
Manipulator System (SRMS, SSRMS), respectively, the 
International Space Station (ISS) was assembled from 
several modules using in-space robotic assembly (ISRA) 
[ 1 ]. Small robotic satellites are planned to serve for 
inspection purposes [2] and NASA's Robonaut [3] or 
comparable systems such as DLR's humanoid robot Justin 
[4] are candidates for future EVA support operations. 
Similar to ISRA and EVA support, dexterous robotic 
manipulators are planned to be utilized to capture, maintain 
and/or de-orbit operational and defective satellites within 
on-orbit servicing (OOS) missions [5]. Finally, robotic 
exploration of other celestial bodies, such as the Moon, 
Mars or Near Earth Objects (NEOs) is already underway, 
and continues to be an important mission in space [6]. 

By introducing dexterous manipulators to traditional 
satellite platforms, the spacecraft design becomes 
increasingly sophisticated and complex. Due to the high 
level of interdependencies between the manipulator and its 
floating base, it becomes an integral part of the overall 
spacecraft design. Basically the whole satellite turns in into 
a 'space robot'. Consequently, the underlying computing 
environment needs to support both traditional satellite as 
well as robot control. In this context, a novel on-board 
architecture was presented within [7] that applies the 
concept of time and space partitioning (TSP) [8] on an 
embedded platform, provides configurable means for 
internal and external communication for both real-time and 
non-real-time applications, as well as mechanisms for 
achieving autonomy and a system-level approach to failure 
management. 

In addition to the nominal control environment, advanced 
capabilities in fault detection and diagnosis are an important 
problem in spacecraft operations and a critical aspect of on­
board software with respect to safety, performance and 
reliability. Especially for on-orbit servicing spacecraft, 
ground operators have to observe increasingly large 
volumes of telemetry for operation and fault diagnosis, 
especially if close-proximity operations including robotic 
manipulation are involved. The operator is not able to 
perceive all relevant environmental parameters and act 



accordingly in a timely manner. In the case of interplanetary 
probes, increased time delay further complicates the 
situation. Dissimilar to complex robotic systems the ground 
has, there is no emergency button in space to halt the current 
operation. Even after stopping the current movement, e.g. 
due to an internal robot failure, remaining drift of the free­
floating base can still lead to a collision, potentially 
endangering the mission success. Thus, autonomous 
nominal operation capability as well as FDIR functionality 
must be transferred from the ground to the spacecraft itself 
in order to cope with these challenges. In addition, such 
capability results in a significant reduction of operational 
cost and increase in operational uptime, as the spacecraft 
does not remain in safe mode after unresolvable failure until 
a respective recovery routine is triggered by ground 
personnel. 

For traditional satellites such as Earth observation or 
telecommunication spacecraft, conventional and well­
established FDIR methods have been shown to reduce the 
occurrence of safe mode events and thus, increase the 
spacecraft's operational time. One significant drawback of 
classical fault diagnosis, however, is that it depends on 
predefined error patterns, i.e. specific values or ranges of a 
set of variables. These are subsequently connected to a 
failure recovery routine represented by a set of actions. 
Furthermore, recovery routines are usually executed in 
open-loop, meaning that the resulting system state after each 
execution are not necessarily congruent with the expected 
state. 

Combining and partly replacing classic methods with 
flexible AI approaches that are able to detect previously 
unknown failure states aims to yield a control environment 
that features increased robustness, safety and reliability for 
space robots The developed framework presented in this 
paper aims to cope with these challenges by complementing 
traditional system FDIR with an AI approach for robot 
failure detection with special focus on the operation of on­
orbit servicing robotic spacecraft. 

2. ST A TE OF THE ART 

Time and Space Partitioning 

The modular architecture presented in this paper consists of 
multiple software components running on a single on-board 
computer. In order to achieve spatial partitioning for both 
error containment through separation and re-usability 
through independent software verification processes, they 
are separated in logical containers, i.e. partitions. In 
addition, temporal partitioning through scheduling 
facilitates a deterministic system behavior [9, 1 0]. 

The described principle has already been adopted in some 
industry branches. The aeronautic industry introduced a 
comparable principle with the Integrated Modular Avionics 
(lMA) [ 1 1 ]  and the ARINC 653 [ 12] specifications. The 
automotive industry currently tries to establish AUTOSAR 
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in order to decrease the number of hardware control 
elements built into the car [ 1 3]. Time and space partitioning 
concepts in space are still in their early stage [9]. ESA, in 
cooperation with space industry [8], and NASA, are 
particularly interested in applying this technology in the 
next generation spacecraft [ 14]. 

FDIR in Space 

Within the field of FDIR, a fault can be defined as an 
undesired deviation of the property of some system variable 
from an acceptable or nominal behavior that potentially 
leads to degraded overall system performance, 
malfunctions, up to loss of the mission itself [ 1 5]. In this 
context, a FDIR mechanism is composed of the following 
tasks [ 1 6] :  

Detection of the presence of a fault and its rate of 
occurrence (D) 
Determination of its location, type as well as 
estimation of its severity (I) 
Reconfiguration of the faulty element and/or 
overall spacecraft in order to achieve nominal 
system behavior (R) 

Failures are typically classified by their criticality and the 
level on which they occur in the control system, which also 
correlates to the present level to autonomy. Low-level 
equipment failures can be resolved locally, or, if not 
recoverable from, are propagated to the next higher level up 
to system control level. This layered structure comprises a 
hierarchically distributed FDIR system with the aim to 
resolve occurring failures on the lowest possible level. The 
higher the failure is propagated, the more system knowledge 
and thus, deliberative capabilities are required by the FDIR 
architecture to autonomously identify, isolate and 
successfully resolve the problem. [ 17] 

Traditional FDIR concepts are able to react to predefmed 
events and subsequently select a recovery routine from a 
given set of options accordingly [ 18]. Failure recognition is 
mainly based on fixed thresholds, logical conjunctions of 
variables, device built-in health and consistency checks that 
trigger the switch of redundant software and/or hardware 
components up to complete strings of hardware and 
software. In addition, analytical redundancy is utilized that 
is based on voting mechanisms or estimation techniques 
such as Kalman filters. These correlations are mostly 
implemented at design time and are based on extensive 
evaluation using the engineering methods of failure mode, 
effects and criticality analysis (FMECA) as well as failure 
tree analysis (FTA) [1 9]. In addition to hard-coded 
reactions, the use of on-board control procedures (OBCP) 
allows script-like actions that are assembled of 
telecommands, e.g. using the Packet Utilization Standard 
(PUS), or specific language implementations [20]. This 
allows in-flight adaption of the failure management logic 
through the upload of new OBCPs. As ultimate system 
reaction to unresolvable failures, the spacecraft is 
transitioning into safe mode, from where it has to be 
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Figure 1: Overview of research in the artificial intelligence (AI) domain for FDIR in space 

recovered from by ground control. the sensors in the Space Shuttle Main Engine (SSME) [25], 

The established FDIR principles as outlined above 
constitute a good level of robustness for trad itional satellites 
are industrially mastered and established within the 
development process [2 1 ]. However, they have limited or no 
knowledge of the actual on-board operational capabilities. 
Mostly they only allow partial observability of the overall 
system which leads to shortcomings in autonomous isolation 
and recovery capabilities. One prominent example is Mars 
Express [22]. Due to non-resolvable memory failure it 
suffered from repeated safe mode transitions, as a result six 
months of operation time was lost. 

In order to extend the operational on-board capabilities of 
FDIR systems, several studies have been conducted utilizing 
methods of artificial intelligence (AI) as summarized in 
Figure 1 .  The research can be classified into analytical 
models, Bayesian reasoning, artificial neural networks 
(ANN), fuzzy logic and the Dempster-Shafer evidence 
theory [23]. A significant step towards a more robust and 
autonomous on-board system and the only actual in-flight 
study in this domain was the remote agent experiment 
aboard Deep Space 1 [24], The agent was capable of taking 
certain decisions autonomously, based on model knowledge 
and thus, to react to unpredicted behavior without additional 
human interaction. Other studies addressed the evaluation of 
previously defined analytical rules describing specific parts 
of the system in order to detect irregularities or deviations. 
In 1 990, one of the first approaches was made in this area 
using analytical failure detection and isolation methods for 
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This method was later enhanced by introducing an ANN in 
order to estimate the actual value of the faulty sensor [26]. 
The ANN representing the dependencies between the 
temperature sensors was trained during the startup of the 
SSME allowing it to memorize the thermal behavior. 
Subsequently, the network was able to detect anomalies and 
recover from them by sensor estimation without the need to 
shut down the engine. The previously discussed methods all 
address the level of subsystem or actuator FDIR. In [27], a 
Bayesian network was successfully used in order to describe 
the spatial relationships between the different parts of a 6-
DoF robotic manipulator, which was used in order to detect 
failures such as blocked or deformed joints. 

In addition to the model-based approaches described above, 
other studies tried to use more 'advanced' soft computing 
techniques, e.g. the ' Advanced FDIR' study of the European 
Space Agency (ESA) [28], In this work, different methods 
for system FDIR were addressed such as Bayesian 
networks, which are able to deal with corrupt or missing 
values using previously defined dependencies in the system. 
Furthermore, configuration spaces allow the system to 
recover from a detected failure by estimating the erroneous 
value by a comparison of the healthy part with a fault-free 
model of the system. Within [29], the Dempster-Shafer 
Evidence Theory was applied on fault diagnosis in software 
and sensor health management (SSHM). This theory uses a 
combination of uncertain information resulting in a belief 
function, which describes the probability of failure for 
different values. Although there are many different 



techniques and studies using and evaluating advanced FDIR 
methods, only the remote agent experiment was actually 
flown and tested in space, whereas all the other projects 
remain theoretical simulations including a few specific on­
ground hardware tests. The projects [27] and [3 1 ]  were 
applied to manipulators on ground. The proposed principle, 
however, could be transferred to the space domain. 

The work described within this paper investigates the 
capabilities of neural networks for manipulator sensor 
failure detection. One advantage of ANN's is that they are 
capable of adapting to changed properties of the system or 
the environment. They show a robust behavior if the input 
differs from the expected and trained input space and are 
capable of dealing with high noise or uncertainties in a 
value. This robust model behavior together with estimation 
capabilities of faulty sensors makes neural networks a 
promising candidate for reliable robot failure detection. 

3. ON-BOARD OPERATIONAL ARCHITECTURE 

On-Board Framework and Components 

The developed on-board framework is composed of several 
layers and software components that together form the 
functionality for a holistic control approach for both classic 
satellite operations and robotic control. Figure 2 depicts the 
basic composition of the embedded architecture. For 
achieving spatial and temporal separation, each node or 
computational unit runs a TSP operating system (OS) such 
as VxWorks 653 or PikeOS. Available resources are 
separated into partitions, where usually one component is 
dedicated to one partition in order to achieve complete 
separation for safety purposes and to ease the deterministic 
scheduling configuration. Hardware equipment such as a 
GPS unit or arbitrary sensors and external communication 
interfaces, are each represented by a specific equipment 
handler component that exclusively has access to the 
equipment's resources and can share its status and data with 
other components. 

The framework contains a middleware that provides a 
standardization of on-board communication through an 
abstract interface definition as well as an OS abstraction 
layer for cross-platform portability. At this point, the OS 
abstraction layer has been implemented for Linux (non­
TSP), VxWorks 6.9 (non-TSP), and PikeOS. In addition to 
the abstraction layer and middleware services, the core 
components provide system control functionality of a 
classical spacecraft, cpo Figure 3. The supervisor (SUV) is 
used for deterministic system control and fault management. 
It is the only component with administrative system access 
and can therefore observe, start and stop all other 
components. The 110 Handler (lOH) implements the 
external operator interface using the packet utilization 
standard (PUS) [40] as a de-facto-standard in the European 
space industry and provides routing functionality between 
multiple nodes and spacecraft. The configurable data 
management (DM) realizes a data centric approach, i.e. all 
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Figure 2: On-board framework composition 

components can store and read data from/to the DM. 
Through configuration of the DM, thresholds and other 
parameter statistics that are automatically evaluated can be 
defmed. Similar to traditional FDIR functionality, upon 
threshold violation a system event can be thrown. The event 
handler (EVH) collects these asynchronous exceptions or 
notifications and distributes them according to its 
configuration. By triggering event-connected actions within 
components (callbacks) or script-like on-board control 
procedures that are handled by the OBCP handler 
(OBCPH), an event/action mechanism is realized on which 
autonomous functionality can be built. The mission time line 
handler (MTH) contains the mission timeline (MTL) that is 
composed of time-tagged commands. The logging handler 
(LOH) records all occurring system events, actions and 
configured data for subsequent transmission to ground. 
Through their configurability, all core components and 
established equipment handlers for specific external 
interfaces can be re-used over mUltiple missions without 
changing their code, saving implementation and verification 
resources. In addition, mission components e.g. specific 
robotic control (ROB) components and/or a mission planner 
(MPL) broaden the capabilities of the on-board system. The 
MPL is currently implemented as a functional interface that 
can trigger offline-built task plans and store them in the 
MTL, the contained commands are subsequently executed 
upon time-tag expiration. Additional to its core 
functionality, the SUV may contain mission specific code, 
e.g. simple pre-defined failure management logic. 

Communication Interfaces 

Impedance control concepts allow a responsive or compliant 
manipulation of targets through haptic feedback. They 
require sufficiently high-speed and real-time data links with 
low jitter in the communication channel in order to keep the 
control system stable. In addition, the manipulator 
movement imposes a direct physical feedback on its floating 
base. Thus, synchronous data from other subsystems, e.g. 
the AOCS is required for actively stabilizing the platform or 
ignoring this external disturbance. Within the framework, 
inter-component communication is achieved by message 
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queues for asynchronous and synchronous system level 
communication and shared memory for synchronous high 
performance real-time communication. With the IOH, the 
framework features its own PUS implementation for 
transparent communication both from space-to-ground, 
between spacecraft as well as on-board between different 
nodes. PUS messages are decoded, mapped to internal 
component callbacks and subsequently forwarded to the 
dedicated receiving component. This process is transparent 
to the software components. Classic housekeeping (HK) is 
implemented by the DM. The operator can subscribe to 
single parameters and/or groups that are subsequently sent 
to ground in the configured manner via the dedicated HK 
service. In general, arbitrary PUS services can be mapped to 
internal framework callback functions of components that 
implement the required functionality of the service. 

Failure Management and Autonomy 

The framework design follows the common three tier (3T) 
architecture for system autonomy, cpo Figure 4. By 
combining the data-centric approach of the data 
management (low level synchronous and asynchronous 
parameter control layer), the event/action mechanism 
(asynchronous low-level reaction and exception handling), 
scheduling (sequencing level with the mission time line) and 
task planning (deliberative layer) together with system 
supervision and control realized by the supervisor, a high 
degree of system autonomy can be achieved. The supervisor 
concept is used for both function and health monitoring. By 
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Figure 4: Three Tier architecture for autonomy 

978-1-4799-1622-1115/$31.00 ©2015 IEEE 5 

utilizing the spatial partitioning principle, the continuation 
of the mission can be assured even on critical component 
failure. As part of the health management, partitions can be 
restarted by the supervisor after an unresolvable failure was 
detected, in case this measure is applicable to the ongoing 
spacecraft operations. The SUV also starts, controls, e.g. 
mode management, and shuts down the system and its 
components in a deterministic order. With these methods, a 
holistic and deterministic system-level failure detection, 
isolation and recovery (FDIR) scheme can be configured. 

Due to this configurability of the modular system together 
with knowledge about the health status of each component, 
the SUV as central instance obtains a high degree of overall 
system knowledge. Consequently, also model-based FDIR 
decisions based on the current system task and available 
resources can be included, resulting in a higher flexibility 
and fault tolerance compared to traditional one-to-one 
mapping between cause and action. 

A more detailed description of the frameworks composition 
and functionality can be found in [7]. The architecture 
comprises a variety of methods for achieving both 
traditional event/action and model-based autonomy for 
nominal operations and failure handling. The next chapter 
describes an additional AI approach for robot sensor failure 
detection to complement the before mentioned system-level 
methods. 

4. ARTIFICIAL INTELLIGENCE ARCHITECTURE 

Artificial Intelligence (AI) is used to solve a wide variety of 
problems in different domains. For robotic manipulators, AI 
can enable the control system to learn and react to unknown 
and/or unpredictable events and inputs resulting in higher 
robustness of the control system. The presented approach 
focuses on artificial neural networks (ANN) and a further 
development of ANN, the self-organizing map (SOM). 
Currently the most common use of SOMs is forecasting, 
classification and pattern recognition [43]. For human­
machine interfaces, SOMs are used for speech recognition 
to handle and interpret a spoken input. Here the exact 
structure of such input is not known, as there is a multitude 
of different voices and dialects and the words are spoken 
fluently, possibly without clear distinction [46]. 
Furthermore, those maps are used to get a clear 
representation of survey results that include 
multidimensional information. The information is 
transferred into a human-readable two dimensional map. 
Those ANNs or SOMs are characterized by a black box-like 
behavior, meaning that some input generates a specific 
output with the help of previously trained dependencies, 
which are generated automatically without human 
interaction. One of the advantages of such a network is that 
it does not require detailed knowledge of the described 
system since all the required data is fed into the black-box 
during training. Due to this process the network adapts its 
inner connections, called weights, and therefore is able to 
express the properties in a net-like structure. During real 
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time operations the SOM can deal with both expected 
(trained) and unexpected inputs, Returning feasible outputs 
in both cases makes this approach reliable and robust. [47] 

Artificial Neural Networks 

An ANN consists of one input layer, one or more hidden 
layers and one output layer, which are usually 
multidimensional. They contain a variable amount of nodes, 
dependent on the complexity of the system to be 
approximated. All of them are connected by weights 
represented by a normalized value between 0 and 1 ,  which 
is tuned during training or even in the running system to be 
able to adapt to changes in real-time. If an input vector is 
fed into the ANN it is processed from node to node 
beginning at the input layer through the hidden layer until 
an output is returned at the end node. In this process the 
initial input values are recalculated in each node according 
to their weights. ANNs can be trained to represent basic 
mathematical functions, such as sine and cosine, but also 
more complex and partially unknown dependencies, e.g. as 
given with the temperature sensors in a Space Shuttle Main 
Engine (SSME) [26]. 

Self-Organizing Maps 

In this paper, a subgroup of ANN is used, the SOM, which 
is similar to an ANN with one output and one hidden layer 
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represented by a two-dimensional arrangement of weights as 
depicted in Figure 5. Here, x and y-axes describe the 
position in the map, whereas the z-axis shows the non­
normalized value of the weight. The SOM can be 
characterized as a two-dimensional discretized 
representation of a high dimensional input space. These 
maps are trained using non-supervised learning, which 
means they recognize the pattern and dependencies of the 
input space and store them equally [43]. 

Figure 6 depicts a schematic overview of the OOS system 
with the coordinate frames of the servicer, client, arm end 
effector (tool center point, TCP) and base camera as well as 
the grasp frame. Both the arm and the servicer base camera 
see the client to be captured, and can estimate the relative 
position and orientation of the grasp frame yielding the two 
transformations Tcaml-grasp and Tcam2-grasp. In addition, the 
current arm configuration provides the transformation Tcaml-
cam2. As redundant information used for sensor validation, 
the position of the end effector represented by Tcaml-grasp r 
Icam2_grasp through camera estimation and Tcaml-cam2 through 
the robotic arm are evaluated by the SOM. This results in a 
1 3-dimensional input space represented by the seven joint 
angles of the robot and the six-dimensional pose of the arms 
TCP. The 1 3-dimensional input is mapped onto two 
dimensions represented by the x and y-axes of the self­
organizing map. Therefore each unit in the map contains 1 3  
weights. 



Architecture 

The developed SOM framework is divided into two parts: 
the training process of the map and the actual operation of 
the system. The training can be done either on orbit, or on 
ground with simulated models, as long as the utilized model 
is accurate. The resulting map is subsequently used to 
determine the confidence of the input and recover the 
correct value of a corrupt sensor if necessary. 

Training o/the SOM 

The training algorithm generates a consistent map in order 
to enable a fast and robust determination of a joints 
confidence. Starting with a randomly initialized map the 
weights of each unit are adapted gradually until neighboring 
units are similar in their weights, cpo Figure 5 (bottom). 
After initializing the SOM with 1 3  random, but consistent, 
values within reasonable limits determined by the work 
space of the manipulator, the actual training process begins. 
The flow chart depicted in Figure 7 illustrates the conducted 
steps. For this purpose several hundred data sets of joint 
angles and corresponding TCP poses were gained from 
either fault-free operation of the robotic arm or a simulated 
model. The data sets are divided into two groups, one used 
for training, the other for post-training evaluation. Therefore 
the training process is split into epochs of 100 training sets 
in order to evaluate the current status of the map after each 
epoch. This is done by choosing random data out of the 
evaluation sets and feeding it into the SOM. As soon as the 
error between its output and the expected result goes below 
a specific threshold, the SOM has completed the training 
process. In order to further improve the performance of the 
AI-system and limit the size of the maps, the operational 
range of each joint is adapted to the expected workspace by 
the planned approach trajectory. The range for each of the 
seven joints is subsequently split into two parts resulting in 

a total of 27 
= 128 maps, increasing the overall resolution 

while keeping the size of each map constant. In contrast to 
one large map containing the same information, the 
matching process becomes significantly faster. The 
procedure of adapting the randomly initialized SOMs to the 
input space is done step by step. One training set at a time is 
chosen randomly and is fed into the SOM. According to the 
joint angles in this set, one map out of the pool of 128 maps 
containing the specific joint configuration is chosen and 
trained. The training function searches for the best matching 
unit (BMU) in the respective map and adjusts the weights of 
the unit as well as its direct neighbors. 

Neighborhood size 

The amount of neighbors being adapted is determined by a 
variable, which is decreased with time. In the beginning this 
value has to be big in order to get a rough shape of the input 
space in a short time, but is decreased until only one unit is 
changed towards the end of the training procedure to obtain 
the required map precision. The algorithm uses the formula 
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CglObal 

Figure 6: Schematic overview of the OOS mission with 

the servicer satellite on the left and the client satellite to 

be capture on the right. 

nSlzei = nSlzeo x exp -i x 0 x Kn , 
. . ( IOg(nSiZe ) ) 

#settrain 
( 1 )  

with Kn being proportional to the desired speed of training 
and i the current iteration of sets. The higher the speed of 
training with higher Kn, the faster the adapt ion of the map to 
the given training space. However the precision will be 
worse, since the last sets to be trained still have an influence 
on a big area of the map, which means that the system loses 
its memory; older sets are overwritten by newer ones. 
Furthermore the influence of the total amount of training 
sets #seurain in ( 1 )  guarantees, that at the end of the 
training procedure only a few units are adapted, whereas in 
the beginning for i = 0 

nSize#settrain = nSizeo (2) 

units will be changed. This results in a fast change of the 
map in the early stage of training, leading from quick 
change to precise fine-tuning towards the end of the process. 
The training yields similar precision for a constant (but 
small) neighborhood size, with the disadvantage of taking 
much more time compared with the previously described 
procedure. In this particular case the best experience was 

made with Kn = 2 and a neighborhood size starting at 
nSize_O = 0.25 * map Dim depended on the size of the 
map. 

Learning Rate 

Be�ide the neighborhood size, the learning rate (LR) plays 
an unportant role in the training of a SOM. It describes how 
much one unit is changed during the iterations and decreases 
exponentially with ongoing training sets: 



Divide sets Acquire data sets from ___ � 
fault free system 

maps 

Adapt 
weights 

Make unit 
consistent 

Figure 7: SOM training process 

(. 10g(LRo) 1 ) 
LRi = LRo exp L x x . 

#settrain KLR x epoch 
with LRo E ]0; 1[. 

(3) 

Again a faster change in the map can be achieved with an 

increase of K LR' The difference to ( 1 )  is the dependency on 
the epoch, which is currently being trained. The longer the 
training is in progress, the better the map already adapted to 
the input space and the less it should be affected by changes 
in order to achieve the best precision possible. The number 
of training sets #set_train is reset to 0 after each epoch and 
starts to increment again with each iteration 

Weights Update 

Using the previously determined learning rate (3) and 
neighborhood size ( 1 )  the new weight of the currently 
treated unit is calculated by applying 

Wnew = Wold X LR x (nSize - dist2BMU) x tow. (4) 

The distance of the neighbors to the BMU affects the new 
weight, too. Starting directly at the center of the 
neighborhood the change in the weight is maximal, while 
decreasing towards the edge. This results in a smooth 
distribution in the map, which is necessary to achieve a fast 
processing during confidence calculation. Furthermore the 
difference between old unit and input vector (toweight) 
influences the magnitude of change as well. With (4) each 
unit in the map is adapted to the current training set until the 
evaluation sets indicate a satisfying level of precision. 

Sensor Fault Detection and Lost Value Estimation 

Figure 8 depicts the conducted steps for observing all joints 
continuously in the real-time environment based on the 

Extract all 
values but one 

joint angle 

Use estimated 
1-----1 angle 

fully-trained and stored map. As previously discussed, the 
system consists of several maps covering different parts of 
the joint range. The algorithm for calculating the confidence 
for one joint uses all information but this specific value and 
identifies the best matching unit based on the remaining 12  
weights within all relevant maps. 

Determining the BMU in a map can be done in mUltiple 
ways. The method of brute force search allows the system to 
always fmd the best solution while losing performance with 
regard to time-behavior. In addition, the method of gradient 
descent is much faster with the risk of detecting a local 
minimum of the Euclidean distance between input space and 
the units in the map instead of the desired global minimum. 
Using five randomly distributed starting points for gradient 
descent and subsequently choosing the best result has been 
found to be a good compromise between precision and 
speed. A fmite impulse response (FIR) filter is applied to the 
found estimated angle over time to further improve the 
performance. Due to oscillation of the found solution around 
the true value due to local minima, the filter interpolates the 
estimated value and thus further increases the maps 
resolution. 

The estimated joint angle is subsequently compared to the 
measured one. If the sensor is working properly, the 
estimated value should be near the measured one yielding a 
high sensor confidence, whereas a big difference indicates a 
sensor failure or blocked joint. By applying a threshold­
triggered event to the confidence, a respective recovery 
routine, e.g. retracting the arm, can be issued. Alternatively, 
the recovered joint angle can be used in the control scheme 
instead of the measured value to complete the current task. 

Use measured 
�---il�;an; g; le��e-

________ -/ 

Figure 8: Sensor confidence estimation scheme 
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5. DEMONSTRATION SCENARIO 

Demonstration Setup 

The Gennan Orbital Servicing Mission (DEOS) [48] 
currently under development at DLR forms the basis for the 
OOS demonstrator presented in this paper. DEOS 
investigates technologies to autonomously and manually 
perform rendezvous and proximity operations, as well as to 
capture a tumbling and uncooperative target satellite with a 
dexterous manipulator based on DLR's 7-DoF Lightweight 
Robot III (L WR-III). As demonstrator, an on-orbit servicing 
scenario was set up with the Systems Tool Kit (STK) for 
visualization and for feeding realistic orbit and 
communication data into the data management via a 
designated equipment handler (STK _ EQH). In the scenario, 
a client satellite is to be captured autonomously by the 
servicing satellite that features a 7-DoF dexterous 
manipulator with a gripper. Figure 10 followed by Figure 9 
depict the demonstrator architecture and the orbit simulation 
environment, respectively. The avionics and robot control is 
set up on an embedded, space-qualified e.Cube as relevant 
target platform. Within an earlier investigation, scenarios 
including successful robotic capture and the initiation of an 
arm emergency retract triggered by an unexpected loss of 
signal (LOS), were successfully perfonned [7]. This 
demonstrated the on-board system's capabilities to cope 
with autonomous nominal operations and failure 
management. The setup was extended by the presented self­
organizing map architecture in order to complement the 
traditional FDIR mechanisms with advanced AI approaches. 
At the current stage, the AI framework is located outside the 
on board architecture for research purposes. However, after 
further developing the current solution, it is planned to 
integrate it into the framework. Based on the introduced AI 
functionality, experiments with sensor failure during arm 
operations have been conducted, including sensor outage 
and drift, both leading to emergency routines after the 
failure was discovered. In addition, nominal operations were 
continued using estimated sensor data after sensor failure 

Figure 9: STK orbit simulation of OOS scenario 

shortly before capture. 

Path planning for all capture trajectories of the robotic arm 
was perfonned offline using a multi-body simulation tool 
[49] and subsequently included as pre-planned sequences in 
the mission planner. The escape trajectory for the arm 
retract maneuver is represented by the inverse motion of the 
approach. The realistic satellite simulation calculates orbit 
position, communication times (acquisition of signal, loss of 
signal) and lighting conditions and forwards them via UDP 
to the STK equipment handler, the data is subsequently 
stored in the data management. The on-board framework for 
the experiments comprises all essential core components, 
the data management (DM), event handler (EVH), 110 
handler (lOH), mission timeline handler (MTH) and 
Supervisor (SUV). As specific components a robot control 
component (ROB_CTRL), equipment handler (ROB_EQH) 
and mission planner (MPL) are implemented. 

On the operator side, a graphical interface for creating PUS 
commands (CmdGUI) and a tool that converts this input 
into binary PUS packets are used. The 10H receives these 
commands and routes them to the designated on-board 
component. In the scenario the SUV is commanded to 
initialize the complete on-board system and bring all 

Figure 10: Deployment diagram of on-orbit servicing demonstrator setup 
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Figure 11: Joint angle trajectory for all 7 joints. The confidence (in magenta) with a horizontal line marking 80% 
threshold (upper part). The measured joint angle (blue) is depicted together with the estimated (red) and correct 

(green) values. The difference between correct and estimated is colored in cyan with a separate scale. 
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components into their required state. The SUY reads the 
STK and sensor confidence data from the data management 
and triggers the MPL upon AOS to plan and initiate the 
autonomous satellite capture maneuver. The plan is stored in 
the mission timeline and subsequently executed through the 
robot control component. For the control of a real robot, 
ROB CTRL would interface with the actual hardware via a 
robot equipment handler that implements the specific robot 
interface, e.g. EtherCA T or SERCOS. In the case of the 
demonstrator scenario, ROB _ EQH simply forwards its input 
to the STK _ EQH component which sends the planned joint 
values of the dexterous manipulator to the orbit simulation 
and the AI framework. AOS, LOS and confidence threshold 
violation events are triggered by the EQH _ STK and 
subsequently processed by the event handler. The SUY as 
configured receiver processes these events and acts 
accordingly. In the case of unexpected sensor outage or 
drift, the autonomous capture maneuver is aborted and an 
emergency arm retract maneuver is triggered. In another 
scenario, shortly before capture the faulty sensor is ignored 
and the estimated value forwarded to the robot control 
component. 

Demonstration Results 

Several pre-planned trajectories for the autonomous target 
capture were executed with the robot sensor confidence 
analysis in the loop. Table 1 summarizes the mean error and 
computation time for multiple options. While larger maps 
result in a higher accuracy with a mean error below 2.S 
degrees between estimated and true joint angle, the 
computational time increased accordingly. The best results 
were achieved using maps of the size of SOxSO together with 
the method of gradient descent and filtering. Interestingly, 
the mean error using gradient descent and filtering is smaller 
than the brute force variant, which is due to the interpolation 
effect realized by this combination. Although the AI 
computation does not comply with the real-time interval of 
the robot control, it yields a robust measure of the actuator 
sensor health that could be integrated into the control loop. 

Table 1: Estimation error and processing time 

Map size # of maps method mean mean compo 
error ['] time [ms] 

brute force 4 .52  1263 
50x50 128 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

grad .  desc. 3 . 2 1  349 

brute force 3 .05 4373 
100xlOO 128 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

grad .  desc. 2 .46 872 

During the capture scenarios, the following types of sensor 
fai lures have been investigated. In the case of a hard failure 

the sensor stops working at a given time, returning only 
zero. This can be due to communication or electrical 
problems. A bias failure makes the sensor stuck at its 
current value, having a constant output after this time. 
Hardware or communication problems can cause this 
behavior. Temperature or calibration Issues can cause a 
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sensor drift, which adds a constant term to the output 
increasing in time. In the case an outlier failure occurs the 
sensor output jumps to a specific value in short peaks. This 
can be caused by a poor connection or other electrical 
problems. This failure is only a temporary problem, the 
sensor continues working properly afterwards. 

Figure 1 1  depicts an exemplary plot with the joint angle 
trajectory for all seven joints of the manipulator. Several 
failures have been introduced in joint 4 during the approach 
maneuver. After I Ss, three successive peaks in the measured 
signal can be observed, representing a simulated outlier 
failure. Those are detected immediately as the confidence 
drops below the defined 80% threshold. Furthermore the 
estimated angle indicated in red is not influenced by these 
failures. A few seconds later starting at t\=24.Ss the joint 
experiences a drift failure resulting in a decrease of 
confidence, which is finally breaking the threshold 2.9s later 
at 12=27.4s. Similar to the peaks, the estimated angle is not 
affected, continuously following the correct value of the 
joint angle. The confidence of the remaining six joints was 
not affected. Further tests with realistic noise both in the 
camera estimation and the joint sensors lead to almost no 
loss in precision. The offline experiments and conducted 
scenarios showed that the SOM AI FDIR approach is a 
feasible and robust method for detecting robot sensor 
failures during autonomous maneuvers. Moreover, nominal 
operation could be continued based on estimated sensor 
values. Thus, temporary sensor fluctuation, outliers and 
peaks do not lead to an unnecessary abortion of the current 
operation, adding robustness to the space-robotic system. 
However, the computation time is still relatively high and 
has to be optimized in future implementations in order to 
minimize the reaction time of the system. The given amount 
of data for the chosen method results in approx. 30MB of 
memory space, which is a feasible requirement for modem 
on-board computers such as the Airbus e.Cube. 

6. CONCLUSION AND FUTURE WORK 

The presented architecture follows an integrated approach 
required for safely operating future robotic spacecraft where 
the satellite becomes a space robot. In addition to the robust 
and tested core framework, a combination of classic system 
FDIR and an advanced AI approach for robot failure 
detection were developed and successfully demonstrated. 
Together with the frameworks data-centric approach, 
event/action mechanisms, mission planning and scheduling, 
supervision and control, a high degree of mission autonomy 
and failure robustness could be achieved. The AI approach 
showed good robustness with respect to joint failure 
detection, even if significant sensor noise was present. 
Furthermore, estimated sensor values could be used as 
replacement for the faulty sensor to be fed into the robot 
control system, allowing continuous nominal operation if 
appropriate. A significant strength of the presented AI 
method is that it can also be trained during the mission. It is 
quite flexible and can be quickly adapted to different 
hardware properties. The demonstrator showed that the 



architecture is a promising candidate for robotic on-orbit 
servicing spacecraft. 

Further investigations should be made in order to improve 
the method in terms of precision and speed. For example, 
this can be achieved by adding further information from 
redundant sensors. After fully integrating the presented AI 
into the on-board framework, it should be further tested with 
a hardware-in-the-Ioop (HIL) system, e.g. DLR's DEOS­
Sirn facility. Finally, by introducing artificial intelligence 
techniques with partly non-deterministic behavior in the 
space domain, the development of a suitable verification and 
validation process becomes a big challenge with respect to 
the current requirements in the space industry. In this 
context, it might be a future path to allow a specific but 
controlled degree of uncertainty and non-deterministic 
behavior while gaining a significant advance in autonomy 
capabilities and robustness, especially when it comes to the 
operation of complex space robotic systems. 
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